高中数学空间向量与立体几何典型例题

合集下载

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

高中数学 立体几何——空间向量与立体几何

高中数学 立体几何——空间向量与立体几何

高中数学立体几何——空间向量与立体几何一、单选题1.如图,在三棱锥P−ABC中,PA⊥底面ABC,PA=AC,则直线PC与平面ABC所成角的大小为()A.30∘B.45∘C.60∘D.90∘2.已知向量a⃗=(3,−2,1),b⃗=(−2,4,0),则4a+2b⃗等于()A.(16,0,4)B.(8,−16,4)C.(8,16,4)D.(8,0,4)3.如图,在长方体ABCD−A1B1C1D1中,BB1=BC,P为C1D1的中点,则二面角B−PC1−C的大小为()A.30°B.45°C.60°D.90°4.如图,在直三棱柱ABC−A1B1C1中,D为棱A1B1的中点,AC=2,CC1=BC=1,AC⊥BC,则异面直线CD与BC1所成角的余弦值为()A .√26B .√33C .√24D .√235.如图,空间四边形OABC 中, OA ⃗⃗⃗⃗⃗⃗ = a ⃗ , OB ⃗⃗⃗⃗⃗⃗ = b ⃗ , OC ⃗⃗⃗⃗⃗ = c⃗ ,点M 在线段OA 上,且OM=2MA ,点N 为BC 的中点,则 MN ⃗⃗⃗⃗⃗⃗⃗ =( )A .﹣ 23a ⃗ + 12b ⃗ + 12c ⃗B .12a ⃗ ﹣ 23b ⃗ + 12c ⃗C .12a ⃗ + 12b ⃗ ﹣ 12c ⃗ D .23a ⃗ + 23b ⃗ ﹣ 12c ⃗ 6.在长方体ABCD −A 1B 1C 1D 1中,AD =AA 1=12,AB =25,点M 在AB 上,点N 在C 1D 1上,AM =D 1N =9,则直线CM 与DN 所成角的余弦值为( ) A .1225B .2425C .724D .7257.直线l 的一个方向向量为(2,3),则它的斜率k 为( )A .32B .12C .−12D .−328.在正方体 ABCD −A 1B 1C 1D 1 中,平面 A 1BD 与平面 ABCD 所成二面角的正弦值为( )A .√33B .√22C .√63D .139.在平面直角坐标系中,已知 A(−1,4) , B(3,−6) ,现沿 x 轴将坐标平面折成120°的二面角,则折叠后 A , B 两点间的距离为( ) A .2√17B .2√23C .8D .3√1110.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=√2,BC=AA 1=1,点M 为AB 1的中点,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P 、Q 可以重合),则MP+PQ 的最小值为( )A .√22B .√32C .34D .111.设定点A 、B 、C 、D 是以O 为中心的正四面体的顶点,用σ表示空间以直线OA 为轴满足条件σ(B )=C 的旋转,用τ表示空间关于OCD 所在平面的镜面反射,设l 为过AB 中点与CD 中点的直线,用ω表示空间以l 为轴的180°旋转.设σ○τ表示变换的复合,先作τ,再作σ.则ω可以表示为( ) A .σ○τ○σ○τ○σ B .σ○τ○σ○τ○σ○τ C .τ○σ○τ○σ○τD .σ○τ○σ○σ○τ○σ12.如图,在三棱锥P ﹣ABC 中,PA⊥平面ABC ,⊥ABC =90°,⊥BAC =60°,PA =AB =2,以B 为原点,分别以 BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,设平面PAB 和平面PBC 的一个法向量分别为 m ⃗⃗⃗ ,n ⃗ ,则下列结论中正确的是( )A .点P 的坐标为(0,0,2)B .PC⃗⃗⃗⃗⃗ =(4,0,−2) C .cos〈m ⃗⃗ ,n ⃗ 〉>0D .n ⃗ =(0,−2,2)13.如图,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,E 为CC 1的中点,则直线AD 1与平面BDE 所成角的正弦值为( )A .√336B .2√33C .√33D .√3614.足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足AB =BC =AD =BD =CD =√2dm ,二面角A −BD −C 的大小为2π3,则该足球的体积为( )A .7√42π27dm 3B .35√2π27dm 3C .14π27dm 3D .32√2π27dm 315.在ΔABC 中|AB ⇀+AC ⇀|=|AB ⇀−AC ⇀|,AB =3,AC =4,则BC ⇀在CA ⇀方向上的投影为( ).A .4B .3C .-4D .516.在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC ﹣A 1B 1C 1中,AB =BC ,AA 1>AB ,堑堵的顶点C 1到直线A 1C 的距离为m ,C 1到平面A 1BC 的距离为n ,则 mn 的取值范围是( )A .(1, 2√33 )B .( √22 , 2√33 )C .( 2√33, √3 )D .( 2√33, √2 )17.如图,已知三棱柱 ABC −A′B′C′ 的底面是正三角形,侧棱 AA ′⊥ 底面 ABC , AB =9,AA′=3 ,点 P 在四边形 ABB′A′ 内,且 P 到 AA′ , A′B′ 的距离都等于 1 ,若 D 为 BC 上靠近 C 的四等分点,过点 P 且与 A′D 平行的直线交三棱柱 ABC −A′B′C′ 于点 P , Q 两点,则点 Q 所在平面是( )A .ACC′A′B .BCC′B′C .ABCD .ABB′A′二、填空题18.若空间向量 a⃗ =(5,3,m) , b ⃗ =(1,−1,−2) , c ⃗ =(0,2,−3) 共面,则 m = . 19.在正方体 ABCD −A 1B 1C 1D 1 中,E 是 C 1C 的中点,则 BE 与平面 BB 1D 1D 所成角的正弦值为.20.已知长方体ABCD−A1B1C1D1的AA1、AB、AD的长分为3、4、5,则点A到棱B1C1的距离为.21.已知A(1,2,0),B(0,1,-1),P是x轴上的动点,当AP⇀⋅BP⇀取最小值时,点P的坐标为.22.已知平面α内的两个向量a⃗=(1,1,1),b⃗=(0,2,−1),且c⃗=ma⃗+nb⃗+(4,−4,1).若c⃗为平面α的法向量,则n的值为.23.已知向量a⃗=(−1,−2),向量b⃗=(−3,4),则向量a⃗在b⃗方向上的投影向量为.24.l:ax+by+c=0的一个方向向量为(1,√3),则此直线的倾斜角为25.长方体ABCD﹣A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是26.已知圆锥的顶点为A,过母线AB、AC的截面面积是2√3.若AB、AC的夹角是60°,且AC与圆锥底面所成的角是30°,则该圆锥的体积为.27.已知ABCD为正方形,点P为平面ABCD外一点,PD⊥AD,PD=AD=2,二面角P﹣AD﹣C为60°,则点C到平面PAB的距离为.28.边长为1的等边三角形ABC中,沿BC边高线AD折起,使得折后二面角B﹣AD﹣C为60°,点D到平面ABC的距离为.29.已知菱形ABCD中,AB=2,∠A=120∘,沿对角线BD将△ABD折起,使二面角A−BD−C为120∘,则点A到△BCD所在平面的距离等于.30.在⊥ABC中,⊥ABC= π3,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为π3,则sinθ=.31.已知直二面角α﹣l﹣β,点A⊥α,AC⊥l,C为垂足,点B⊥β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则CD=32.在三棱锥P−ABC中,PA⊥平面ABC,△ABC是边长为2的正三角形,PA=4,Q为三棱锥P−ABC外接球球面上一动点,则点Q到平面PAB的距离的最大值为33.三棱锥P−ABC中,顶点P在底面ABC的射影恰好是△ABC内切圆的圆心,若三个侧面的面积分别为12,16,20,底面ABC的最长边长为10,则点A到平面PBC的距离为;三棱锥P−ABC外接球的直径是.34.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥P−ABC中,AM是PC的中点,且AM⊥PB,底面边长AB=√2,则正三棱锥P−ABC的外接球的表面积为;AM与底面ABC所成角的正弦值为.三、解答题35.在正四棱锥(把底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥,称作正四棱锥)P−ABCD中,PA=AB,E在线段PB上.(1)判断平面AEC与平面PBD是否垂直,并证明;,求直线OE与平面ABCD所成角的正(2)设PA=2,若棱锥E−ABC的体积V=4√29切值.36.如图,AB是⊙O的直径,动点P在⊙O所在平面上的射影恰是⊙O上的动点C,PC= AB=2,D是PA的中点,PO与BD交于点E,F是PC上的一个动点.(1)若CO//平面BEF,求PCFC的值;(2)若F为PC的中点,BC=AC,求直线CD与平面BEF所成角的余弦值.37.如图,在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA= SC=√2,M为AB中点.(1)证明:AC⊥SB;(2)求点C到平面SAB的距离.38.如图,四棱柱ABCD﹣A1B1C1D1中,侧面AA1D1D为矩形,AB⊥平面AA1D1D,CD⊥平面AA1D1D,E、F分别为A1B1、CC1的中点,且AA1=CD=2,AB=AD=1.(1)求证:EF⊥平面A1BC;(2)求D1到平面A1BC1的距离.39.在直三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于点D.以A1为坐标原点建立空间直角坐标系,如图所示.(1)写出A1、B、B1、C、D、P的坐标;(2)求异面直线A1B与PB1所成角的余弦值.40.如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A−CD−F为60°,DE//CF,CD⊥DE,AD=2,DE=DC=3,CF=6.(1)求证:BF//平面ADE;(2)求直线AC与平面CDEF所成角的正弦值.41.如图1是△ABC,AC=2BC=6,∠ACB=π2,D,E分别是边AC,AB上两点,且BC⇀=3ED⇀,将△AED沿ED折起使得∠ADC=π3,如图2.(1)证明:图2中,AC⊥平面AED;(2)图2中,求二面角C−AB−E的正切值.42.如图,在直三棱柱ABC﹣A1B1C1中,BC= √2,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1⊥平面BDA1.(1)求证:CD=C 1D ;(2)求二面角A 1﹣B 1D ﹣P 的平面角的正弦值.43.如图,直三棱柱ABC ﹣A′B′C′中,AA′=2AC=2BC ,E 为AA′的中点,C′E⊥BE .(1)求证:C′E⊥平面BCE ;(2)求直线AB′与平面BEC′所成角的大小.44.如图,在空间平行六面体ABCD ﹣A 1B 1C 1D 1中,若以AC →,AB 1→,AD 1→为空间的一个基底,用这个基底表示AC 1→.45.如图,在四棱锥P ﹣ABCD 中,PC⊥底面ABCD ,ABCD 是直角梯形,AB⊥AD ,AB⊥CD ,AB=2AD=2CD=2.E 是PB 的中点. (⊥)求证:平面EAC⊥平面PBC ;(⊥)若二面角P ﹣AC ﹣E 的余弦值为√63,求直线PA 与平面EAC 所成角的正弦值.46.四棱锥A−BCDE中,AB=AE,CD∥BE,∠BCD=90∘,AD⊥CD.(1)证明:CD=12BE(2)若平面ABE⊥平面BCDE,AB=√5,BE=BC=2,M是棱AC的中点,求平面MDE与平面ABE所成角的正弦值.47.已知向量a⃗与向量b⃗的夹角为3π4,且|a |=2√2,|b⃗|=1.(1)求a⃗在b⃗方向上的投影数量;(2)求|2a+b⃗|.48.已知正三棱柱ABC﹣A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE⊥平面BCC′B′,CC′=2BC=4.(1)求二面角A′﹣B′C﹣C′的余弦值;(2)求线段DE的最小值.49.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ACB= 120°,A1A=4,B1B=1,AC=BC=C1C=2.(1)证明:AC1⊥平面A1B1C1;(2)求直线AB1与平面ACC1所成的角的余弦值.50.在正方体ABCD−A1B1C1D1中,已知E、F、G、H分别是CC1、BC、CD和A1C1的中点.证明:(1)AB1//GE,AB1⊥EH;(2)A1G⊥平面EFD.答案解析部分1.【答案】B【知识点】直线与平面所成的角【解析】【解答】由题意可知,PA ⊥底面ABC ,所以∠PCA 为直线PC 与平面ABC 所成角,PA =AC ,所以三角形PCA 为等腰直角三角形,所以∠PCA =45∘, 故答案为:B【分析】根据题意由线面垂直的性质定理即可得出线线垂直,由此即可得出线面角的大小,从而即可得出三角形的形状,由此即可求出角的大小。

