高中空间立体几何典型例题
高中空间立体几何典型例题
高中空间立体几何典型例题1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F . 求证:EF ∥平面ABCD .证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN . ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN .又∵B 1E =C 1F ,∴EM =FN ,故四边形MNFE 是平行四边形,∴EF ∥MN . 又MN ⊂平面ABCD ,EF ⊄平面ABCD , 所以EF ∥平面ABCD .方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则BB G B AB E B 1111=,∵B 1E =C 1F ,B 1A =C 1B , ∴BB G B BC E C 1111=,∴FG ∥B 1C 1∥BC ,又EG ∩FG =G ,AB ∩BC =B ,∴平面EFG ∥平面ABCD ,而EF ⊂平面EFG , ∴EF ∥平面ABCD .2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △321G G G ∶S △ABC .(1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F ,连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC .(2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31AC . 同理G 2G 3=31AB ,G 1G 3=31BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △321G G G ∶S △ABC =1∶9.3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 的位置关系,并给予证明.解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF.方法二∵EF为△SBC的中位线,∴EF∥SB. ∵EF⊄平面SAB,SB⊂平面SAB,∴EF∥平面SAB.同理可证,DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又SG⊂平面SAB,∴SG∥平面DEF.5如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明(1)如图所示,取BB1的中点M,易证四边形HMC 1D 1是平行四边形,∴HD 1∥MC 1. 又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE 21DC , 又D 1G 21DC ,∴OE D 1G ,∴四边形OEGD 1是平行四边形, ∴GE ∥D 1O .又D 1O ⊂平面BB 1D 1D ,∴EG ∥平面BB 1D 1D .(3)由(1)知D 1H ∥BF ,又BD ∥B 1D 1,B 1D 1、HD 1⊂平面HB 1D 1,BF 、BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1, DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .6如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH .(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形,∴EF ∥HG . ∵HG ⊂平面ABD ,∴EF ∥平面ABD . ∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB .∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH .(2)解 设EF =x (0<x <4),由于四边形EFGH 为平行四边形,∴4xCB CF =. 则6FG =BC BF =BC CF BC -=1-4x. 从而FG =6-x 23. ∴四边形EFGH 的周长l =2(x +6-x 23)=12-x . 又0<x <4,则有8<l <12,∴四边形EFGH 周长的取值范围是(8,12).7如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO ? 解 当Q 为CC 1的中点时, 平面D 1BQ ∥平面PAO .∵Q 为CC 1的中点,P 为DD 1的中点,∴QB ∥PA . ∵P 、O 为DD 1、DB 的中点,∴D 1B ∥PO . 又PO ∩PA =P ,D 1B ∩QB =B , D 1B ∥平面PAO ,QB ∥平面PAO , ∴平面D 1BQ ∥平面PAO .8正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .证明 方法一 如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又∵AP =DQ ,∴PE =QB , 又∵PM ∥AB ∥QN , ∴AEPE ABPM=,BD BQ DC QN =,DCQNABPM =,∴PM QN ,∴四边形PMNQ 为平行四边形,∴PQ ∥MN . 又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二 如图所示,连接AQ ,并延长交BC 于K ,连接EK , ∵AE =BD ,AP =DQ , ∴PE =BQ ,∴PE AP =BQDQ①又∵AD ∥BK ,∴BQDQ =QKAQ②由①②得PE AP =QKAQ ,∴PQ ∥EK .又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .方法三 如图所示,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M , 连接QM .∵PM ∥BE ,PM ⊄平面BCE , 即PM ∥平面BCE ,∴PE AP =MBAM ① 又∵AP =DQ ,∴PE =BQ ,∴PE AP =BQDQ ②由①②得MBAM =BQDQ ,∴MQ ∥AD , ∴MQ ∥BC ,又∵MQ ⊄平面BCE ,∴MQ ∥平面BCE . 又∵PM ∩MQ =M ,∴平面PMQ ∥平面BCE , PQ ⊂平面PMQ ,∴PQ ∥平面BCE .8如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC ′,证明:BC ′∥平面EFG . (1)解 如图(1)所示.图(1)(2)解 所求多面体体积 V =V 长方体-V 正三棱锥=4×4×6-31×(21×2×2)×2=3284(cm 3). (3)证明 如图(2),在长方体ABCD —A ′B ′C ′D ′中, 连接AD ′,则AD ′∥BC ′.因为E ,G 分别为AA ′,A ′D ′的中点,所以AD ′∥EG ,从而EG ∥BC ′. 又BC ′ 平面EFG , 图(2) 所以BC ′∥面EFG .9.如图所示,正四棱锥P —ABCD 的各棱长均为13,M ,N 分别为PA ,BD 上的点,且PM ∶MA =BN ∶ND =5∶8. (1)求证:直线MN ∥平面PBC ; (2)求线段MN 的长.(1)证明 连接AN 并延长交BC 于Q , 连接PQ ,如图所示.∵AD ∥BQ ,∴△AND ∽△QNB ,∴NQAN =NBDN =BQAD =58, 又∵MA PM =ND BN =85, ∴MPAM =NQAN =58,∴MN ∥PQ , 又∵PQ ⊂平面PBC ,MN ⊄平面PBC , ∴MN ∥平面PBC .(2)解 在等边△PBC 中,∠PBC =60°, 在△PBQ 中由余弦定理知 PQ 2=PB 2+BQ 2-2PB ·BQ cos ∠PBQ =132+2865⎪⎭⎫⎝⎛-2×13×865×21=642818, ∴PQ =891, ∵MN ∥PQ ,MN ∶PQ =8∶13,∴MN =891×138=7. 10 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA =∵E 是PD 的中点,∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形,∴MN∥AE.又AE⊂平面PAD,MN ⊄平面PAD,∴MN∥平面PAD.方法二取CD中点F,连接MF,NF.∵MF∥AD,NF∥PD,∴平面MNF∥平面PAD,∴MN∥平面PAD.11 在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.12 在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,且AB ⊥BC , ∴BC ⊥平面PAB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面PAC , ∴平面PAC ⊥平面PBC .13如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1.(2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形.∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .14 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1,∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.15 在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P -ABCD 的体积. 证明:(Ⅰ)在△ABD 中, 由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V16.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为PA ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:PA ⊥BC . (Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形.∵N 为BC 的中点,∴MN ⊥BC .在Rt △MNB 中,⋅=-=2222BN MB MN(Ⅱ)证明:∵M 是PA 的中点,∴PA ⊥MB ,同理PA ⊥MC .∵MB ∩MC =M ,∴PA ⊥平面MBC , 又BC ⊂平面MBC ,∴PA ⊥BC .17.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD ..证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .18如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为FA ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形.(Ⅱ)C ,D ,F ,E 四点共面.理由如下:由BE ∥AF ,AF BF 21=,G 是FA 的中点,得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.。
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
高中立体几何典型50题及解析
高中立体几何典型500题及解析(一)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
高中几何体试题及答案解析
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
空间向量立体几何(绝对经典)
例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
立体几何典型例题精选(含答案)
FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE……………14分变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,222AE AF EF AE AE EF ⎛⎫+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z =,则3,(0,3)y =-∴=-n . 136(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).…………7分 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,419||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.变式4:(2014全国卷)19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.…………10分由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分 故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3,MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600,利用体积相等得:A MBC M ABC V V d --=⇒=5分 (2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF ⊥EC 于F ,连AF ,则AF ⊥EC ,∠AFB 就是二面角A -EC -B 的平面角,设为θ. ……7分因为∠BCE =120°,所以∠BCF =60°.sin 603BF BC =⋅=9分tan 2ABBFθ==,sin θ=…………11分所以,所求二面角的正弦值是5. …………12分 解法二:取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图. OB =OM ,则各点坐标分别为O (0,0,0),C (1,0,0),M (0,0,B (0,,0),A (0,,3),(1)设(,,)n xy z =是平面MBC 的法向量,则BC=(1,3,0),BM =,由n BC⊥得0x +=;由n BM ⊥得0+=;取(3,1,1),(0,0,n BA =-=,则距离2155BA n d n⋅==…………5分 (2)(CM =-,(1,CA =-.设平面ACM 的法向量为1(,,)n x yz =,由11n CM n CA⎧⊥⎪⎨⊥⎪⎩得0x x ⎧-+=⎪⎨-+=⎪⎩.解得x =,y z =,取1(3,1,1)n =.又平面BCD 的法向量为(0,0,1)n =,则1111cos ,5nn n n n n⋅<>==⋅ 设所求二面角为θ,则sin θ==.