高中数学——空间向量与立体几何练习题(附答案)

高中数学——空间向量与立体几何练习题(附答案)

.空间向量练习题1. 如下图,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠ BCD =60°, E 是 CD的中点, PA ⊥底面 ABCD ,PA =2.〔Ⅰ〕证明:平面 PBE ⊥平面 PAB;〔Ⅱ〕求平面PAD 和平面 PBE 所成二面角〔锐角〕的大小 .如下图,以 A 为原点,建立空间直角坐标系 .那么相关各点的坐标分别是 A 〔 0, 0, 0〕, B 〔 1, 0, 0〕,C(3 ,3,0), D(1 ,3,0), P 〔 0,0, 2〕 , E(1, 3,0).2 22 22〔Ⅰ〕证明因为 BE (0,3,0) ,2平面 PAB 的一个法向量是 n(0,1,0) ,所以 BE 和n 共线 .从而 BE ⊥平面 PAB.又因为 BE平面 PBE ,故平面 PBE ⊥平面 PAB.(Ⅱ)解易知 PB(1,0, 2), BE(0,3,0〕, PA (0,0, 2), AD( 1 ,3,0)22 2n ( x 1 , y 1 , z 1 ) n 1 PB 0,设是平面PBE 的一个法向量,那么由得1n 1 BE 0x 1 0 y 1 2z 1 0,0 x 13y 2 0 z 2 0.所以y 1 0, x 12z 1.故可取 n 1 (2,0,1).2设 n 2( x 2 , y 2 , z 2 )PAD 的 n 2 PA 0, 是 平 面 一个法向量,那么由AD得n 2 00 x 2 0 y 2 2z 2 0,1 3 所以 z2 0, x 23 y 2 .故可取 n 2 ( 3, 1,0).2 x 22 y 2 0 z 20.于是, cosn 1, n 2n 1 n 22 3 15 .n 1 n 2 5 25故平面和平面所成二面角〔锐角〕的大小是15PADPBEarccos..2. 如图,正三棱柱 ABC - A 1B 1C 1 的所有棱长都为 2, D 为 CC 1 中点。

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。

高中数学立体几何与空间向量真题(解析版)

高中数学立体几何与空间向量真题(解析版)

高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。

【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。

高二数学-空间向量与立体几何测试题及答案

高二数学-空间向量与立体几何测试题及答案

高二数学空间向量与立体几何测试题第1卷(选择题,共50分)一、选择题:(本大题共10个小题每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在下列命题中:CD若a、b共线则a、b所在的直线平行;@若a、b所在的直线是异面直线,则a、b一定不共面;@若a、b、c三向量两两共面,则a、b、c三向量一定也共面;@已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=a+yb+zc,, y, z R.其中正确命题的个数为( )A. 0B. 1C. 2D. 32. 若三点共线为空间任意一点且则的值为()A. lB.C.D.3. 设,且,则等千()A. B. 9 C. D4. 已知a=(2, —1, 3) , b= C—1, 4, —2) , c= (7, 5, 入),若a、b、c三向量共面,则实数入等千()A. B. C.5.如图1,空间四边形的四条边及对角线长都是,点分别是的中点则等千()D.A.C...BD6. 若a、b均为非零向量,则是a与b共线的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7. 已知点0是LABC所在平面内一点满足• = • = • '则点0是LABC的()A. 三个内角的角平分线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点8. 已知a+b+c=O,al =2, bl =3,A. 30°B. 45°D.三条高的交点l e = , 则向量a与b之间的夹角为()C. 60°D. 以上都不对9. 已知, ' ,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.10. 给出下列命题:CD已知,则C. D.@为空间四点若不构成空间的一个基底,那么共面;@已知则与任何向量都不构成空间的一个基底;@若共线则所在直线或者平行或者重合.正确的结论的个数为()C. 3A.1B.2D.4 第II卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.已知LABC的三个顶点为A(3, 3, 2) , B (4, —3, 7) , C (0, 5, 1) , 则BC边上的中线长为12. 已知三点不共线为平面外一点若由向量确定的点与共面,那么13. 已知a,b,c是空间两两垂直且长度相等的基底,m=a+b,n=b-c,则m,n的夹角为14. 在空间四边形ABC D中,AC和B D为对角线G为L:.ABC的重心,E是B D上一点BE=3E D, 以{, , }为基底,则=15. 在平行四边形ABCD中,AB=AC=l,乙ACD=90, 将它沿对角线AC折起,使AB与CD成60角,则B,D两点间的距离为16. 如图二面角a-t -B的棱上有A,B两点直线AC,B D分别在这个二面角的两个半平面内,且都垂直千AB,已知AB=4,AC=6, B D=8, C D= ,二面角Q—t—B的大小三、解答题(本大题共5小题,满分70分),17. C lo分)设试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.18. (12分)如图在四棱锥中,底面ABC D是正方形,侧棱底面ABC D,, 是PC的中点,作交PB千点F.(1)证明PAIi平面EDB:(2)证明PB上平面E F D:(3)求二面角的大小.、、、、、、、、.、19. (12分)如图在直三棱柱ABC—AlBlCl中,底面是等腰直角三角形,乙ACB=90°.侧棱AA1=2, D. E 分别是CCl与AlB的中点点E在平面ABO上的射影是DAB D的重心G.(1)求AlB与平面ABO所成角的大小.(2)求Al到平面ABO的距离1) 20. 12分)如图在三棱柱ABC-AlBlCl中,AB上AC,顶点Al在底面ABC上的射影恰为点B,且AB=AC=A1B=2.2)求棱AA1与BC所成角的大小;在棱BlCl上确定一点P,使AP=, 并求出二面角P—AB—Al的平面角的余弦值A1C1B21. (12分)如图直三棱柱ABC-AlBlCl中AB上AC,D.E分别为AAl.B lC的中点DEl_平面BCCl.C I)证明:A B=ACC II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小c,22. (12分)P是平面ABC D外的点四边形ABC D是平行四边形,AP= (-1, 2, -1)(1)求证:PA 平面ABC D.(2)对千向量,定义一种运算:,试计算的绝对值;说明其与几何体P—ABC D的体积关系,并由此猜想向量这种运算的绝对值的几何意义(几何体P-ABC D叫四棱锥,锥体体积公式:V= ) .一、选 1 2 择题(本大题土2上、10小题,每3 4空间向量与立体几何(2)参考答案5 6 7 8 9 10小题5/刀\.让,/、50分)题号答案D D D A B C A 二、填空题(本大题共4小题,每小题6分,共24分)11. (0, ,) 12. 0 13. 1, —3 14. 90° l厮—15。

新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(包含答案解析)

新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(包含答案解析)