…………12分BA变式5:解析:由于BCMK 是梯形,则MK 与CB 相交于E .A 、E 确定的直线为m ,过C 作CF ⊥m 于F ,连结MF ,因为MC ⊥平面ABCD ,CF ⊥m ,故MF ⊥m .∠MFC 是二面角M -m -C 的平面角.设正方体棱长为a ,则34CM a =,14BK a =.在△ECM 中,由BK ∥CM 可得12EB a =,CF =,故tan 4MFC ∠=.因此所求角的余弦值为cos 21MFC ∠=. 变式6:解析:∵平面ABCD ∥平面1111A B C D ,∴平面1AB C 与平面1111A B C D 的交线m 为过点1B 且平行于AC 的直线.直线m 就是二平面1AB C 与1111A B C D 所成二面角的棱.又平面1AB C 与平面1AA ⊥平面1111A B C D ,过1A 作AH ⊥m 于H ,连结AH .则1AHA ∠为二面角1A m A --的平面角.可求得1tan AHA ∠=.高考试题精选1.(2014 四川卷)解:(1)如图所示,取BD 的中点O ,连接AO ,CO .由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP .又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.…………5分 (2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.…………13分故二面角A - NP - M 的余弦值是105. …………14分 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.…………6分如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32.…………7分 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). …………9分 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0,即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). …………11分 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.…13分故二面角A -NP -M 的余弦值是105.…………14分2.(2014 湖南卷)解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . …………4分 (2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1.进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1OB 1D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0) ,B 1(3,0,2),C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.3.(2014 江西卷)19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为 O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.。
高考数学立体几何部分典型例题
(一)1.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ).A.92+14π B.82+14πC.92+24π D.82+24π命题意图:考察空间几何体的三视图,三视图为载体考察面积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析由三视图可知:原几何体为一个长方体上面放着半个圆柱,其中长方体的长宽高分别为5,4,4,圆柱的底面半径为2,高为5,所以该几何体的表面积为:2+1S=5×4+2×4×4+2×5×4+π× 2 2π×2×5×2=92+14π.答案 A2.(本小题满分12 分)命题人:贺文宁如图所示,平面ABCD⊥平面BCEF,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(12 分)(1)求证:AF∥平面CDE;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值;(3)求直线EF 与平面ADE 所成角的余弦值.命题意图:线面平行的位置关系,线面角、二面角的求法易错点:(1)直接建系,不去证明三条线两两垂直(2)数据解错(3)线面角求成正弦值(1)证明法一取CE 的中点为G,连接D G,FG.∵BF∥CG 且BF=CG,∴四边形BFGC 为平行四边形,则B C∥FG,且BC=FG.∵四边形ABCD 为矩形,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 分∴BC∥AD 且BC=AD,∴FG∥AD 且FG=AD,∴四边形AFGD 为平行四边形,则A F∥DG.∵DG? 平面CDE,AF?平面CDE,∴AF∥平面CDE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 分(2)解∵四边形ABCD 为矩形,∴BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,BC⊥CE,∴DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分为y 轴,CD 所在直线为z为x 轴,CE 所在直线以C 为原点,CB 所在直线,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分轴建立如图所示的空间直角坐标系根据题意我们可得以下点的坐标:→=(-2,0,0), A(2,0,4),B(2,0,0),C(0,0,0),D (0,0,4),E(0,4,0),F(2,2,0),则AD→=(0,4,-4). DE设平面ADE 的一个法向量为n1=(x1,y1,z1),则→AD·n1=0,→DE·n1=0,∴-2x=0,4y1-4z1=0,取z1=1,得n1=(0,1,1).∵DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→∴平面BCEF 的一个法向量为C D=(0,0,4).设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cosα=→CD·n1→|CD | |·n1|4==4× 22,2因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9 分(3)解根据(2)知平面ADE 的一个法向量为→=(2,-2,0),n1=(0,1,1),∵EF∴cos 〈E→F,n1〉=1〉=→EF·n1-2 1=,⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分=-→ 22 2× 2|EF | |·n1|设直线E F 与平面ADE 所成的角为θ,→则cos θ=|sin 〈EF,n1〉|=3 ,2因此,直线E F 与平面ADE 所成角的余弦值为32 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12分(二)2.某几何体三视图如图所示,则该几何体的体积为( ).ππA.8-2πB.8-πC.8-2 D.8-4命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析这是一个正方体切掉两个1圆柱后得到的几何体,且该几何体的高为2,V 4=2 ×π×1×2=8-π,故选B.3-12答案 B3.(本小题满分12 分)命题人:贺文宁如图所示,四边形ABCD 是边长为 1 的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段A N 上是否存在点S,使得ES⊥平面AMN?若存在,求线段A S的长;若不存在,请说明理由.命题意图:异面直线所成角;利用空间向量解决探索性问题易错点:(1)异面直线所成角容易找错(2)异面直线所成角的范围搞不清(3)利用空间向量解决探索性问题,找不到突破口解(1)如图以D为坐标原点,建立空间直角坐标系D-xyz.依题意得 D (0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),1B(1,1,0),N(1,1,1),E( ,1,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分2→1所以NE=(-,0,-1),2→AM=(-1,0,1).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分设直线N E 与AM 所成角为θ,→→则c osθ=|cos〈N E,AM 〉|⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3 分1 →→=|N E ·A M |=→→|N E||·A M |25× 22=1010 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分10所以异面直线N E 与AM 所成角的余弦值为10 .(2)如图,假设在线段AN 上存在点S,使得ES⊥平面AMN,连接A E.→→→因为A N=(0,1,1),可设AS=λAN=(0,λ,λ),→1又EA=( ,-1,0),2→→→1所以ES=EA+AS=( ,λ-1,λ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分2由ES⊥平面AMN,得→→E S·A M=0,→→E S·A N=0,即12-+λ=0,λ-1 +λ=0,→→1 1 1故λ=,此时AS=(0,,2),| A S|=2 222 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分经检验,当A S=2时,ES⊥平面AMN. 2在线段A N 上存在点S,使得ES⊥平面AMN,此时A S=22 .⋯⋯⋯⋯⋯⋯12 分(三)1.一个多面体的三视图如图所示,则该多面体的体积为( ).23 47A. 6 C.6 D.73 B.命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析如图,由三视图可知,该几何体是由棱长为2 的正方体右后和左下分别截去一个小三棱锥得到的,其体积为1 1 23V=2×2×2-2××1×1×1=× 3 . 32答案 A4.(本小题满分12 分)命题人:贺文宁如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P 分别为A B,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB 的体积V.命题意图:面面垂直,线面平行的判定,空间几何体的体积易错点:(1)判定时条件罗列不到位失分(2)求体积时不会分割(1)证明∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB⊥AB,∴CB⊥平面ABEF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分又AF? 平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,2 2 2∴AF +BF =AB ,得AF⊥BF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分BF∩CB=B,∴AF⊥平面CFB,又∵AF? 平面ADF;∴平面ADF⊥平面CBF . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分(2)证明连接O M 延长交B F 于H,则H为B F 的中点,又P为C B 的中点,∴PH∥CF,又∵CF? 平面AFC,PH ?平面AFC,∴PH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6 分P O,则P O∥AC,连接又∵AC? 平面AFC,PO?平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分又∵PM? 平面POH,∴PM∥平面AFC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.8 分(3)解多面体CD-AFEB 的体积可分成三棱锥C-BEF 与四棱锥F-ABCD 的体积之和在等腰梯形ABEF 中,计算得EF=1,两底间的距离E E1=3 2 .1 1 1所以V C △BEF×CB=-BEF=×1×3S×3 23×1=23,121 V F-ABCD=3S1矩形ABCD×EE1=×2×1×33=23,⋯⋯⋯⋯⋯⋯⋯10 分35 3所以V=V C-BEF+V F-ABCD=12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12 分(四)5.一个几何体的三视图如图所示,则该几何体的体积为________.命题意图:考察空间几何体的三视图,三视图为载体考察体积解析由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻2 22三条棱长分别是1,2,2,所以几何体的体积为8- 3 .=3答案22 36.(本小题满分12 分)命题人:贺文宁在平行四边形ABCD 中,AB=6,AD=10,BD=8,E 是线段A D 的中点.如图所示,沿直线BD 将△BCD 翻折成△BC′D,使得平面BC′D⊥平面ABD.(1)求证:C′D⊥平面ABD;(2)求直线BD 与平面BEC′所成角的正弦值.命题意图:空间几何体的“翻折”问题,考察学生空间想象能力和知识迁移能力易错点:把平面图形转化为空间几何体,数据错误,垂直平行关系错误(1)证明平行四边形ABCD 中,AB=6,AD=10,BD=8,沿直线BD 将△BCD翻折成△BC′D,可知C′D=CD=6,BC′=BC=10,BD=8,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分即BC′2=C′D2+BD2∴C′D⊥BD.又∵平面BC′D⊥平面ABD,平面BC′D∩平面ABD=BD,C′D? 平面BC′D,∴C′D⊥平面ABD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)解由(1)知C′D⊥平面ABD,且CD⊥BD,如图,以D为原点,建立空间直角坐标系D-xyz.则D(0,0,0),A(8,6,0),B(8,0,0),C′(0,0,6).⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵E 是线段A D 的中点,→∴E(4,3,0),BD=(-8,0,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→→在平面BEC′中,BE=(-4,3,0),BC′=(-8,0,6),设平面BEC′法向量为n=(x,y,z),→∴B E·n=0,→BC′·n=0,即-4x+3y=0,-8x+6z=0,令x=3,得y=4,z=4,故n=(3,4,4).⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分设直线BD 与平面BEC′所成角为θ,则→sin θ=|cos 〈n,BD〉|=→|n·B D|→=3 4141 .|n||BD |3 41∴直线B D 与平面BEC′所成角的正弦值为41 .⋯⋯⋯⋯⋯⋯12 分。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