一、选择题1.如图,正方体1111ABCD A B C D -中,12AP PA =,点M 在侧面11AA B B 内.若1D M CP ⊥,则点M 的轨迹为( )A .线段B .圆弧C .抛物线一部分D .椭圆一部分2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,且1,2AB BC ==,60ABC ∠=,AP ⊥平面ABCD ,AE PC ⊥于E ,下列四个结论:①AB AC ⊥;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE PC ⊥ .其中正确的个数是( )A .1B .2C .3D .43.若直线l 的方向向量,1)2(,m x -=,平面α的法向量2,2(),4n -=-,且直线l ⊥平面α,则实数x 的值是( )A .1B .5C .﹣1D .﹣54.如图,正方体1111ABCD A B C D -的棱长为a ,E 是DD 1的中点,则( )A .直线B 1E //平面A 1BD B .11B E BD ⊥C .三棱锥C 1-B 1CE 的体积为313aD .直线B 1E 与平面CDD 1C 1所成的角正切值为255.在三棱锥P ABC -中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为( )A .1111B .21111C .311D .411116.已知(),(3,0,1),(131,2,3,1),55a b c =-==--给出下列等式:①a b c a b c ++=--;②()()a b c a b c +⋅=⋅+;③2222()a b c b c a =++++ ④()()a b c a b c ⋅⋅=⋅⋅.其中正确的个数是 A .1个B .2个C .3个D .4个7.ABC 中,90ACB ∠=︒,22AB BC ==,将ABC 绕BC 旋转得PBC ,当直线PC 与平面PAB 所成角正弦值为6时,P 、A 两点间的距离为( )A 2B .2C .42D .48.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥平面ABC ,点M ,N 分别AC ,PB 的中点,6MN =,Q 为线段AB 上的点,使得异面直线PM 与CQ 所成的角的余弦值为3434,则BQ BA为( )A .14B .13C .12D .349.已知二面角l αβ--的两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=,则二面角l αβ--的大小为( ) A .6π B .56π C .6π或56πD .6π或3π10.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .10211.在如图所示的几何体ABCDEF 中,四边形EDCF 是正方形,ABCD 是等腰梯形,AD DE =,90ADE ∠=,//AB CD ,120ADC ∠=.给出下列三个命题:1:p 平面ABCD ⊥平面EDCF ;2:p 异面直线AF 与BD 所成角的余弦值为34;3:p 直线AF 与平面BDF 所成角的正弦值为55.那么,下列命题为真命题的是( ) A .12p p ∧B .13p p ⌝∧C .23p p ∧D .13p p ∧12.如图,在菱形ABCD 中,23ABC π∠=,线段AD 、BD 的中点分别为E 、F .现将ABD ∆沿对角线BD 翻折,当二面角A BD C --的余弦值为13时,异面直线BE 与CF 所成角的正弦值是( )A .35 B .16C .26D .1513.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若4AB AC BD ===,则线段CD 的长为( )A .43B .16C .8D .42二、填空题14.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)15.如图:二面角α﹣l ﹣β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,AB =AC =BD =1,则CD 的长等于__.16.已知(5,3,1)a =,22,,5b t ⎛⎫=-- ⎪⎝⎭.若a 与b 的夹角为钝角,则实数t 的取值范围是________.17.若(2,3,1)a =-,(2,0,3)b =,(0,2,2)c =,则()a b c ⋅+=_____18.已知空间三点(0,A 2,3),(2,B 5,2),(2,C -3,6),则以,AB AC 为邻边的平行四边形的面积为______.19.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.20.如图,在三棱柱111ABC A B C -中,1AC CC ⊥,AC BC ⊥,2AC BC ==,160C CB ∠=︒,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,则二面角1B B E D --的正切值_______21.如图,棱长为2的正方体1111ABCD A B C D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P 垂直于CM ,则PBC ∆的面积的最小值为__________.22.设向量()1,2,a λ=,()2,2,1b =-,若4cos ,9a b =,则实数λ的值为________. 23.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为ABC ∆的重心E 是BD 上一点,3,BE ED =以,,AB AC AD 为基底,则GE =__________.24.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为顶点的三条棱的长均为2,且两两所成角均为60°,则1||AC =__________.26.在正方体1111ABCD A B C D -中,M ,N 分别为1B B ,CD 的中点,有以下命题: ①//MN 平面1A BD ;②1MN CD ⊥;③平面1A MN ⊥平面1A AC , 则正确命题的序号为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】首先建立空间直角坐标系,利用向量数量积的坐标表示求点M 的轨迹. 【详解】如图建立空间直角坐标系,设棱长为3,()3,0,2P ,()0,3,0C,()10,0,3D ,()3,,M y z ,()13,,3D M y z =-,()3,3,2CP =-, ()193230D M CP y z ⋅=-+-=,整理为:3230y z --=,点M 的轨迹方程是关于,y z 的二元一次方程,所以轨迹是平面11ABB A 平面内,直线3230y z --=内的一段线段.故选:A 【点睛】关键点点睛:本题考查利用几何中的轨迹问题,本题的关键是解题方法,建立空间直角坐标系后,转化为坐标运算,根据方程形式判断轨迹.2.D解析:D 【详解】已知1260AB BC ABC ==∠=︒,,, 由余弦定理可得2222cos60AC AB BC AB BC =+-︒3=, 所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确, 故选D . 3.C解析:C 【分析】根据直线与平面垂直时直线的方向量与平面的法向量共线,利用共线时对应的坐标关系即可计算出x 的值. 【详解】因为直线l ⊥平面α,所以//m n , 所以12224x -==--,所以1x =-. 故选:C. 【点睛】本题考查根据直线与平面的位置关系求解参数,其中涉及到空间向量的共线计算,难度一般.已知直线l 的方向向量为a ,平面α的法向量为b ,若//l α则有a b ⊥,若l α⊥则有//a b . 4.D解析:D 【分析】建立空间直角坐标系,利用空间向量一一验证即可; 【详解】解:如图建立空间直角坐标系,则()1,0,A a a ,()1,,Ba a a ,0,0,2a E ⎛⎫⎪⎝⎭,(),,0B a a ,()0,0,0D ,()10,0,D a ,则1,,2a B E a a ⎛⎫=-- ⎪⎝⎭,(),,0DB a a =,()1,0,DA a a =,()1,,BD a a a =--,设面1A BD 的法向量为(),,n x y z =,所以00ax az ax ay +=⎧⎨+=⎩,取1x =,则1y z ==-,所以()1,1,1n =--,所以()()()()11111122a aB E n a =⨯-+-⨯-+-⨯=-,当2a ≠时10B E n ≠,故1B E 不一定平行面1A BD ,故A 错误;因为()()()()2115022a B E BD a a a a a a =-⨯-+-⨯-+⨯=≠,所以1B E 与1BD 不垂直,故B 错误; 111113111136C B CE B C EC C ECV V SB C a --===,故C 错误;面11CDD C 的法向量为()1,0,0m =,设直线B 1E 与平面CDD 1C 1所成的角为θ,则112sin 31m B Em B Eθ===⨯,所以cos θ== 所以2sin tan cos θθθ===D 正确; 故选:D【点睛】本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.5.C解析:C 【分析】首先利用线面角的定义,可知当D 为PC 的中点时,AD 取得最小值,此时BD 与平面PAC 所成角最大,再以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,利用向量坐标法求线面角的正弦值. 【详解】,AB AC AB PA ⊥⊥,且PA AC A =, AB ∴⊥平面PAC ,易证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值 在等腰Rt PAC ∆中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D , 则(0,1,1)AD =,(0,2,2)PC=-,(3,2,0)BC =-设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=, 即220320y z x y -=⎧⎨-+=⎩令3y =,得(2,3,3)n =. 因为311cos ,11222n AD 〈〉==⨯,所以AD 与平面PBC 311. 故选:C 【点睛】关键点点睛:本题重点考查线面角,既考查了几何法求线面角,又考查向量法求线面角,本题关键是确定点D 的位置,首先利用线面角的定义确定点D 的位置,再利用向量法求线面角.6.D解析:D 【详解】由题设可得197(,3,)55a b c ++=,则635635255a b c ++==; 923(,1,)55a b c --=-,63525a b c --=,则①正确;因1346()(4,2,2)(,1,)205555a b c +⋅=⋅--=-+-=, 1481424()(1,2,3)(,1,)205555a b c ⋅+=⋅-=+-=,故②正确;又因2635127()255a b c ++==,而22235714,10,255a b c ====, 所以22271272455a b c ++=+=,即③正确;又3030a b ⋅=+-=,则()0a b c ⋅⋅=, 而330055b c ⋅=-++=,故()0a b c ⋅⋅=,也即④正确. 