24届新高考一卷数学立体几何题
24届新高考一卷数学立体几何题一、在空间中,给定四个点A、B、C、D,其中任意三点不共线,且四点不共面。
若AB垂直于CD,AC垂直于BD,则下列说法正确的是?A. BC垂直于ADB. AD垂直于BC且AB垂直于BCC. AB与AD平行D. CD与BD平行(答案:A)二、一个正方体的六个面分别被涂成红色、蓝色、黄色、绿色、紫色和橙色。
现将其三个相邻的面切去,剩余部分是一个三棱柱。
若三棱柱的三个侧面颜色分别是红色、蓝色和黄色,则其底面和顶面的颜色不可能是?A. 绿色和紫色B. 绿色和橙色C. 紫色和橙色D. 绿色和绿色(答案:D)三、在直角坐标系中,有一个三棱锥O-ABC,其中O为原点,A、B、C三点的坐标分别为(1,0,0)、(0,1,0)、(0,0,1)。
过点D(1,1,1)作平面α,使得平面α与三棱锥O-ABC的三个侧面都相交,但不与底面OAB相交。
则平面α与三棱锥O-ABC的交线共有几条?A. 1B. 2C. 3D. 4(答案:C)四、有一个长方体,其三边长分别为3、4、5。
若从其一个顶点出发,沿其表面走到对角顶点,其最短路径长度为多少?A. 5B. √41C. √52D. √65(答案:C)五、在空间中,给定一个三角形ABC和一个点P,其中点P不在平面ABC上。
过点P作平面α,使得平面α与三角形ABC所在平面相交于一条直线l。
若直线l平行于BC,且AP=PB,则点A到直线l的距离与点C到直线l的距离的关系是?A. 相等B. 点A到l的距离是点C到l的两倍C. 点C到l的距离是点A到l的两倍D. 无法确定(答案:A)六、有一个圆柱,其底面半径为r,高为h。
现从其底面圆心出发,沿其侧面走到顶面圆心,其最短路径长度为?A. hB. 2rC. √(h² + 4r²)D. √(h² + (2r)²)(答案:D)七、在空间中,给定四个点A、B、C、D,它们不共面。
高中立体几何试题及答案
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
高中数学立体几何大题练习与答案
一、解答题1.(2023高一下·重庆沙坪坝·百强名校期末)如图,有一个正四棱柱,E 、F 高中数学立体几何大题练习与答案分别为底面棱A D 11,D C 11的中点,=AB 4,=AA 61,点G 在AA 1上,且=AA AG 321.(1)判断直线BG 是否在平面BEF 内?说明理由; (2)求二面角A EF G −−1的余弦值.【答案】(1)直线BG 在平面BEF 内,理由见解析【分析】(1)建立空间直角坐标系,求平面BEF 的法向量,根据法向量与BG 的关系可判断;(2)运用几何法,得到二面角的平面角即可求解.【详解】(1)以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系 则E F B G (2,0,6),(0,2,6),(4,4,0),(4,0,4)所以(2,2,0)EF =−,(2,4,6)BE =−−,(0,4,4)BG =−设平面BEF 的法向量为(,,)n x y z =,则(1,1,1)n ⇒=⎩−−+=⎨⎧−++=x y z x y z 24602200所以其0BG n ⋅=且点B 在平面BEF 内,故直线BG 在平面BEF 内.(2)连接B D 11交EF 于O ,连接BO因为平面EFG 与平面BEF 是同一平面,平面A EF 1与平面B EF 1是同一平面, 则BOB 1为二面角−−B EF B 1的平面角,记为又==B O B D 43111,=BB 61所以==BO所以==θBO B O cos 12.(2023·江苏·百强名校期末)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且⊥B D A F 11 ,⊥AC A B 1111.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F. 【答案】(1)详见解析(2)详见解析【详解】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 试题解析:证明:(1)在直三棱柱111ABC A B C 中,A C 11,AC 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE AC ,于是11DE AC ,又因为DE ⊄平面⊂AC F AC ,1111平面AC F 11, 所以直线DE//平面AC F 11.(2)在直三棱柱111ABC A B C 中,面平⊥AA A B C 1111 因为⊂AC 11平面A B C 111,所以⊥AA AC 111,又因为面平面平,⊥⊂⊂⋂=AC A B AA ABB A A B ABB A A B AA A ,,111111*********, 所以⊥AC 11平面ABB A 11.因为⊂B D 1平面ABB A 11,所以⊥AC B D 111.又因为面平面平,⊥⊂⊂⋂=B D A F AC AC F A F AC F AC A F A ,,1111111111111, 所以面平⊥B D AC F 111.因为直线面平⊂B D B DE 11,所以面平B DE 1面平⊥AC F .11 【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.3.(2023高一下·吉林长春·百强名校期末)在四棱锥−P ABCD 中,底面ABCD 是边长为2的菱形,∠=︒BAD 60,若==PA PD ∠=PAB 10cos .(1)证明:平面⊥PAD 平面ABCD ; (2)求二面角−−B PD A 的正切值.【答案】(1)证明见解析;(2 【分析】(1)取AD 中点O ,连结PO ,BO ,BD ,推导出⊥PO AD ,及⊥PO BO ,从而⊥PO 平面ABCD 由此得到平面⊥PAD 平面ABCD .(2)由面面垂直的性质得到⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD ,从而∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,计算各数据,得到所求角的正切值.【详解】(1)证明:取AD 中点O ,连结PO ,BO ,BD ,在PAD 中,=PA PD=AD 2,则⊥PO AD ,===PO 2.在菱形ABCD 中,∠=︒BAD 60,==AB AD 2,∴===AB AD BD 2,∴⊥BO AD ,且===BO PAB 中,∠=PAB cos ,∴=+−⋅⋅∠=+−=PB PA AB PA AB PAB 2cos 54227222. 在POB 中,+=+==OB PO PB 347222,∴⊥PO BO ,且ADBO O =∴⊥PO 平面ABCD .又⊂PO 平面PAD ∴平面⊥PAD 平面ABCD .(2)由(1)知平面⊥PAD 平面ABCD ,且平面⋂PAD 平面=ABCD AD ,且⊥BO AD , ∴⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD . ∴∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,⊥OE PD ,有⋅=⋅PD OE PO OD =⨯OE 21,∴=OE在BOE Rt 中,∠===OE BEO OBtan∴二面角−−B PD A4.(2023高一下·吉林长春·百强名校期末)如图.已知正三棱柱111ABC A B C 的底面边长=AB 6,D ,E 分别是CC 1,BC 的中点,=AE DE .(1)三棱锥−A ECD 的体积; (2)正三棱柱111ABC A B C 的表面积.【答案】(2)【分析】(1)依题意可得⊥AE BC ,在由正三棱柱的性质得到⊥CC BC 1,利用勾股定理求出线段的长度,最后由A ECD D AEC AECV V SCD ==⋅−−31计算可得;(2)求出上下底面积及侧面积,即可求出棱柱的表面积.【详解】(1)因为E 是BC 的中点,ABC 为等边三角形,所以⊥AE BC , 在正三棱柱111ABC A B C 中⊥CC 1平面ABC ,⊂BC 平面ABC ,所以⊥CC BC 1,又=AB 6,所以=EC 3,AE ===AE DE ,所以==CD所以AECS=⨯⨯=231所以33A ECD D AEC AECV V SCD ==⋅=⨯=−−11.(2)由(1)可知==CC CD 211112ABC A B C S S ==⨯⨯=61ABCS CCC =⋅=⨯⨯=侧366210821,所以棱柱的表面积=⨯=S 25.(2023高一下·四川成都·百强名校期末)如图,在四棱锥−P ABCD 中,⊥PC 底面ABCD ,在直角梯形ABCD 中,⊥AB AD ,BC AD //,==AD AB BC 22,E 是PD 中点.求证:(1)CE //平面PAB ; (2)平面⊥PCD 平面ACE . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)取线段AP 的中点F ,可证得四边形BCEF 为平行四边形,从而得到CE BF //,由线面平行的判定可证得结论;(2)由线面垂直性质和勾股定理可分别证得⊥PC AC ,⊥AC CD ,由线面垂直和面面垂直的判定可证得结论.【详解】(1)取线段AP 的中点F ,连接EF BF ,,,E F 分别为PD AP ,中点,∴EF AD //,=EF AD 21, 又BC AD //,=BC AD 21,∴EF BC //,=EF BC , ∴四边形BCEF 为平行四边形,∴CE BF //,BF ⊂平面PAB ,⊄CE 平面PAB ,∴CE //平面PAB . (2)PC ⊥平面ABCD ,⊂AC 平面ABCD ,∴⊥PC AC ; 设=AD 2,则==AB BC 1,//BC AD ,⊥AB AD ,∴⊥AB BC ,∴=AC ==CD∴+=AC CD AD 222,∴⊥AC CD ;PCCD C =,⊂PC CD ,平面PCD ,∴⊥AC 平面PCD ,AC ⊂平面ACE ,∴平面⊥PCD 平面ACE .6.(2023高一下·安徽六安·百强名校期末)在正三角形ABC 中,E ,F ,P 分别是AB 、AC 、BC 边上的点,满足===AE EB CF FA CP PB :::1:2(如图1).将△AEF 沿EF 折起到的1A EF 位置,使平面⊥A EF 1平面BEF ,连结A B 1,P A 1(如图2).(1)求证:FP //平面A EB 1;(2)求直线A E 1与平面A BP 1所成角的大小. 【答案】(1)证明见解析(2)︒60.【分析】(1)依题意可得FP BA //,即FP BE //,从而得证;(2)法一:设E 到面A BP 1距离为h ,根据=−−V V A BPE E A BP 11,即可求得h 的值,进而求解即可.法二:在图1中过点F 作FD BC //交AB 于点D ,即可得到△ADF 为等边三角形,则⊥FE A E 1,再由面面垂直的性质得到⊥A E 1平面BEP ,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q ,则可得⊥BP 平面A EQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,再由锐角三角函数计算可得.【详解】(1)∵=CP PB CF FA ::,∴FP BA //, ∴FP BE //,∵⊂BE 平面A EB 1,⊄FP 平面A EB 1,∴BP //平面A EB 1; (2)法一:在图1中过点F 作FD BC //交AB 于点D ,因为===AE EB CF FA CP PB :::1:2, 所以==BD AD CF AF ::1:2,即D 、E 为AB 的三等分点,所以E 为AD 的中点,又ABC 为等边三角形,所以△ADF 也为等边三角形, 所以⊥FE AD ,则⊥FE A E 1,又平面⊥A EF 1平面BEF ,平面A EF 1平面=BEF FE ,⊂A E 1平面A EF 1,所以在图2中,⊥A E 1平面BEP ,又⊂BP 平面BEP ,∴⊥A E BP 1,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q , 则可得⊥BP 平面A EQ 1,又⊂AQ 1平面A EQ 1,∴⊥BP AQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,设=AB 3,在△EBP 中,∵==BE BP 2,60=︒∠EBP , ∴△EBP 是等边三角形,∴=BE EP ,又⊥A E 1平面BEP ,∴=A B A P 11,∴Q 为BP 的中点,且=EQ又=A E 11,在1A EQ Rt ,∠==A EEA Q EQtan 11601∠=︒EA Q , 所以直线A E 1与平面A BP 1所成的角为︒60.法二:同法一可得⊥A E 1平面BEP ,设E 到面A BP 1距离为h ,设=AB 3,则==A B A P 11,则=−−V V A BPE E A BP 11,∴△△⋅=⋅S A E S h BPE A BP 331111,∴△△⨯===⋅⨯S h S A E A BP BPE 221221111,设A E 1与面A BP 1所成角为θ,则=θA E h sin 1︒≤≤︒θ090,∴=︒θ60. 所以直线A E 1与平面A BP 1所成的角为︒60.7.(2023高一下·重庆沙坪坝·百强名校期末)如图,四边形ABCD 是圆柱下底面的内接四边形,AC 是圆柱底面的直径,PC 是圆柱的一条母线,=AB AD ,∠=BAD 60,点F 在线段AP 上,=PA PF 4.(1)求证:平面⊥PCD 平面PAD ;(2)若==CP CA 4,求直线AC 与平面FCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证⊥AD 平面PCD ,再根据面面垂直的判定定理可证平面⊥PCD 平面PAD ;(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系,利用线面角的向量公式可求出结果. 【详解】(1)因为PC 是圆柱的一条母线,所以⊥PC 底面ABCD , 又⊂AD 底面ABCD ,所以⊥PC AD , 因为AC 是圆柱底面的直径,所以⊥AD CD , 因为⊂PC CD ,平面PCD ,⋂=PC CD C , 所以⊥AD 平面PCD ,又因为⊂AD 平面PAD ,所以平面⊥PCD 平面PAD .(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系, 因为=AB AD ,=AC AC ,∠=∠=ADC ABC 2π, 所以R R t ADC t ABC ≅,又∠=BAD 60,所以π6DAC BAC ==, 因为==CP CA 4,=PA PF 4,所以==CD AC221,=AD所以C (0,0,0),A (4,0,0), D ,F (1,0,3), 所以(4,0,0)AC =−,(1,3,0)CD =,(1,0,3)CF =, 设平面FCD 的一个法向量为(,,)n x y z =,则n CD x y n CF x z ⋅=+=⋅=+=⎩⎪⎨⎪⎧3030,取=−x 3,得y =z 1,则(3,3,1)n =−,设直线AC 与平面FCD 所成角为θ,则sin cos ,||||AC n AC n AC n ⋅=<>=θ==.即直线AC 与平面FCD 所成角的正弦值为13.8.(2023高一下·重庆沙坪坝·百强名校期末)如图,在四棱锥−P ABCD 中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,=PD DC ,E 、F 分别是PC 、AD 中点.(1)求证:DE //平面PFB ;(2)求PC 与面PFB 所成角的正弦值.【答案】(1)见解析;(2【分析】(1)取PB 的中点为G ,连接EG FG ,,可证四边形DEGF 为平行四边形,从而可证DE //平面PFB ;(2)利用等积法可求C 到平面PFB 的距离,从而可求PC 与面PFB 所成角的正弦值. 【详解】(1)取PB 的中点为G ,连接EG FG ,, 因为E G ,分别为所在棱的中点,故=EG BC EG BC 2//,1, 而=DF AD 21,=AD BC AD BC //,,故=EG DF EG DF //,, 故四边形DEGF 为平行四边形,所以FG DE //, 而⊂FG 平面PBF ,⊄DE 平面PBF ,故DE //平面PFB .(2)设=DC a ,连接CF ,设C 到平面PBF 的距离为h .因为⊥PD 底面ABCD ,⊂CD 平面ABCD ,故⊥PD CD ,同理⊥⊥PD AD PD BC ,, 而=PD DC,故PC .故=PF a 2,同理=BF a 2. 因为⊥BC CD ,而⋂=PD DC D ,故⊥BC 平面PCD , 而⊂PC 平面PCD ,故⊥BC PC,所以==PB ,故△==S a PFB 2412, 又△=⨯⨯=S a a a FCB2212, 因为=−−V V P FCB C PFB,故⨯⨯=⨯a a h 32311122,故=h ,设PC 与面PFB 所成角为θ,则=θsin9.(2023高一·全国·课后作业)如图,在三棱锥P ABC −中,∠=︒ACB 90,⊥PA 底面ABC(1)证明:平面⊥PBC 平面P AC(2)若==AC BC PA ,M 是PB 中点,求AM 与平面PBC 所成角的正切值 【答案】(1)证明见解析【分析】(1)由∠=︒ACB 90,得到⊥AC CB ,再根据⊥PA 底面ABC ,得到⊥PA CB ,然后利用线面垂直和面面垂直的判定定理证明;(2)作⊥AO PC ,连接OM ,由平面⊥PBC 平面P AC ,得到⊥AO 平面PBC , 则∠AMO 即为AM 与平面PBC 所成的角求解. 【详解】(1)证明:因为∠=︒ACB 90, 所以⊥AC CB ,又⊥PA 底面ABC , 所以⊥PA CB ,又⋂=AC PA A , 所以⊥BC 平面P AC , 因为⊂BC 平面PBC , 所以平面⊥PBC 平面P AC ; (2)如图所示:作⊥AO PC ,连接OM ,因为平面⊥PBC 平面P AC ,平面⋂PBC 平面P AC=PC , 所以⊥AO 平面PBC ,则∠AMO 即为AM 与平面PBC 所成的角,设===AC BC PA t ,则==AB PB ,,所以=AM 2,又=AO 2,所以==OM t 21,所以AM 与平面PBC 所成角的正切值为∠==OMAMO AOtan10.(2023高一下·重庆北碚·百强名校期末)如图,四棱锥S —ABCD 中,底面ABCD 为菱形,602ABC SA SD AB ====,∠,侧面SAB ⊥侧面SBC ,M 为AD 的中点.(1)求证:平面SMC ⊥平面SBC ;(2)若AB 与平面SBC 成30角时,求二面角−−A SC D 的大小, 【答案】(1)证明见解析 (2)︒90【分析】(1)由线面垂直与面面垂直的判定定理求解即可;(2)取BS 的中点N ,连接AN ,由题意可得=BS CS 的中点E ,连接AE DE ,,可证明∠AED 是二面角−=A SC D 的平面角,求出角∠AED 的大小即可求解 【详解】(1)因为=SD SA ,又M 为AD 的中点, 所以⊥SM AD , 又BC AD //, 所以⊥SM BC ,又M 为AD 的中点,底面ABCD 为菱形,∠=︒ABC 60, 所以⊥CM AD AD BC ,//, 所以⊥CM BC ,因为⊥CM BC ,⊥SM BC ,⊥=SM CM M ,⊂SM 平面SCM ,⊂CM 平面SCM ,所以⊥BC 平面SCM ,因为⊂BC 平面SBC , 所以平面⊥SBC 平面SCM ,(2)取BS 的中点N ,连接AN ,又=SA AB , 所以⊥AN BS ,又平面⊥SAB 平面SBC ,平面SAB 平面=SBC SB ,⊂AN 平面SAB ,所以⊥AN 平面SBC ,又AB 与平面SBC 所成的角为︒30, 所以∠=︒ABN 30, 又=⊥AB AN BN 2,,所以===AN BN BS 1,由(1)知⊥BC 平面SCM ,又⊂SC 平面SBC , 所以⊥BC SC ,又==BS BC 2,所以==CS 取CS 的中点E ,连接AE DE ,, 因为===SA AC CD SD , 所以⊥⊥AE CS DE CS ,,所以∠AED 是二面角−=A SC D 的平面角,又====AC CD CE CS 22,1所以==AE 又+=+==AE DE AD 224222, 所以⊥AE DE ,即∠=︒AED 90, 所以二面角−=A SC D 的大小为︒90,11.(2023高一下·重庆北碚·百强名校期末)如图,三棱柱ABC —A B C 111的底面是等腰直角三角形,侧面BB 1C 1C 是矩形,∠=CAB 90,==AB AC AA 1 ,点P 是棱A B 11的中点,且P 在平面ABC 内的射影O 在线段BC 上,=BO BC 41,点M ,N 分别是线段CP ,CA 的中点(1)求证: MN //平面AA B B 11 (2)求二面角−−M AC B 的正切值. 【答案】(1)见解析【分析】(1)连接AP ,则由三角形中位线定理可得MN ∥AP ,然后利用线面平行的判定定理可证得结论,(2)连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF ,可证得∠MFE 为 二面角−−M AC B 的平面角,然后计算即可 【详解】(1)证明:连接AP ,因为M ,N 分别是线段CP ,CA 的中点, 所以MN ∥AP ,因为⊄MN 平面AA B B 11,⊂AP 平面AA B B 11, 所以MN ∥平面AA B B 11,(2)解:连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF , 因为M ,是线段CP 的中点,所以ME ∥OP ,=ME OP 21,因为⊥OP 平面ABC ,所以⊥ME 平面ABC , 因为⊂AC 平面ABC ,所以⊥ME AC , 因为⋂=ME EF E , 所以⊥AC 平面MEF ,因为⊂MF 平面MEF ,所以⊥AC MF , 所以∠MFE 为 二面角−−M AC B 的平面角, 设===AB AC AA 21,因为∠=CAB 90,所以=BC所以==BO BC 41==CO BC 43,所以==CE CO 21,=︒==EF CE 4sin 453, 在1OBB Rt 中,=+=+=OB OB BB 2241911222, 因为⊥OP 平面ABC ,平面ABC ∥平面A B C 111, 所以⊥OP 平面A B C 111, 因为⊂A B 11平面A B C 111, 所以⊥OP A B 11,所以===OP 2,所以==ME OP 21,在MEF Rt 中,∠===EF MEF ME 43tan 4,所以二面角−−M AC B 的正切值为312.(2023高一下·重庆渝中·百强名校期末)如图;正四棱柱−ABCD A B C D 1111中;=AA AB 21;点P 为DD 1的中点.(1)求证:直线∥BD 1平面PAC ;(2)求直线BC 1与平面APC 所成线面角的正弦值. 【答案】(1)证明见解析(2)15【分析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,可得PO BD //1,可得直线BD //1平面PAC ;(2)设==AA AB 241,利用等体积法可求点D 到平面APC 的距离为d ,进而利用直线BC 1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等,可求直线BC 1与平面APC 所成线面角的正弦值.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,P 是DD 1的中点,∴PO BD //1,又PO ⊂平面PAC ,⊂BD 1平面PAC ,∴直线BD //1平面PAC ,(2)设==AA AB 241,则三角形APC为正三角形,===AP AC PC ,APCSAP ==42 设点D 到平面APC 的距离为d ,由等体积法:=−−V V P ADC D APC , 所以1133ADC APCPD Sd S ⋅=⋅,则ADC APC PD S S ===⋅d 233423,由点P 为中点,所以点D ,D 1到平面APC 距离相等,由AD BC //11,所以直线BC1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等, 设直线AD1与平面APC 所成线面角为θ,所以==θAD d sin 1∴直线BC 1与平面APC 所成线面角的正弦值为15.13.(2023高一下·重庆沙坪坝·百强名校期末)如图,在直三棱柱111ABC A B C 中,∠=︒BAC 90,===AB AC AA 21,M 为AB 的中点,点G 为△A B C 111的重心.(1)证明:BG 平面ACM 1(2)求三棱锥−G A MC 1的体积. 【答案】(1)证明见解析; (2)32.【分析】(1)先证明平面BGN //平面ACM 1,再由面面平行的性质可得线面平行; (2)利用等体积法求解即可.【详解】(1)连接C G 1并延长交A B 11于点N ,连接BN CM BG ,,,如图,在直三棱柱111ABC A B C 中,点G 为△A B C 111的重心, 所以C N CM //1,又⊄C N 1平面ACM 1,⊂CM 平面ACM 1, 所以C N //1平面ACM 1,因为A N BM A N BM //,=11,所以四边形BMA N 1是平行四边形, 所以BN A M //1,又⊄BN 平面ACM 1,⊂A M 1平面ACM 1, 所以BN //平面ACM 1,又1=BN C N N ,所以平面BGN //平面ACM 1, 又⊂BG 平面BGN ,所以BG 平面ACM 1.(2)由(1)知BG平面ACM 1, 所以==−−−V V V G A MC B A MC A BMC 111, 三棱锥−A BMC 1的高=A A 21,△=⋅=⨯⨯=S BM AC BMC 2212111, 所以△==⋅=⨯⨯=−−V V AA S G A MC A BMC BMC 33321112111. 14.(2023高一下·重庆沙坪坝·百强名校期末)在直三棱柱111ABC A B C 中,=AB 3,=BC 4,=AA 21,︒∠=ABC 90,点D 为AC 的中点.(1)求证:AB 1//平面C BD 1; (2)求三棱锥−B BDC 11的体积. 【答案】(1)证明见详解 (2)2【分析】(1)根据线面平行的判定定理分析证明;(2)根据题意可证⊥AB 平面BCC B 11,再利用转换顶点法求体积. 【详解】(1)连接B C 1交BC 1于点O ,连接DO , 因为BCC B 11为平行四边形,则O 为B C 1的中点, 且点D 为AC 的中点,则AB 1//DO ,又因为⊄AB 1平面C BD 1,⊂DO 平面C BD 1, 所以AB 1//平面C BD 1.(2)因为⊥BB 1平面ABC ,⊂AB 平面ABC ,所以⊥BB AB 1, 又因为⊥AB BC , 且BB BC B =1,⊂BB BC ,1平面BCC B 11,所以⊥AB 平面BCC B 11,且点D 为AC 的中点,故三棱锥−D BB C 11的高为=AB 2213,所以三棱锥−B BDC 11的体积==⨯⨯⨯⨯=−−V V B BDC D BB C 3222421311111.15.(2023·江苏苏州·百强名校期末)如图,在三棱锥P ABC −中,ABC 是边长为等边三角形,且===PA PB PC 6,⊥PD 平面ABC ,垂足为⊥D DE ,平面PAB ,垂足为E ,连接PE 并延长交AB 于点G .(1)求二面角P AB C 的余弦值;(2)在平面PAC 内找一点F ,使得⊥EF 平面PAC ,说明作法及理由,并求四面体PDEF 的体积.【答案】(2)答案见解析,34.【分析】(1)根据条件确定∠PGD 就是二面角PAB C 的平面角,构造三角形求解;(2)根据给定的条件知⊥PB 平面PAC ,过点E 作PB 的平行线与P A 交于F ,则⊥EF 平面P AC ,再求出三棱锥−P EFD 的底面积和高即可.【详解】(1)PA PB PC ==,并且ABC 是等边三角形,∴三棱锥P ABC −是正三棱锥,D 是ABC 的中心,点G 是AB 边的中点;由⊥PD 平面ABC , ⊥DE 平面PAB ,⊂AB 平面PAB ,可知⊥⊥⋂=AB PD AB DE PD DE D ,,,⊂PD 平面PDG ,⊂DE 平面PDG ,所以⊥AB 平面PDG ,进而得⊥⊥AB PG AB DG ,, 所以∠PGD 就是二面角PAB C 的平面角,又ABC 是边长为===PA PB PC 6,+=PA PB AB 222,PAB ∴是等腰直角三角形,同理△△PAC PBC ,都是等腰直角三角形;∴==PG AB 21===GD CG 3311∠==PG PGD GD cos P AB C ;(2),,,PB PC PB PA PA PC P PA ⊥⊥=⊂平面PAC ,⊂PC 平面PAC , ∴⊥PB 平面PAC ,同理⊥PC 平面PAB ,又⊥DE 平面PAB ,∴ED PC //,∴E 与点P ,D ,C 共面,即E 点在线段PG 上,又,2EDGPGC ED PC ∴==31,===PG CG PE PE CD 3,2∠=APG 4π,过E 点在平面P AB 内作PB 的平行线,与P A 交于F ,则⊥EF 平面PAC , PEF 也是等腰直角三角形,==EF2, 又⊥DE 平面P AB ,⊂EF 平面P AB ,∴⊥DE EF ,将PEF 作为底面,则ED 是三棱锥−D PEF 的高,11143323P DEF D PEF PEFV V SDE ∴===⨯⨯⨯⨯=−−222,即四面体PDEF 的体积为34.16.(2023·上海嘉定·百强名校期末)在长方体−ABCD A B C D 1111中,==AD DD 11,=AB E 、F 、G 分别为AB 、BC 、C D 11的中点.(1)求三棱锥−A GEF 的体积;(2)点P 在矩形ABCD 内,若直线D P //1平面EFG ,求线段D P 1长度的最小值.【答案】【分析】(1)等体积由=−−V V A GEF G AEF 可得.