故选:D .7.B解析:B 【分析】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由题意得到∠CPE 就是直线PC 与平面PAB 所成角,利用直线PC 与平面PAB 所成角的正弦值为66,PC =3,求出CE ,再求出CD ,可得PD ,即可得出结论. 【详解】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由已知得BC ⊥CA , BC ⊥CP , CA CP C =,则BC ⊥平面PAC , 得到BC ⊥PA ,CD BC C ⋂=,可得PA ⊥平面BCD ,又PA ⊂平面PAC ∴平面BCD ⊥平面PBA ,平面BCD 平面PBA =BD ,由两个平面互相垂直的性质可知:CE ⊥平面PBA , ∴∠CPE 就是直线PC 与平面PAB 所成角, ∵直线PC 与平面PAB 所成角的正弦值为6,PC =AC =3, ∴CE =62PC =, 设CD =x ,则BD =21x +,21121122x x ∴⋅⋅=⋅+⋅, ∴x =1,∵PC =3,∴PD =2,∴PA =2PD =22. 故选:B .【点睛】本题考查直线与平面所成角的求法,考查空间想象能力和分析推理能力以及计算能力,属于中档题.8.A解析:A 【分析】以B为原点,,,BA BC BP坐标轴建立空间直角坐标系,设BQBAλ=,由异面直线PM与CQ所成的角的余弦值为3434可列式222343244PM CQPM CQ,求出λ即可.【详解】如图,在三棱锥P ABC-中,2AB BC==,22AC =,BA BC∴⊥, PB⊥平面ABC,以B 为原点,,,BA BC BP坐标轴建立空间直角坐标系,可知()0,0,0B,()0,2,0C ,()1,1,0M,2,6BM MN,222BN MN BM,4PB∴=,则()0,0,4P,设BQBAλ=,且01λ<<,则2,0,0Q,可知1,1,4,2,2,0PM CQ,12124022PM CQ,22211432PM,244CQ,异面直线PM与CQ34,22234343244PM CQPM CQ,解得14λ=或4λ=(舍去),14BQBA∴=.故选:A.【点睛】本题考查向量法求空间线段的比例分点,属于中档题.9.C解析:C【分析】由于方向量的方向性,平面的法向量有正向量或负向量;当a、b为异号向量,二面角为π减去两法向量夹角;当a、b为同号向量,二面角即为两法向量的夹角,由此即可求得二面角lαβ--【详解】两个半平面α与β的法向量分别为,a b,且,a b6π<>=由于向量的方向性,法向量与平面有两种情况当a、b为异号向量,如下图示:,a b6π<>=∴有二面角lαβ--为56π当a、b为同号向量,如下图示:,a b6π<>=∴有二面角lαβ--为6π综上,有二面角lαβ--为6π或56π故选:C 【点睛】本题考查了二面角与平面法向量夹角的关系,依据法向量的夹角判断平面所成二面角的大小,注意法向量的方向性,讨论在不同情况下二面角的大小10.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫⎪ ⎪⎝⎭ , 31,2AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,2BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14, 所以222112cos ,411t AE BF AE BF AE BFt t -⋅===++, 解得:1t =所以31,122AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCC B 所成角的正弦值为362sin 21AE nAE nα⋅===⨯ 故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.11.D解析:D 【分析】利用面面垂直的判定定理可判断命题1p 的真假,利用空间向量法可得判断命题2p 、3p 的真假,再利用复合命题的真假可得出结论. 【详解】90ADE ∠=,AD DE ∴⊥,四边形EDCF 是正方形,则DC DE ⊥,AD DC D ⋂=,DE ∴⊥平面ABCD ,又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF ,故1p 为真命题;由已知//DC EF ,DC ⊄平面ABFE ,EF ⊂平面ABFE ,所以//DC 平面ABFE .又DC ⊂平面ABCD ,平面ABCD 平面ABFE AB =,故//AB CD ,又AD DE =,所以AD CD =,令1AD =,则2AB =,60BAD ∠=, 由余弦定理可得2222cos 3BD AB AD AB AD BAD =+-⋅∠=,222AD BD AB ∴+=,AD BD ∴⊥,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -,则()0,0,0D ,()1,0,0A ,132F ⎛⎫- ⎪ ⎪⎝⎭,()3,0B ,所以33,12FA ⎛⎫=- ⎪ ⎪⎝⎭,()0,3,0=DB ,132DF ⎛⎫=- ⎪ ⎪⎝⎭, 所以异面直线AF 与BD 所成角的余弦值为cos ,2FA DB FA DB FA DB-⋅<>===⨯⋅2p 为假命题; 设平面BDF 的法向量为(),,n x y z=,由00n DBn DF ⎧⋅=⎨⋅=⎩,所以01022x y z =⎨-++=⎪⎩, 取2x =,则0y =,1z =,得()2,0,1n =,cos ,2F FA n FA A n n⋅<>===⨯⋅ 设直线AF与平面BDF 所成的角为θ,则sin 5θ=. 所以直线AF 与平面BDF ,故3p 为真命题. 所以13p p ∧为真命题,12p p ∧、13p p ⌝∧、23p p ∧均为假命题. 故选:D. 【点睛】本题考查复合命题的真假的判断,涉及面面垂直的判断、异面直线所成角以及线面角的计算,涉及空间向量法的应用,考查推理能力与计算能力,属于中等题.12.A解析:A 【分析】过E 作EH BD ⊥,交BD 于H 点,设二面角A BD C --的大小为α,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由向量数量积的运算律得出CF BE CF HE ⋅=⋅,由题意可得出12HE BE =,利用数量积的定义可求出cos ,CF BE <>的值,即可求出cos θ的值,进而利用同角三角函数的平方关系可求出sin θ的值. 【详解】如下图所示,过E 作EH BD ⊥,交BD 于H 点, 设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,记二面角A BD C --的大小为α,()CF BE CF BH HE CF HE ⋅=⋅+=⋅, 即()cos CF BE CF HE πα⋅=⋅-,即11cos ,23CF BE CF BE CF BE ⎛⎫⋅<>=⋅⋅- ⎪⎝⎭,1cos ,6CF BE ∴<>=-,所以1cos 6θ=,即35sin 6θ=,故选:A .【点睛】本题考查异面直线所成角的计算,同时也考查了二面角的定义,涉及利用空间向量数量积的计算,考查计算能力,属于中等题.13.D解析:D 【分析】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE ,则由题意可知ACE ∆为等边三角形,CDE ∆为直角三角形,求解CD 即可. 【详解】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE , 则四边形ABDE 为平行四边形.线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB .AC AB ∴⊥,AE AB ⊥则CAE ∠为二面角的平面角,即60CAE ∠= 4AB AC BD ===4AC BD AE AB DE ∴=====,如图所示.ACE ∴∆为等边三角形,4CE =AC DE ⊥,AE DE ⊥,AC AE A ⋂=,AC ⊂平面ACE ,AE ⊂平面ACEDE ∴⊥平面ACE 又CE ⊂平面ACE∴DE CE ⊥在Rt CDE ∆中22224442CD CE DE =+=+=故选:D【点睛】本题考查空间的距离问题,属于中档题.二、填空题14.②④【分析】由题意知abAC三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB以直线AC为旋转轴则A点保持不变B点的运动轨迹是以C为圆心为半径的圆以C坐标原点以CD为x轴CB为解析:②④【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的长方体,|AC|=1,|AB|=2,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,3为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法求出结果.【详解】由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13故|AC|=1,|AB|=2,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C3为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D3,0,0),A(0,0,1),直线a的方向单位向量a=(0,1,0),|a|=1,直线b的方向单位向量b=(1,0,0),|b|=1,设B点在运动过程中的坐标中的坐标B′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =θθ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则)(10cos 3,,θα-⋅=='⋅sin a AB θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 323os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB |cos θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|33πα===, ∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|2=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.15.2【分析】求CD 的长即为由向量的加法可得利用向量的数量积运算即可得出答案【详解】∵AB 是棱l 上两点ACBD 分别在半平面αβ内AC ⊥lBD ⊥l 因为所以因为所以故答案为:2【点睛】本题主要考查空间向量的解析:2 【分析】求CD 的长即为CD ,由向量的加法可得CD CA AB BD =++,利用向量的数量积运算即可得出答案. 