(2)先证平面EFG //平面ACD 1,则由直线D P //1平面EFG 可得点P 在直线AC 上,进而可得线段D P 1长度的最小值【详解】(1)依题意有AEFSAE BF =⋅⋅=⋅=22228111,所以三棱锥−A GEF 的体积1133A GEF G AEF AEFV V SDD ==⋅⋅==−−11 (2)如图,连结D A D C AC ,,11,∵E F G ,,分别为AB BC C D ,,11的中点,∴⊄AC EF EF //,平面ACD 1,⊂AC 平面ACD 1, ∴EF //平面ACD ,1∵⊄EG AD EG //,1平面ACD 1,⊂AD 1平面ACD 1,∴EG //平面ACD 1, ∵EFEG E =,∴平面EFG //平面ACD 1,∵D P //1平面EFG ,∴点P 在直线AC 上,在△ACD 1中,AD AC CD ===2,211,1AD CS==21∴当⊥D P AC 1时,线段D P 1的长度最小,最小值为△⨯⨯AC S AD C 22211=21=2. 17.(2023高一下·安徽合肥·百强名校期末)在多面体ABCDE 中,=BC BA ,DE BC //,AE ⊥平面BCDE ,=BC DE 2,F 为AB 的中点.(1)求证:EF //平面ACD ;(2)若==EA EBCD ,求二面角−−B AD E 的平面角正弦值的大小. 【答案】(1)证明见解析【分析】(1)取AC 中点G ,连接DG FG ,,由已知得四边形DEFG 是平行四边形,由此能证明EF //平面ACD .(2)过点B 作BM 垂直DE 的延长线于点M ,过M 作⊥MH AD ,垂足为H ,连接BH ,则∠BHM 是二面角−−B AD E 的平面角,由此即可求出二面角−−B AD E 的正弦值的大小.【详解】(1)证明:取AC 中点G ,连接DG ,FG .因为F 是AB 的中点,所以FG 是ABC 的中位线, 则∥FG BC ,=FG BC 21,所以∥FG DE ,=FG DE , 则四边形DEFG 是平行四边形,所以∥EF DG ,又⊄EF 平面ACD ,⊂DG 平面ACD ,故∥EF 平面ACD . (2)过点B 作BM 垂直DE 的延长线于点M ,因为AE ⊥平面BCDE ,⊂BM 平面ADE ,所以⊥AE BM , 且⊥BM DE ,、DE AE平面ADE ,DEAE E =,则⊥BM 平面ADE ,⊂AD 平面ADE ,⊥BM AD , 过M 作⊥MH AD ,垂足为H ,连接BH ,、⊂BM MH 平面BMH ,BM MH M =,则⊥AD 平面BMH ,所以⊥AD BH ,则∠BHM 是二面角−−B AD E 的平面角.设=DE a ,则==BC AB a 2,在△BEM 中,=EM a2,=BE ,所以=BM .又因为△△∽ADE MDH ,所以=HM ,则∠=BHM 6tan∴∠=BHM 13sin . 18.(2023高一下·浙江绍兴·百强名校期末)如图,四棱锥−P ABCD 中,∠=∠=︒ABC BCD 90,∆PAD 是以AD 为底的等腰直角三角形,===AB BC CD 224,E为BC 中点,且=PE(Ⅰ)求证:平面⊥PAD 平面ABCD ; (Ⅱ)求直线PE 与平面PAB 所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ【分析】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90.又⊥PF AD ,可得⊥PF 平面ABCD ,即可证明.(Ⅱ)易得E 到平面PAB 距离等于F 到平面PAB 距离.过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q ,可证得:⊥FQ 平面PAB .求得:FQ ,从而==θPE FQ sin ,即可求解. 【详解】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90. 又⊥PF AD ,∴⊥PF 平面ABCD , ∴平面⊥PAD 平面ABCD ;(Ⅱ)∵EF AB //,∴E 到平面PAB 距离等于F 到平面PAB 距离. 过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q , 可证得:⊥FQ 平面PAB .求得:=FQ ,从而=θPE FQ sin即直线PE 与平面PAB【点睛】本题考查面面垂直的证明,考查线面角的求解、是中档题.19.(2023高一下·湖南长沙·百强名校期末)已知正三棱柱111ABC A B C 中,=AB 2,M是B C 11的中点.(1)求证:AC //1平面A MB 1;(2)点P 是直线AC 1上的一点,当AC 1与平面ABC 所成的角的正切值为2时,求三棱锥−P A MB 1的体积. 【答案】(1)证明见解析【分析】(1)连接AB 1交A B 1于点N ,连接MN ,利用中位线的性质可得出MN AC //1,再利用线面平行的判定定理可证得结论成立;(2)利用线面角的定义可求得CC 1的长,分析可知点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,可得出==−−−V V V P A MB C A MB B A C M 11111,结合锥体的体积公式可求得结果. 【详解】(1)证明:连接AB 1交A B 1于点N ,连接MN ,因为四边形AA B B 11为平行四边形,⋂=AB A B N 11,则N 为AB 1的中点, 因为M 为B C 11的中点,则MN AC //1,1AC ⊄平面A MB 1,⊂MN 平面A MB 1,故AC //1平面A MB 1.(2)解:因为⊥CC 1平面ABC ,∴AC 1与平面ABC 所成的角为∠CAC 1, 因为ABC 是边长为2的等边三角形,则=AC 2,1CC ⊥平面ABC ,⊂AC 平面ABC ,∴⊥CC AC 1,则∠==ACCAC CC tan 211, 所以,==CC AC 241,1//AC 平面A MB 1,∈P AC 1,所以,点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,因为M 为B C 11的中点,则△△===S S A MC A B C 22211211111则△===⋅=⨯−−−V V V BB S P A MB C A MB B A C M A C M 3341111111111. 20.(2023高一下·湖南长沙·百强名校期末)如图,在棱长为3的正方体ABCD −A'B'C'D'中,M 为AD 的中点.(1)求证:'DB //平面'BMA ;(2)在体对角线'DB 上是否存在动点Q ,使得AQ ⊥平面'BMA ?若存在,求出DQ 的长;若不存在,请说明理由. 【答案】(1)证明见解析 (2)【分析】(1)连接'AB 交'BA 于点E ,连接EM ,证得'EM DB //,结合线面平行的判定定理,即可证得'DB //面'BMA .(2)根据题意,证得BA ⊥'平面'ADB ,得到平面⊥'BMA 平面'ADB ,作⊥'AQ DB ,利用面面垂直的性质,证得⊥AQ 平面'BMA ,再由△△∽'ADB QDA Rt Rt ,即可求得DQ 的长. 【详解】(1)证明:连接'AB ,交'BA 于点E ,连接EM . 因为四边形''ABB A 是正方形,所以E 是'AB 的中点, 又M 是AD 的中点,所以'EM DB //,因为⊂EM 面'BMA ,/⊂'DB 面'BMA ,所以'DB //面'BMA .(2)在对角线'DB 上存在点Q ,且=DQ ⊥AQ 平面'BMA , 证明如下:因为四边形''ABB A 是正方形,所以⊥''AB BA , 因为⊥AD 平面''ABB A ,⊂'BA 面''ABB A ,所以⊥'AD BA , 因为AB AD A =',且⊂'AB AD ,平面'ADB ,所以BA ⊥'平面'ADB ,因为⊂'BA 平面'BMA ,所以平面⊥'BMA 平面'ADB , 作⊥'AQ DB 于Q ,因为'EM DB //,所以⊥AQ EM ,因为⊂AQ 平面'ADB ,平面'ADB 平面='BMA EM ,所以⊥AQ 平面'BMA ,由△△∽'ADB QDA Rt Rt ,可得'==DB DQ AD 2所以当=DQ ⊥AQ 平面'BMA .21.(2023高一下·湖南长沙·百强名校期末)如图,在四棱锥P −中,底面ABCD 为正方形,侧面ADP 是正三角形,侧面ADP ⊥底面ABCD ,M 是DP 的中点.(1)求证:AM ⊥平面CDP ;(2)求直线BP 与底面ABCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证得⊥AM DP ,由⊥CD AD ,结合面面垂直的性质,证得⊥CD 平面ADP ,进而得到⊥CD AM ,利用线面垂直的判定定理,即可证得⊥AM 平面CDP ; (2)取AD 的中点E ,连BE ,EP ,证得⊥PE 平面ABCD ,得到∠EBP 是所求直线与平面所成角,在直角△BEP 中,即可求解.【详解】(1)证明:因为侧面ADP 为正三角形,且M 为DP 中点,所以⊥AM DP , 又因为底面ABCD 为正方形,所以⊥CD AD .因为平面⊥ADP 平面ABCD 且平面⋂ADP 平面=ABCD AD ,⊂CD 平面ABCD , 所以⊥CD 平面ADP ,又因为⊂AM 平面ADP ,所以⊥CD AM , 因为CDDP D =,且⊂CD DP ,平面CDP ,所以⊥AM 平面CDP .(2)解:取AD 的中点E ,连BE ,EP ,因为△ADP 为正三角形,且E 为AD 中点,所以⊥PE AD ,又因为平面⊥ADP 平面ABCD ,平面⋂ADP 平面=ABCD AD ,且⊂PE 平面PAD , 所以⊥PE 平面ABCD ,所以∠EBP 是所求直线与平面所成角,不妨设=AD a 2,则在等边△ADP 中,可得EP =,在直角ABE 中,==BE ;在直角中,=BP ,故∠==BP EBP EP sin所以直线与底面22.(2023高一下·浙江·百强名校期末)如图,正三棱柱的底面边长为2,高,过的截面与上底面交于PQ ,且点是棱A C 11的中点,点在棱上.(1)试在棱上找一点,使得QD //平面,并加以证明;(2)求四棱锥−C ABQP 的体积. 【答案】(1)点为棱的中点,证明见解析;(2)43.【分析】(1)证法1:取的中点,连接DM ,B M 1,可得A B //11平面ABQP ,再由线面平行的性质可得A B PQ //11,则可得是棱的中点,由三角形中位线定理结合已知可得四边形DMB Q 1是平行四边形,可得QD B M //1,然后由线面平行的判定定理可证得结论;证法2:由已知条件可证得PQ //平面,从而得PDAA 1是平行四边形,PD AA //1,由线面平行的判定可得PD //面,从而得面PDQ //面,再由面面平行的性质可得结论; (2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,然后分别求出两个三棱锥的体积即可;解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG ,可证得平面⊥ABQP 平面CMNC 1,则⊥CG 平面ABQP ,然后结合已知条件求出等腰梯形ABQP 的面积,从而可求得四棱锥的体积【详解】(1)证法1:点为棱的中点,证明如下:取的中点,连接DM ,B M 1.∵AB A B //11,平面ABQP ,⊄A B 11平面ABQP ,∴A B //11平面ABQP ,∵平面,平面ABQP 平面=A B C PQ 111,∴A B PQ //11.又是棱A C 11的中点,∴是棱的中点,∴QB 1∥,=QB BC 211 ∵,分别为棱,的中点,∴DM ∥,=DM BC 21∴QB 1∥DM ,=QB DM 1∴四边形DMB Q 1是平行四边形,∴QD B M //1, ∵⊂B M 1平面,⊄OD 平面,∴QD //平面.证法2:为的中点时,QD //平面.证明如下: ∵AB //平面,平面ABQP ,平面ABQP 平面=A B C PQ 111,∴PQ AB //,⊄PQ 平面,平面,所以PQ //平面,又∵为的中点,为A C 11的中点,∴PDAA 1是平行四边形,∴PD AA //1,又∵⊄PD 平面,⊂AA 1平面,∴PD //面,又∵与PQ 在平面PDQ 内相交,∴面PDQ //面,又∵⊂QD 面PDQ ,∴DQ //平面.(2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,三棱锥−C ABP 可视为,底面积ABCS==22,设=−V V C BAP 1,体积为==V 32111.三棱锥−C BPQ 与−C ABP 等高,体积比为底面积之比,设=−V V C BPQ 2,则△△===V V S S PQ AB BPQ BAP :::1:221,故==V V 241121,因此,=+=−V V V C ABPQ 4312,即为所求. 解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG . ∵和是正三角形,且,分别是和的中点, ∴⊥CM AB ,且CM ∥C N 1,=CM C N 1,则,,,四点共面.∵平面,平面,∴⊥CC AB 1,又平面CMNC 1,⊂CC 1平面CMNC 1,⋂=CM CC C 1,∴平面CMNC 1,∵平面ABQP ,∴平面⊥ABQP 平面CMNC 1.在矩形CMNC 1中,==MN CC 1===CN CM AB 1∴===C G NG CC MN 11,∴∠=∠=︒C GC NGM 451,且==CG 1,∴∠=︒CGM 90,即⊥CG MG .又平面⊥ABQP 平面CMNC 1,平面ABQP 平面=CMNC MG 1,⊂CG 平面CMNC 1,∴⊥CG 平面ABQP .在等腰梯形ABQP 中,==PQ A B 21111,,===BQ AP∴等腰梯形ABQP 的高=h , ∴四棱锥−C ABQP 的体积形梯=⋅=⨯+⨯V CG S CG PQ AB hABQP 332111)(=+=32412113)(.23.(2023高一下·广西玉林·百强名校期末)在如图所示的七面体AA B C D C 1111中,四边形A B C D 1111为边长为2的正方形, ⊥AA 1平面A B C D 1111,∥CC AA 11,且==CC AA 211,,,分别是C C 1,,的中点.(1)求点到平面MNP 的距离;(2)若直线A C 11交PN 于点,直线交平面MNP 于点,证明:,,三点共线.【答案】(1)(2)证明见解析【分析】(1)利用三棱锥体积转换思想,先求三棱锥−C MNP 1的体积,再确定底面积△MNP ,最后得点到平面MNP 的距离即可【详解】(1)解:==⨯⨯⨯⨯=−−V V C MNP M C NP 32611111111记到平面MNP 的距离为d ,在△MNP 中,===MN NP MP △==S MNP 2221,∴△==−S d V MNPC 31MNP 1,(2)证明:∵∥AA CC 11, ∴与确定平面AA C C 11,∵,∈E 平面AA C C 11,且,∈E 平面MNP ,∴平面AAC C11平面=PMN ME ,∵⋂AC 1平面=MPN F ,∴∈F 平面PMN ,∈F 平面AA C C 11, ∴点在直线上,则,,三点共线.24.(2023高一下·福建泉州·百强名校期末)如图所示,在四棱锥中,已知P A ⊥底面ABCD ,且底面ABCD 为梯形,,,====PA AD BC AB 33,点E 在线段PD 上,=PD PE 3.(1)求证:CE //平面P AB ; (2)求证:平面P AC ⊥平面PCD . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)由线面平行的判定定理证明即可; (2)由线面垂直与面面垂直的判定定理证明即可【详解】(1)(1)过E 作EF AD //交P A 于点F ,连接BF , 因为,所以EF BC //.又=PD PE 3,所以=AD EF 3. 又=AD BC 3,所以所以四边形BCEF 为平行四边形, 所以CE BF //,又CE ⊄平面P AB ,BF ⊂平面P AB , 所以CE //平面P AB .。
高三精选立体几何大题30题(含详细解答)
立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4cm ,CD 是斜边上的高沿CD 把△ABC 折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A ,B 的位置,使二面角A -CD -B 是直二面角?证明你的结论.(2)试在平面ABC 上确定一个P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值. 解:(1)用直尺度量折后的AB 长,若AB =4cm ,则二面角A -CD -B 为直二面角.∵ △ABC 是等腰直角三角形,(),cm 22DB AD ==∴又∵ AD ⊥DC ,BD ⊥DC .∴ ∠ADC 是二面角A -CD -B 的平面角.有时当,cm 4AB ,22DB AD ===.90ADB .AB DB AD 222︒=∠∴=+(2)取△ABC 的中心P ,连DP ,则DP 满足条件 ∵ △ABC 为正三角形,且 AD =BD =CD .∴ 三棱锥D -ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC , ∴ DP 与平面内任意一条直线都垂直. (3)当小球半径最大时,此小球与三棱锥的4个面都相切,设小球球心为0,半径为r ,连结OA ,OB ,OC ,OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有ABC O ABD O ADC O BCD O BCD A V V V V V -----+++=代入得3623r -=,即半径最大的小球半径为3623-.A B C第1题图 A BCD第1题图2.如图,已知正四棱柱ABCD —A 1B 1C 1D 1的底面边长为3,侧棱长为4,连结A 1B ,过A 作AF ⊥A 1B 垂足为F ,且AF 的延长线交B 1B 于E 。
(Ⅰ)求证:D 1B ⊥平面AEC ; (Ⅱ)求三棱锥B —AEC 的体积; (Ⅲ)求二面角B —AE —C 的大小. 证(Ⅰ)∵ABCD —A 1B 1C 1D 1是正四棱柱,∴D 1D ⊥ABCD .连AC ,又底面ABCD 是正方形, ∴AC ⊥BD ,由三垂线定理知 D 1B ⊥AC . 同理,D 1B ⊥AE ,AE ∩AC = A , ∴D 1B ⊥平面AEC .解(Ⅱ)V B -AEC = V E -ABC . ∵EB ⊥平面ABC ,∴EB 的长为E 点到平面ABC 的距离. ∵Rt △ABE ~ Rt △A 1AB ,∴EB =.4912=A A AB∴V B -AEC = V E -ABC =31S △ABC ·EB=31×21×3×3×49=.827(10分)解(Ⅲ)连CF ,∵CB ⊥平面A 1B 1BA ,又BF ⊥AE ,由三垂线定理知,CF ⊥AE .于是,∠BFC 为二面角B —AE —C 的平面角,在Rt △ABE 中,BF =59=⋅AE BE BA , 在Rt △CBF 中,tg ∠BFC =35,∴∠BFC = arctg 35.即二面角B —AE —C 的大小为arctg 35.3.如图,正三棱柱ABC —A 1B 1C 1的底面边长为1,点M 在BC 上,△AMC 1是以M 为直角顶点的等腰直角三角形. (I )求证:点M 为BC 的中点; (Ⅱ)求点B 到平面AMC 1的距离; (Ⅲ)求二面角M —AC 1—B 的正切值. 答案:(I )证明:∵△AMC 1是以点M 为直角 顶点的等腰直角三角形,ABCA 1B 1C 1M 第3题图∴AM ⊥MC 1且AM=MC 1∵在正三棱柱ABC —A 1B 1C 1中, 有CC 1⊥底面ABC.∴C 1M 在底面内的射影为CM , 由三垂线逆定理,得AM ⊥CM.∵底面ABC 是边长为1的正三角形,∴点M 为BC 中点. (II )解法(一)过点B 作BH ⊥C 1M 交其延长线于H. 由(I )知AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1.∴AM ⊥BH. ∴BH ⊥平面AMC 1. ∴BH 为点B 到平面AMC 1的距离. ∵△BHM ∽△C 1CM. AM=C 1M=,23 在Rt △CC 1M 中,可求出CC 1.22 .6623212211=⇒=⇒=∴BH BH M C BM CC BH解法(二)设点B 到平面AMC 1的距离为h. 则11BMC A AMC B V V --=由(I )知 AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1 ∵AB=1,BM=.22,23,2111===CC MC AM 可求出 AM S h S MB C AMC ⋅=⋅∆∆113131 232221213123232131⨯⨯⨯⨯=⨯⨯⨯h 66=h (III )过点B 作BI ⊥AC 1于I ,连结HI.∵BH ⊥平面C 1AM ,HI 为BI 在平面C 1AM 内的射影. ∴HI ⊥AC 1,∠BIH 为二面角M —AC 1—B 的平面角. 在Rt △BHM 中,,21,66==BM BH ∵△AMC 1为等腰直角三角形,∠AC 1M=45°.∴△C 1IH 也是等腰直角三角形. 由C 1M=.332,63,23122==-=H C BH BM HM 有 ∴.36=HI .21==∠∴HI BH BIH tg 4.如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2,AB=1,F 是CD 的中点.(Ⅰ)求证:AF ∥平面BCE ; (Ⅱ)求多面体ABCDE 的体积; (Ⅲ)求二面角C-BE-D 的正切值. 证:(Ⅰ)取CE 中点M ,连结FM ,BM ,则有AB DE FM //21//.∴四边形AFMB 是平行四边形. ∴AF//BM ,∵⊂BM 平面BCE , ⊄AF 平面BCE , ∴AF//平面BCE .(Ⅱ)由于DE ⊥平面ACD , 则DE ⊥AF .又△ACD 是等边三角形,则AF ⊥CD .而CD∩DE=D ,因此AF ⊥平面CDE .又BM//AF ,则BM ⊥平面CDE .BM AB V V V CDE B ACD B ABCDE ⋅⋅⋅⋅+⋅⋅=+=--22213124331232233233=⋅⋅+=. (Ⅲ)设G 为AD 中点,连结CG ,则CG ⊥AD .由DE ⊥平面ACD ,⊂CG 平面ACD , 则DE ⊥CG ,又AD∩DE=D , ∴CG ⊥平面ADEB .作GH ⊥BE 于H ,连结CH ,则CH ⊥BE . ∴∠CHG 为二面角C-BE-D 的平面角. 由已知AB=1,DE=AD=2,则3=CG ,∴23122111212)21(21=⨯⨯-⨯⨯-⋅+=∆GBE S . 不难算出5=BE .∴23521=⋅⋅=∆GH S GBE ,∴53=GH . ∴315==∠GH CG CHG tg . 5.已知:ABCD 是矩形,设PA=a ,PA ⊥平面ABCD.M 、N 分别是AB 、PC 的中点.(Ⅰ)求证:MN ⊥AB ;(Ⅱ)若PD=AB ,且平面MND ⊥平面PCD ,求二面角P —CD —A 的大小; (Ⅲ)在(Ⅱ)的条件下,求三棱锥D —AMN 的体积. (Ⅰ)连结AC ,AN. 由BC ⊥AB ,AB 是PB 在底面ABCD 上的射影. 则有BC ⊥PB. 又BN 是Rt △PBC 斜边PC 的中线, 即PC BN 21=. 由PA ⊥底面ABCD ,有PA ⊥AC ,则AN 是Rt △PAC 斜边PC 的中线,即PC AN 21=BN AN =∴又∵M 是AB 的中点, AB MN ⊥∴(也可由三垂线定理证明)(Ⅱ)由PA ⊥平面ABCD ,AD ⊥DC ,有PD ⊥DC.则∠PDA 为平面PCD 与平面ABCD 所成二面角的平面角由PA=a ,设AD=BC=b ,CD=AB=c , 又由AB=PD=DC ,N 是PC 中点,则有DN ⊥PC又∵平面MND ⊥平面PCD 于ND , ∴PC ⊥平面MND ∴PC ⊥MN , 而N 是PC 中点,则必有PM=MC.b ac b c a =∴+=+∴.41412222 此时4,1π=∠=∠PDA PDA tg .即二面角P —CD —A 的大小为4π(Ⅲ)AMD N AMN D V V --=,连结BD 交AC 于O ,连结NO ,则NO 21PA. 且NO ⊥平面AMD ,由PA=a324231a NO S V AMD AMD N =⋅=∴∆-. 6.如图,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点。
(完整版)高中数学立体几何大题(有答案)
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱S D⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.。
高中几何体试题及答案大全
高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。
求证:直线l与平面x - 2y + z = 6平行。
答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。
接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。
试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。
答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。
由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。
求椭圆的焦点坐标。
答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
【高考压轴题】空间立体几何经典大题汇编100题(含答案)
【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)未命名⼀、解答题1.直三棱柱'''ABC A B C -中,底⾯ABC 是边长为2的正三⾓形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异⾯直线'AB 与BM 所成⾓的余弦值;(2)若点M 在棱'CC 上,且'A M ⊥平⾯''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平⾯ABC ,AB BC ⊥,45BAC ∠=?,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平⾯FGH ;(2)求平⾯FGH 与平⾯ACFD 所成⾓(锐⾓)的⼤⼩.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平⾯1A AB ⊥平⾯1A BE ; (2)求⼆⾯⾓1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平⾯,,ABCD AB AD CD BC ==. (1)求证:平⾯PBD ⊥平⾯PAC ;(2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求⼆⾯⾓B PC D --的平⾯⾓的⼤⼩.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平⾯1A BC ⊥平⾯11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ?∠=,求⼆⾯⾓1A A C B --的余弦值.6.如图,在正⽅体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平⾯1AD E ;(2)求⼆⾯⾓1D E A DC --余弦值.7.在多⾯体ABCDEF 中,四边形ABCD 是正⽅形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ?∠=.(Ⅰ)求证:AE ⊥平⾯CDEF ;(Ⅱ)在线段BD 上确定⼀点G ,使得平⾯EAD 与平⾯FAG 所成的⾓为30?. 8.已知四棱锥P ABCD -中,平⾯PCD ⊥平⾯ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=是等边三⾓形,AC B D E =. (1)证明:PC ⊥平⾯PAD ; (2)求⼆⾯⾓P AB C --的余弦值.9.已知直⾓梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多⾯体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平⾯ABFE 所成⾓θABCD ⊥平⾯FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平⾯ABCD ,且90ABC BCD ∠=∠=?,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平⾯SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,⼆⾯⾓D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧⾯11BCC B ABC ⊥底⾯. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平⾯; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底⾯ABC 所成的⾓为60?,问在线段11A C 上是否存在⼀点P ,使得平⾯111B CP ACC A ⊥平⾯?若存在,求1C P 与1PA 的⽐值,若不存在,说明理由.12.已知某⼏何体直观图和三视图如图所⽰,其正视图为矩形,侧视图为等腰直⾓三⾓形,俯视图为直⾓梯形.(1)求证:BN 11C B N ⊥平⾯;(2)11sin C N CNB θθ设为直线与平⾯所成的⾓,求的值;(3)设M 为AB 中点,在BC 边上找⼀点P ,使MP //平⾯1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA=,2BC CF ==.(1)求证:1//C E 平⾯ADF ;(2)当2AB =时,求⼆⾯⾓111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ?∠=.(1)求异⾯直线1BA 与1CB 夹⾓的余弦值;(2)求⼆⾯⾓1B AB C --平⾯⾓的余弦值.15.已知正三棱柱中,、分别为的中点,设.