【详解】∵A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,0,0∴⋅=⋅=CA AB BD AB ,,60︒<>=CA BD因为1AB AC BD ===,所以111cos602︒⋅=⨯⨯=CA BD , 因为CD CA AB BD =++, 所以2()12=++==CD CA AB BD故答案为:2 【点睛】本题主要考查空间向量的加法,减法及几何意义和空间向量的数量积,考查了运算求解能力和转化的数学思想,属于一般题目.16.【分析】由根据与的夹角为钝角由且求解【详解】因为所以因为与的夹角为钝角所以且由得所以若与的夹角为则存在使即所以解得故答案为:【点睛】本题主要考查平面向量的数量积的应用还考查了运算求解的能力属于中档题解析:6652,,5515⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭【分析】由(5,3,1)a =,22,,5b t ⎛⎫=-- ⎪⎝⎭,根据a 与b 的夹角为钝角,由0a b ⋅<且,180a b ︒〈〉≠求解. 【详解】因为(5,3,1)a =,22,,5b t ⎛⎫=--⎪⎝⎭, 所以2525(2)31355a b t t ⎛⎫⋅=⨯-++⨯-=- ⎪⎝⎭, 因为a 与b 的夹角为钝角, 所以0a b ⋅<且,180a b ︒〈〉≠, 由0a b ⋅<,得52305t -<, 所以5215t <. 若a 与b 的夹角为180︒,则存在0λ<,使a b λ=, 即2(5,3,1)2,,5t λ⎛⎫=--⎪⎝⎭,所以523215t λλλ⎧⎪=-⎪=⎨⎪⎪=-⎩, 解得65t =-, 故答案为: 6652,,5515⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭【点睛】本题主要考查平面向量的数量积的应用,还考查了运算求解的能力,属于中档题. 17.3【分析】根据向量加法以及向量数量积的坐标表示得结果【详解】【点睛】本题考查空间向量加法与数量积考查基本求解能力属于基础题解析:3【分析】根据向量加法以及向量数量积的坐标表示得结果.【详解】()()() 2,3,12,2,5465 3.a b c ⋅+=-⋅=-+=,【点睛】本题考查空间向量加法与数量积,考查基本求解能力. 属于基础题. 18.【解析】分析:利用终点坐标减去起点坐标求得对应的向量的坐标进而求得向量的模以及向量的夹角的余弦值应用平方关系求得正弦值由此可以求得以为邻边的平行四边形的面积详解:由题意可得所以所以所以以为邻边的平行解析:【解析】分析:利用终点坐标减去起点坐标,求得对应的向量的坐标,进而求得向量的模以及向量的夹角的余弦值,应用平方关系求得正弦值,由此可以求得以AB ,AC 为邻边的平行四边形的面积.详解:由题意可得(2,3,1),(2,1,3)AB AC =-=-,49114,41AB AC =++==+=,所以2)31(1)32cos 7BAC -+⨯+-⨯∠==-,所以sin BAC ∠=,所以以AB ,AC为邻边的平行四边形的面积为S == 点睛:该题考查的是有关空间向量的坐标以及夹角余弦公式,在解题的过程中,需要对相关公式非常熟悉,再者就是要明确平行四边形的面积公式,以及借助于向量的数量积可以求得对应角的余弦值.19.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 20.【分析】根据题意先得到平面所以向量为平面的一个法向量;分别以为轴轴以垂直于平面过点的直线为轴建立空间直角坐标系根据题意求出平面的一个法向量根据向量夹角公式求出二面角的夹角余弦值进而可求出结果【详解】【分析】根据题意,先得到AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,根据题意求出平面1B ED 的一个法向量,根据向量夹角公式求出二面角的夹角余弦值,进而可求出结果.【详解】因为AC BC ⊥,1AC CC ⊥,1BC CC C =,且1,BC CC ⊂平面11BCC B , 所以AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,因为2AC BC ==,160C CB ∠=︒,13CC =,所以()2,0,0A ,()0,0,0C ,()2,0,0B ,则12,2D ⎛ ⎝⎭,(E,170,2B ⎛ ⎝⎭,所以12,,22ED ⎛⎫=-- ⎪ ⎪⎝⎭,150,22EB ⎛⎫= ⎪ ⎪⎝⎭,()2,0,0AC =-设平面1B ED 的一个法向量为(),,m x y z =,则 1m ED m EB ⎧⊥⎪⎨⊥⎪⎩,即1120225022m ED x y z m EB y z⎧⋅=--=⎪⎪⎨⎪⋅=+=⎪⎩,解355x z y z ⎧=⎪⎪⎨⎪=-⎪⎩,令5z =,则()3,m =,所以cos ,4AC mAC m AC m ⋅<>===, 由图像可得,二面角1B B E D --为锐角,记为θ,所以co cos s ,AC m θ>=<=,因此sin θ== 所以sin tan cos 3θθθ===.221. 【点睛】 本题主要考查求二面角的正切值,根据向量的方法求解即可,属于常考题型.21.【分析】建立空间直角坐标系由求得得到进而求得三角形的面积的最小值得到答案【详解】以D 点为空间直角坐标系的原点以DC 所在直线为y 轴以DA 所在直线为x 轴以为z 轴建立空间直角坐标系则点所以因为所以因为所以 25 【分析】建立空间直角坐标系,由1D P CM ⊥,求得22z y =-,得到25128BP y y =-+而求得三角形的面积的最小值,得到答案.【详解】以D 点为空间直角坐标系的原点,以DC 所在直线为y 轴,以DA 所在直线为x 轴,以1DD 为z 轴,建立空间直角坐标系.则点1(2,,),(0,0,2)P y z D ,所以1(2,,2)D P y z =-.因为(0,2,0),(2,0,1)C M ,所以(2,2,1)CM =-,因为1D P CM ⊥,所以4220y z -+-=,所以22z y =-,因为B(2,2,0),所以(0,2,)BP y z =-, 所以22222(2)(2)(22)5128BP y z y y y y =-+=-+-=-+因为02y ≤≤,所以当65y =时,min 255BP =.因为BC ⊥BP ,所以min 1()2255PBC S ∆=⨯⨯=.. 【点睛】 本题主要考查了空间向量的应用,其中解答建立适当的空间直角坐标系,利用向量的坐标表示,以及向量的数量积的运算,求得BP 的最小值是解答的关键,着重考查了推理与运算能力,属于中档试题.22.或【分析】由公式结合空间向量数量积的坐标运算律得出关于实数的方程解出该方程可得出实数的值【详解】则解得或故答案为或【点睛】本题考查空间向量数量积的坐标运算解题的关键就是利用空间向量数量积的坐标运算列 解析:2或1227-. 【分析】 由公式4cos ,9a ba b a b ⋅==⋅结合空间向量数量积的坐标运算律得出关于实数λ的方程,解出该方程可得出实数λ的值. 【详解】()1,2,a λ=,()2,2,1b =-,246a b λλ⋅=+-=-,25a λ=+,3b =, 24cos ,9a ba b a b λ⋅===+⋅,则606λλ->⇒<,解得2λ=或1227-. 故答案为2或1227-. 【点睛】 本题考查空间向量数量积的坐标运算,解题的关键就是利用空间向量数量积的坐标运算列出方程求解,考查运算求解能力,属于中等题.23.【解析】由题意连接则故答案为解析:1131234AB AC AD --+ 【解析】 由题意,连接AE , 则32 43GE AE AG AB BD AM =-=+- 321432AB AD AB AB AC =+--⨯+()(). 1131234AB AC AD =--+ .故答案为1131234AB AC AD --+. 24.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想解析:2 【分析】 根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果.【详解】 解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++ 222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 11111711242224=+++⨯++= 得17AE =.故答案为:2. 【点睛】 本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想. 25.【分析】设且利用数量积运算即得解【详解】设故答案为:【点睛】本题考查了空间向量的模长数量积运算考查了学生空间想象数学运算能力属于中档题解析:【分析】设1,,AB a AD b AA c===,且1|||++|AC a b c =,利用数量积运算即得解. 【详解】设1,,||||||2,,,60o AB a AD b AA c a b c a b a c c b ===∴===<>=<>=<>=, 222221|||++|||||||22224AC a b c a b c a b a c c b ==+++⋅+⋅+⋅=||26AC ∴=故答案为:26【点睛】本题考查了空间向量的模长,数量积运算,考查了学生空间想象,数学运算能力,属于中档题.26.①②【分析】建立如图所示的空间直角坐标系把空间中的平行垂直关系归结为方向向量法向量之间的关系后可得正确的选项【详解】建立如图所示的空间直角坐标系设正方体的棱长为2则故所以故所以故②正确又设平面的法向 解析:①②【分析】建立如图所示的空间直角坐标系,把空间中的平行、垂直关系归结为方向向量、法向量之间的关系后可得正确的选项.【详解】建立如图所示的空间直角坐标系,设正方体的棱长为2,则()()()()2,0,0,0,0,0,0,2,0,2,2,0A D C B ,()()()()11112,0,2,0,0,2,0,2,2,2,2,2A D C B ,故()()2,2,1,0,1,0M N ,所以()2,1,1MN =---,()10,2,2CD =-,故10MN CD ⋅=,所以1MN CD ⊥,故②正确.又()2,2,0DB =,()12,0,2DA =,设平面1A BD 的法向量为(),,n x y z =, 由100n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得00x y x z +=⎧⎨+=⎩,取1z =-,则()1,1,1n =--, 因为0MN n ⋅=且MN ⊄平面1A BD ,故//MN 平面1A BD ,故①正确.又()10,2,1A M =-,设平面1A MN 的法向量为(),,m x y z =,由100m MN m A M ⎧⋅=⎪⎨⋅=⎪⎩得2020x y z y z ---=⎧⎨-=⎩,取1y =,则3,1,22m ⎛⎫=- ⎪⎝⎭, 平面1A AC 的法向量为()2,2,0a =,则0m a ⋅≠故平面1A MN ⊥平面1A AC 不成立,故③错,故答案为:①②.【点睛】本题考查空间中平行关系、垂直关系的判断,注意根据几何体的特征建立合适的空间直角坐标系后再利用空间向量来处理,本题属于中档题.。