(1)求证:平⾯平⾯;(2)若⼆⾯⾓的平⾯⾓为,求实数的值,并判断此时⼆⾯⾓是否为直⼆⾯⾓,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平⾯1A BD ;(Ⅱ)求点1B 到平⾯1A BD 的距离;(Ⅲ)求⼆⾯⾓11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底⾯垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求⼆⾯⾓N MC A --的正弦值.18.如图,四边形ABCD 是正⽅形,EA ⊥平⾯ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平⾯PED ;(2)求平⾯FGH 与平⾯PBC 所成锐⼆⾯⾓的⼤⼩;(3)在线段PC 上是否存在⼀点M ,使直线FM 与直线PA 所成的⾓为3π若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直⾓梯形ABCD 和等腰直⾓三⾓形ADE 构成,如图所⽰, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平⾯ABCD ⊥平⾯ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在⼀点N ,使得MN 平⾯ABE ?若存在,求BNBC的值;若不存在,说明理由;(Ⅱ)求⼆⾯⾓A BE C --的平⾯⾓的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多⾯体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=?⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平⾯ACDF ;(2)求⼆⾯⾓C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=?,D 是PA 中点(如图1).将PCD ?沿CD 折起到图2中1PCD ?的位置,得到四棱锥1P ABCD -.(1)将PCD ?沿CD 折起的过程中,CD ⊥平⾯1P DA 是否成⽴?并证明你的结论;(2)若1P D 与平⾯ABCD 所成的⾓为60°,且1PDA ?为锐⾓三⾓形,求平⾯1P AD 和平⾯1P BC 所成⾓的余弦值.22.四棱锥P ABCD -中,侧⾯PDC 是边长为2的正三⾓形,且与底⾯垂直,底⾯ABCD 是60ADC ∠=?的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平⾯CDM 所成的⾓.23.如图,在正⽅体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异⾯直线EF 与DG 所成⾓的余弦值;(2)设⼆⾯⾓A —BD —G 的⼤⼩为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=?,且F A F C =.(1)求证:AC ⊥平⾯BDEF ;(2)求直线AF 与平⾯BCF 所成⾓的正弦值.25.如图,在正⽅体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上⼀点,且异⾯直线1B E 与BG 所成⾓的余弦值为25.(1)证明:E 为AB 的中点;(2)求平⾯1B EF 与平⾯11ABC D 所成锐⼆⾯⾓的余弦值.26.如图,ABC ?中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ?沿DE 折起成PDE ?,使⾯PDE ⊥⾯BCDE ,,H F 分别是PD 和BE 的中点,平⾯BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求⼆⾯⾓P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对⾓线AC 折成⼆⾯⾓D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得⼆⾯⾓A D F B -'-的⼤⼩为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平⾯α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平⾯PAC ;(Ⅱ)若2AB BE =,求⼆⾯⾓P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平⾯PAD ⊥平⾯ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平⾯PBD 所成⾓的正弦值;(Ⅲ)线段PC 上是否存在⼀点G ,使⼆⾯⾓G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平⾯ABCD ,底⾯ABCD 是菱形.(1)求证:BD ⊥平⾯PAC ;(2)若PA AB BD ==,求PC 与平⾯PBD 所成⾓的正弦值.31.如图,四棱锥P ABCD -中,底⾯ABCD 为梯形,PD ⊥底⾯ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作⼀个平⾯α使得//α平⾯PBC .(1)求平⾯α将四棱锥P ABCD -分成两部分⼏何体的体积之⽐;(2)若平⾯α与平⾯PBC PA 与平⾯PBC 所成⾓的正弦值.32.如图⼏何体ADM-BCN 中,ABCD 是正⽅形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平⾯;(Ⅱ)求证:DN AMD ⊥平⾯;(Ⅲ)求⼆⾯⾓N AM D --的余弦值.33.如图所⽰,在四棱锥P ABCD -中,底⾯ABCD 为正⽅形,PA ⊥平⾯ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平⾯BDE ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓P BD E --的余弦值.34.在如图所⽰的多⾯体ABCDE 中,AB ⊥平⾯ACD ,DE ⊥平⾯ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平⾯ACD (2)求点G 到平⾯BCE 的距离.35.如图所⽰,四棱锥P ABCD -的侧⾯PAD ⊥底⾯ABCD ,底⾯ABCD 是直⾓梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平⾯PAB ;(2)若4CE AB ==,求直线CE 与平⾯PDC 所成⾓的⼤⼩.36.如图,在四棱锥E ABCD -中,ABD ?是正三⾓形,BCD ?是等腰三⾓形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平⾯ABCD ,直线AE 与平⾯ABD 所成的⾓为45°,求⼆⾯⾓B AE D --的余弦值.37.如图1,在平⾏四边形11ABB A 中,160ABB ∠=?,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平⾏四边形11ABB A 1沿C 1C 折起如图2所⽰,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底⾯ABCD 是边长为2的菱形,60BAD ∠=?,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平⾯BEF .(1)求实数λ的值;(2)求⼆⾯⾓S BE F --的余弦值.39.如图所⽰,在四棱锥P ABCD -中,平⾯PAD ⊥平⾯ABCD ,底⾯ABCD 是正⽅形,且PA PD =,90APD ?∠=.(Ⅰ)证明:平⾯PAB ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直⾓梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平⾯BDFE ⊥平⾯ABCD . (1)求证:AC ⊥平⾯BDFE ;(2)若BF 与平⾯ABCD 所成⾓为4π,求⼆⾯⾓B DF C --的余弦值.42.在如图所⽰的⼏何体中,正⽅形ABEF 所在的平⾯与正三⾓形ABC 所在的平⾯互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点.(1)求证://AD 平⾯BFM ;(2)求⾯EDF 与⾯ADB 所成锐⼆⾯⾓的⼤⼩.43.如图,四⾯体中,分别是的中点,(1)求证:平⾯;(2)求直线与平⾯所成⾓的正弦值.44.如图,已知正⽅体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平⾯GHD ;(2)求直线EF 与BD '所成的⾓.45.如图,在四棱锥P -ABCD 中,底⾯ABCD 是边长为2的菱形,∠ABC =60°,PAB ?为正三⾓形,且侧⾯P AB ⊥底⾯ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平⾯ACM ;(II )求证:PE AC ⊥;(III )是否存在点M ,使⼆⾯⾓M EC D --的⼤⼩为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长⽅形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平⾯ADM ⊥平⾯ABCM ;(2)在线段BD 上是否存点E ,使得⼆⾯⾓E AM D --为⼤⼩为π4,说明理由. 47.如下图,在空间直⾓坐标系O xyz -中,正四⾯体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平⾯OAB ;(Ⅱ)求⼆⾯⾓C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平⾯ABCD ,底⾯ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平⾯1PAC ;(Ⅱ)求⼆⾯⾓1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平⾯1PAC 所成⾓的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥⾯ABCD ,2PB =,PB 与⾯PCD 成045⾓,PB 与⾯ABD 成030⾓.(1)在PB 上是否存在⼀点E ,使PC ⊥⾯ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求⼆⾯⾓P AE D --的余弦值.50.如图所⽰,在底⾯为正⽅形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平⾯1A BD ⊥平⾯11A BC ;(2)求直线1AC 与平⾯1DBC 所成⾓的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三⾓形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平⾯BEC 与平⾯AECD 所成⼆⾯⾓的平⾯⾓为0120,求直线AE 与平⾯ABD所成⾓的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底⾯ABCD 的射影在BAD ∠的平分线上;(2)求⼆⾯⾓B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平⾯11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平⾯交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平⾯1ABC ;(Ⅱ)求证:四边形1AA EF 为平⾏四边形; (Ⅲ)若是23BF BC =,求⼆⾯⾓1B AC F --的⼤⼩. 54.如图,在四棱锥P ABCD -中,底⾯ABCD 为梯形,平⾯PAD ⊥平⾯,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平⾯PAB ;(2)求⼆⾯⾓A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E。
(完整版)高中立体几何经典练习试题[最新版]
1.如图,在四棱锥P﹣ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC⊥平面BPC;(Ⅱ)求二面角C﹣PD﹣B的余弦值.2.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC;(3)求二面角E﹣PC﹣D的大小.3.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑;(2)若面DEF与面ABCD所成二面角的大小为,求的值.4.如图所示三棱柱111C B A ABC -中,⊥1AA 平面ABC ,四边形ABCD 为平行四边形,CD AD 2=,CD AC ⊥.(Ⅰ)若AC AA =1,求证:⊥1AC 平面CD B A 11;(Ⅱ)若D A 1与1BB 所成角的余弦值为721,求二面角11C D A C --的余弦值.5.在直角梯形ABCD 中,//,,3,2,AB CD AD AB DC AB ⊥== 1,AD =,1AE EB DF ==,现把EF 它沿折起,得到如图所示的几何体,连接,,DB AB DC ,使 5.DC =(1)求证:平面DBC ⊥平面DFB ;(2)判断在线段DC 上是否存在一点H ,使得二面角E BH C --的余弦值为306-,若存在,确定H 的位置,若不存在,说明理由.6.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,24AB AD ==,23BD =,PD ⊥底面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若二面角P BC D --的大小为6π,求AP 与平面PBC 所成角的正弦值.7.在三棱锥A BCD -中,4,22AB BC AD BD CD =====,在底面BCD 内作CE CD ⊥,且 2.CE =(1)求证://CE 平面ABD ;(2)如果二面角A BD C --的大小为90,求二面角B AC E --的余弦值.8.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,AD AP =,E 为棱PD 中点.(1)求证:PD ⊥平面ABE ; (2)若F 为AB 中点,(01)PM PC λλ=<<,试确定λ的值,使二面角P FM B --的余弦值为33-.9.如图,在三棱柱111ABC A B C -中,点C 在平面111A B C 内的射影点为11A B 的中点 1,,90O AC BC AA ACB ==∠=.(1)求证:AB ⊥ 平面1OCC ;(2)求二面角1A CC B --的正弦值.F PM A CD EB10.已知多面体ABCDEF 如图所示.其中ABCD 为矩形,DAE △为等腰直角三角形,DA AE ⊥,四边形AEFB 为梯形,且AE BF ∥,90ABF =︒∠,22AB BF AE ===.(1)若G 为线段DF 的中点,求证:EG ∥平面ABCD .(2)线段DF 上是否存在一点N ,使得直线BN 与平面FCD 所成角的余弦值等于215若存在,请指出点N 的位置;若不存在,请说明理由.11.在如图所示的几何体中,平面ADNM ⊥平面ABCD ,四边形ABCD 是菱形,四边形ADNM 是矩形,π3DAB ∠=,2AB =,1AM =,E 是AB 的中点.(Ⅰ)求证:DE ⊥平面ABM ; (II)在线段AM 上是否存在点P ,使二面角P EC D --的大小为π4?若存在,求出AP 的长;若不存在,请说明理由.12.如图,已知梯形CDEF 与△ADE 所在平面垂直,AD ⊥DE ,CD ⊥DE ,AB ∥CD ∥EF ,AE=2DE=8,AB=3,EF=9.CD=12,连接BC ,BF .(Ⅰ)若G 为AD 边上一点,DG=DA ,求证:EG ∥平面BCF ;(Ⅱ)求二面角E ﹣BF ﹣C 的余弦值.N M D CE B A13.如图三棱柱中,侧面为菱形,.(1)证明:;(2)若,,,求二面角的余弦值.14.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.15.如图,在四棱锥中,底面为菱形,为的中点.(Ⅰ)若,求证:平面平面;(Ⅱ)若平面平面,且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.16.已知在边长为4的等边△ABC (如图1所示)中,MN ∥BC ,E 为BC 的中点,连接AE 交MN 于点F ,现将△AMN 沿MN 折起,使得平面AMN ⊥平面MNCB (如图2所示).(1)求证:平面ABC ⊥平面AEF ;(2)若S BCNM =3S △AMN ,求直线AB 与平面ANC 所成角的正弦值.17.如图(1),在五边形BCDAE 中,AB CD //,90=∠BCD ,1==BC CD ,2=AB ,ABE ∆是以AB 为斜边的等腰直角三角形.现将ABE ∆沿AB 折起,使平面⊥ABE 平面ABCD ,如图(2),记线段AB 的中点为O . (1)求证:平面⊥ABE 平面EOD ;(2)求平面ECD 与平面ABE 所成的锐二面角的大小.18.如图,在等腰梯形ABCD 中,//AB CD ,1AD DC CB ===,60ABC ∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,2CF =.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 二面角的平面角为(90)θθ≤,试求cos θ的取值范围.。
高中数学必修二第八章立体几何初步典型例题(带答案)
高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F . 求证:EF ∥平面ABCD.证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN.又∵B 1E=C 1F ,∴EM=FN ,故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ⊂平面ABCD ,EF ⊄平面ABCD , 所以EF ∥平面ABCD.方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则BB G B AB E B 1111=,∵B 1E=C 1F ,B 1A=C 1B , ∴BB G B BC E C 1111=,∴FG ∥B 1C 1∥BC ,又EG ∩FG=G ,AB ∩BC=B ,∴平面EFG ∥平面ABCD ,而EF ⊂平面EFG , ∴EF ∥平面ABCD.2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △321G G G ∶S △ABC .(1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F ,连接DE 、EF 、FD ,则有PG 1∶PD=2∶3, PG 2∶PE=2∶3,∴G 1G 2∥DE. 又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC.同理G 2G 3∥平面ABC. 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC.(2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE. 又DE=21AC ,∴G 1G 2=31AC. 同理G 2G 3=31AB ,G 1G 3=31BC. ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △321G G G ∶S △ABC =1∶9.3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA=SB=SC ,SG 为△SAB 上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 的位置关系,并给予证明.解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF.方法二∵EF为△SBC的中位线,∴EF∥SB.∵EF⊄平面SAB,SB⊂平面SAB,∴EF∥平面SAB.同理可证,DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又SG⊂平面SAB,∴SG∥平面DEF.5如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明 (1)如图所示,取BB 1的中点M ,易证四边形HMC 1D 1是平行四边形,∴HD 1∥MC 1. 又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE 21DC , 又D 1G 21DC ,∴OE D 1G ,∴四边形OEGD 1是平行四边形, ∴GE ∥D 1O.又D 1O ⊂平面BB 1D 1D ,∴EG ∥平面BB 1D 1D.(3)由(1)知D 1H ∥BF ,又BD ∥B 1D 1,B 1D 1、HD 1⊂平面HB 1D 1,BF 、BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1, DB ∩BF=B ,∴平面BDF ∥平面B 1D 1H.6如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形,∴EF ∥HG. ∵HG ⊂平面ABD ,∴EF ∥平面ABD. ∵EF ⊂平面ABC ,平面ABD ∩平面ABC=AB ,∴EF ∥AB.∴AB ∥平面EFGH. 同理可证,CD ∥平面EFGH.(2)解 设EF=x (0<x <4),由于四边形EFGH 为平行四边形,∴4xCB CF =. 则6FG =BC BF =BC CF BC -=1-4x. 从而FG=6-x 23. ∴四边形EFGH 的周长l=2(x+6-x 23)=12-x. 又0<x <4,则有8<l <12,∴四边形EFGH 周长的取值范围是(8,12).7如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO ? 解 当Q 为CC 1的中点时, 平面D 1BQ ∥平面PAO.∵Q 为CC 1的中点,P 为DD 1的中点,∴QB ∥PA. ∵P 、O 为DD 1、DB 的中点,∴D 1B ∥PO. 又PO ∩PA=P ,D 1B ∩QB=B , D 1B ∥平面PAO ,QB ∥平面PAO , ∴平面D 1BQ ∥平面PAO.8正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥平面BCE.证明 方法一 如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN.∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE=BD. 又∵AP=DQ ,∴PE=QB , 又∵PM ∥AB ∥QN , ∴AEPE ABPM=,BD BQ DC QN =,DCQNABPM =,∴PM QN ,∴四边形PMNQ 为平行四边形,∴PQ ∥MN. 又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE.方法二 如图所示,连接AQ ,并延长交BC 于K ,连接EK , ∵AE=BD ,AP=DQ , ∴PE=BQ ,∴PE AP =BQDQ①又∵AD ∥BK ,∴BQDQ =QKAQ②由①②得PE AP =QKAQ ,∴PQ ∥EK.又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE.方法三 如图所示,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M , 连接QM.∵PM ∥BE ,PM ⊄平面BCE , 即PM ∥平面BCE ,∴PE AP =MBAM ①又∵AP=DQ ,∴PE=BQ ,∴PE AP =BQDQ ②由①②得MBAM =BQDQ ,∴MQ ∥AD , ∴MQ ∥BC ,又∵MQ ⊄平面BCE ,∴MQ ∥平面BCE. 又∵PM ∩MQ=M ,∴平面PMQ ∥平面BCE , PQ ⊂平面PMQ ,∴PQ ∥平面BCE.8如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC ′,证明:BC ′∥平面EFG. (1)解 如图(1)所示.图(1)(2)解 所求多面体体积 V=V 长方体-V 正三棱锥=4×4×6-31×(21×2×2)×2=3284(cm 3). (3)证明 如图(2),在长方体ABCD —A ′B ′C ′D ′中, 连接AD ′,则AD ′∥BC ′.因为E,G 分别为AA ′,A ′D ′的中点,所以AD ′∥EG,从而EG ∥BC ′. 又BC ′ 平面EFG, 图(2) 所以BC ′∥面EFG.9.如图所示,正四棱锥P —ABCD 的各棱长均为13,M ,N 分别为PA ,BD 上的点,且PM ∶MA=BN ∶ND=5∶8. (1)求证:直线MN ∥平面PBC ;(2)求线段MN 的长.(1)证明 连接AN 并延长交BC 于Q , 连接PQ ,如图所示.∵AD ∥BQ ,∴△AND ∽△QNB ,∴NQAN =NBDN =BQAD =58, 又∵MAPM =ND BN =85, ∴MPAM =NQAN =58,∴MN ∥PQ , 又∵PQ ⊂平面PBC ,MN ⊄平面PBC , ∴MN ∥平面PBC.(2)解 在等边△PBC 中,∠PBC=60°, 在△PBQ 中由余弦定理知 PQ 2=PB 2+BQ 2-2PB ·BQcos ∠PBQ =132+2865⎪⎭⎫⎝⎛-2×13×865×21=642818, ∴PQ=891, ∵MN ∥PQ ,MN ∶PQ=8∶13,∴MN=891×138=7. 10 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA =∵E 是PD 的中点,∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面PAD , ∴MN ∥平面PAD .11 在直三棱柱ABC -A 1B 1C 1中,AA 1=AC ,AB ⊥AC ,求证:A 1C ⊥BC 1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A 1C 垂直于经过BC 1的平面即可.证明:连接AC 1.∵ABC -A 1B 1C 1是直三棱柱, ∴AA 1⊥平面ABC , ∴AB ⊥AA 1. 又AB ⊥AC ,∴AB ⊥平面A 1ACC 1, ∴A 1C ⊥A B .① 又AA 1=AC ,∴侧面A 1ACC 1是正方形, ∴A 1C ⊥AC 1.②由①,②得A 1C ⊥平面ABC 1, ∴A 1C ⊥BC 1.12 在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,AB ⊥BC ,AP ⊥PB ,求证:平面PAC ⊥平面PBC .【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又 可以通过“线线垂直”进行转化.证明:∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,且AB ⊥BC , ∴BC ⊥平面PAB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面PAC , ∴平面PAC ⊥平面PBC .13如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1.(2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形.∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB ,∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .14 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1,∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.15 在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P -ABCD 的体积. 证明:(Ⅰ)在△ABD 中, 由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此.32423=⨯=PO在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V16.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为PA ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:PA ⊥BC . (Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形.∵N 为BC 的中点,∴MN ⊥BC .在Rt △MNB 中,⋅=-=2222BN MB MN(Ⅱ)证明:∵M 是PA 的中点, ∴PA ⊥MB ,同理PA ⊥MC .∵MB ∩MC =M ,∴PA ⊥平面MBC , 又BC ⊂平面MBC ,∴PA ⊥BC .17.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD ..证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .18如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为FA ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形.(Ⅱ)C ,D ,F ,E 四点共面.理由如下:由BE ∥AF ,AF BF 21=,G 是FA 的中点,得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.. .。