空间向量与立体几何经典例题

空间向量与立体几何经典例题

空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。

在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。

例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。

解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。

假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。

由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。

其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。

假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。

带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。

因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。

例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。

解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。

假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。

空间向量及立体几何典型例题

空间向量及立体几何典型例题

空间向量与立体几何典型例题一、选择题:1.(2021全国Ⅰ卷理)三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于〔 C 〕A .13BCD .231.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB,棱柱的高13AO a ===〔即点1B 到底面ABC 的距离〕,故1AB 与底面ABC所成角的正弦值为113AO AB =.另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 则1AB 与底面ABC所成角的正弦值为111123OA AB AO AB ⋅=. 二、填空题:1.(2021全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C ABD --M N ,分别是AC BC,的中点,则EM AN ,所成角的余弦值等于61. 1.答案:16.设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM AN EM ⋅= 另解:以O 为坐标原点,建立如下图的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,)222222M N ---, 则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===, x 1题图〔x故EM AN,所成角的余弦值16AN EMAN EM⋅=.三、解答题:1.〔2021文〕如图,在四棱锥O ABCD-中,底面ABCD四边长为1的菱形,4ABCπ∠=, OA ABCD⊥底面, 2OA=,M为OA的中点。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

高中数学空间向量与立体几何经典题型与答案

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使14,00,.25AN MC AN MC x z λ⊥=-==只需即解得),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角30304||,||,.5552cos(,).3||||2arccos().3AN BN AN BN AN BN AN BN AN BN ===-∴==-⋅-故所求的二面角为2 如图,在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD(Ⅰ)证明:AB ⊥平面VAD ;(Ⅱ)求面VAD 与面DB 所成的二面角的大小证明:以D 为坐标原点,建立如图所示的坐标图系(Ⅰ)证明:不防设作(1,0,0)A ,则(1,1,0)B , )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB VA ⊥,又AB AD ⊥,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直∴AB ⊥平面VAD(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,AEB ∠是所求二面角的平面角,,721||||),cos(=⋅⋅=EB EA EB EA EB EA 解得所求二面角的大小为.721arccos3 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底V面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出点N 到AB 和AP 的距离解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为1473 (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(,0,)x z ,则)1,21,(z x NE --=,由NE ⊥面PAC 可得,⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(,从而N 点到AB 和AP 的距离分别为31,64 如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中14,2,3,1AB BC CC BE ====(Ⅰ)求BF 的长; (Ⅱ)求点C 到平面1AEC F 的距离解:(I)建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z∵1AEC F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面1AEC F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为α,则 .333341161133||||cos 1111=++⨯=⋅⋅=n CC n CC α ∴C 到平面1AEC F 的距离为.11334333343cos ||1=⨯==αCC d5 如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移动 (1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==c a ba 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为.313212||||1=-+=⋅=n n E D h (3)设平面1D EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b CE n C D n 令1,2,2b c a x =∴==-, ∴).2,1,2(x n -= 依题意.225)2(222||||||4cos211=+-⇒=⋅⋅=x DD n DD n π∴321+=x (不合,舍去),322-=x∴23AE =-时,二面角1D EC D --的大小为4π6 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于1,C C 的一点,1EA EB ⊥,已知112,2,1,3AB BB BC BCC π===∠=,求:(Ⅰ)异面直线AB 与1EB 的距离;(Ⅱ)二面角11A EB A --的平面角的正切值解:(I)以B 为原点,1BB 、BA 分别为,y z 轴建立空间直角坐标系ﻩ由于,112,2,1,3AB BB BC BCC π===∠=ﻩ在三棱柱111ABC A B C -中有1(0,0,0),(0,0,2),(0,2,0)B A B ,)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥侧面11BB C C ,故AB BE ⊥ 因此BE 是异面直线1,AB EB 的公垂线,则14143||=+=BE ,故异面直线1,AB EB 的距离为1 (I I)由已知有,,1111EB A B EB EA ⊥⊥故二面角11A EB A --的平面角θ的大小为向量EA A B 与11的夹角.22tan ,32||||cos ),2,21,23(),2,0,0(111111==⋅=--===θθ即故因A B EA A B EA EA BA A B7 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PF EC ⊥ 已知,21,2,2===AE CD PD 求(Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E PC D --的大小解:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为,,x y z 轴建立空间直角坐标系由已知可得(0,0,0),(0,0,2),(0,2,0)D P C则(2EF =-由0EF PC ⋅=得又由F 在PC 上得,(2222EF =-因,,EF PC DG PC ⊥⊥故E -的大小为向量EF DG 与的夹角22||||DG EF DG EF ⋅=4。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

空间向量典型例题

空间向量典型例题

空间向量典型例题空间向量与立体几何一、非坐标系向量法1.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()。

答案:(B)2/3.2.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为1/3,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于。

答案:3/4.3.已知正四面体ABCD中,E、F分别在AB,CD上,且CF=CD,AE=AB/4,则直线DE和BF所成角的余弦值为()。

答案:(C)-13/13.4.如图,已知四棱柱ABCD-A1,CB=CD,∠C1CB=∠C1CD,证明:C1C垂直于BD;当∠C1CB的值为多少时,能使A1CB1D是菱形且A1C垂直于平面C1BD?请给出证明。

二、坐标系向量法1.如图,在直三棱柱ABCD-A1B1C1D1中,点M是AC的中点,点N是BD的中点,求异面直线AN和B1M所成角的余弦值,以及平面A1B1C1和平面ABC所成二面角的正弦值。

2.如图,在直棱柱ABCD-A1B1C1D1中,AB=BC=1,AC=BD=√2,点M是AC的中点,点N是BD的中点。

证明:(1)MN⊥平面A1B1C1D1;(2)直线MN和平面A1B1C1D1所成二面角的正弦值为1/√10.3.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。

求证:PC⊥AB;求二面角B-AP-C的大小。

4.如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。

求(1)DP与CC1所成角的大小;(2)DP与平面A1AD1所成角的大小。

5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=90°,OA⊥底面ABCD,OA=2,M为OA的中点。

求(1)异面直线AB与MD所成角的大小;(2)点B到平面OCD的距离。

高中数学空间向量与立体几何典型题压轴大题练习题带答案

高中数学空间向量与立体几何典型题压轴大题练习题带答案

高中数学空间向量与立体几何一.选择题(共25小题)1.已知平面α的法向量为=(﹣2,﹣2,1),点A(x,3,0)在平面α内,则点P(﹣2,1,4)到平面α的距离为,则x=()A.﹣1B.﹣11C.﹣1或﹣11D.﹣212.已知直线1的方向向量=(﹣1,2,1),平面α的法向量=(﹣2,4,2),则直线1与平面α的位置关系是()A.l∥αB.l⊥αC.l⊂αD.l∈α3.已知直线方程2x﹣y+c=0的一个方向向量可以是()A.(2,﹣1)B.(2,1)C.(﹣1,2)D.(1,2)4.如图,在单位正方体ABCD﹣A1B1C1D1中,以D为原点,,,为坐标向量建立空间直角坐标系,则平面A1BC1的法向量是()A.(1,1,1)B.(﹣1,1,1)C.(1,﹣1,1)D.(1,1,﹣1)5.已知空间向量,,两两相互垂直,且||=||=||=||,若,则x+y+z的取值范围是()A.B.[﹣1,1]C.D.[﹣2,2]6.已知向量分别是直线l1,l2的方向向量,若l1∥l2,则()A.m=8,n=28B.m=4,m=28C.D.7.若向量=(x,﹣4,﹣5),=(1,﹣2,2),且与的夹角的余弦值为,则实数x的值为()A.﹣3B.11C.3D.﹣3或118.已知=(2,﹣1,4),=(﹣1,1,﹣2),=(7,5,m),若,,共面,则实数m的值为()A.B.14C.12D.9.与向量=(﹣1,﹣2,2)共线的单位向量是()A.(﹣,﹣,)和(,,﹣)B.(﹣,﹣,)C.(,,﹣)D.(﹣,﹣,﹣)或(,,﹣)10.已知O(0,0,0),A(3,﹣2,4),B(0,5,﹣1),若=,则C的坐标是()A.(2,﹣,)B.(﹣2,,﹣)C.(2,﹣,﹣)D.(﹣2,﹣,)11.若直线l的方向向量为(2,1,m),平面α的法向量为(1,,2),且l⊥α,则m=()A.2B.3C.4D.512.若A(m+1,n﹣1,3),B(2m,n,m﹣2n),C(m+3,n﹣3,9)三点共线,则m+n的值为()A.0B.﹣1C.1D.﹣213.若向量,,则=()A.B.C.3D.14.已知向量=(﹣1,0,1),=(1,1,﹣1),且+k与互相垂直,则k=()A.1B.C.﹣1D.﹣15.已知向量=(2,1,﹣3),=(1,﹣1,2),则+2=()A.3B.(4,﹣1,1)C.(5,1,﹣4)D.16.已知三棱锥A﹣BCD中,E是BC的中点,则﹣(+)=()A.B.C.D.17.在空间直角坐标系中,若A(1,1,0),=(3,0,1),则点B的坐标为()A.(﹣5,1,﹣2)B.(7,1,﹣2)C.(3,0,1)D.(7,1,2)18.正方体ABCD﹣A1B1C1D1中,=()A.B.C.D.19.已知向量及则等于()A.(﹣3,1,﹣2)B.(5,5,﹣2)C.(3,﹣1,2)D.(﹣5,﹣5,2)20.已知向量,,.若,则x的值为()A.﹣2B.2C.3D.﹣321.设x,y∈R,向量=(x,1,1),=(1,y,1),=(2,﹣4,2),且⊥,∥,则|+|=()A.B.C.3D.422.若向量=(2,﹣3,1)和=(1,x,4)满足条件•=0,则x的值是()A.﹣1B.0C.1D.223.空间点A(x,y,z),O(0,0,0),,若|AO|=1,则|AB|的最小值为()A.1B.2C.3D.424.已知MN是正方体内切球的一条直径,点P在正方体表面上运动,正方体的棱长是2,则的取值范围为()A.[0,4]B.[0,2]C.[1,4]D.[1,2]25.在下列条件中,使M与A,B,C一定共面的是()A.=﹣﹣B.=++C.++=D.+++=二.填空题(共5小题)26.若,且,则实数λ=.27.点P是棱长为4的正四面体表面上的动点,MN是该四面体内切球的一条直径,则的最大值是.28.若向量=(x,﹣1,1)与=(3,1,﹣2)的夹角为钝角,则实数x的取值范围为.29.已知=(﹣2,1,3),=(3,﹣4,2),=(7,λ,5),若,,共面,则实数λ=.30.若向量=(7,λ,8),=(1,﹣1,2),=(2,3,1),且,,共面,则λ=.三.解答题(共10小题)31.棱长为2的正方体中,E,F分别是DD1,DB的中点,G在棱CD上,且CG=CD,H是C1G的中点.(1)证明:EF⊥B1C.(2)求cos<>.(3)求FH的长.32.设点E,F分别是棱长为2的正方体ABCD﹣A1B1C1D1的棱BC,BB1的中点.如图,以D为坐标原点,,,为x轴、y轴、z轴正方向,建立空间直角坐标系.(I)求;(II)若点M,N分别是线段A1E与线段D1F上的点,问是否存在直线MN,使得MN⊥平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.33.已知空间向量=(a1,a2,a3),=(b1,b2,b3),定义两个空间向量与之间的距离为d(,)=|b i﹣a i|.(1)若=(1,2,3),=(4,1,1),=(,,0),证明:d(,)+d(,)=d(,)(2)已知=(c1,c2,c3)①证明:若∃λ>0,使﹣=λ(﹣),则d(,)+d(,)=d(,).②若d(,)+d(,)=d(,),是否一定∃λ>0,使﹣=λ(﹣)?请说明理由.34.如图四棱锥P﹣ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(1)求过点P,C,B,G四点的球的表面积;(2)求直线DP到平面PBG所成角的正弦值;(3)在棱PC上是否存在一点F,使DF⊥GC,若存在,确定点F的位置,若不存在,说明理由.35.如图,三棱柱ABC﹣A1B1C1中,M,Q分别是BB1,BC1中点,点P在线段C1M上,且,(1)用向量表示向量;(2)用向量表示向量;(3)若AP与平面A1BC交于,求出y关于x的函数关系式.36.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的角)的余弦值.37.如图,正三棱柱ABC﹣A1B1C1中,底面边长为.(1)设侧棱长为1,求证:AB1⊥BC1;(2)设AB1与BC1的夹角为,求侧棱的长.38.如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图2.(Ⅰ)求证:DE⊥A1C;(Ⅱ)求点C到平面A1BE的距离.39.已知四棱锥S﹣ABCD中,四边形ABCD是菱形,且∠ABC=120°,△SBC为等边三角形,平面SBC⊥平面ABCD.(Ⅰ)求证:BC⊥SD;(Ⅱ)若点E是线段SA上靠近S的三等分点,求直线DE与平面SAB所成角的正弦值.40.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形:①直线l在平面α内;②直线m不在平面α内;③直线m与平面α交于点A;④直线l不经过点A.(2)如图,在长方体ABCD﹣A1B1C1D1中,E为棱BB1的中点,F为棱CC1的三等分点,画出由D1,E,F三点所确定的平面β与平面ABCD的交线.(保留作图痕迹)参考答案与试题解析一.选择题(共25小题)1.【解答】解:=(﹣2﹣x,﹣2,4),||==,||==3,=﹣2(﹣2﹣x)+4+4=2x+12,∴cos<>==,设AP与平面α所成角为θ,则sinθ=,∴P到平面α的距离为|AP|•sinθ==,解得x=﹣1或x=﹣11.故选:C.2.【解答】解:∵直线1的方向向量=(﹣1,2,1),平面α的法向量=(﹣2,4,2),∴=2∴则与共线,可得:l⊥a.故选:B.3.【解答】解:依题意,(2,﹣1)为直线的一个法向量,∴方向向量为(1,2),故选:D.4.【解答】解:在单位正方体ABCD﹣A1B1C1D1中,以D为原点,,,为坐标向量建立空间直角坐标系,A1(1,0,1),B(1,1,0),C1(0,1,1),=(0,1,﹣1),=(﹣1,0,1),设平面A1BC1的法向量是=(x,y,z),则,取x=1,得=(1,1,1),∴平面A1BC1的法向量是(1,1,1).故选:A.5.【解答】解:设||=||=||=||=r,∵,,两两相互垂直,∴==,∵,∴=(x+y+z)2=x2+y2+z2,∴1=x2+y2+z2,∴(x+y+z)2=x2+y2+z2+2xy+2xz+2yz≤3(x2+y2+z2)=3,当且仅当x=y=z=±时“=”成立,∴﹣≤x+y+z≤,故选:C.6.【解答】解:∵l1∥l2,∴存在实数使得=k,∴,解得:m=8,n=.故选:C.7.【解答】解:∵向量=(x,﹣4,﹣5),=(1,﹣2,2),∴||==,||==3;•=x+8﹣10=x﹣2,且与的夹角余弦值为﹣,∴•3•(﹣)=x﹣2;整理得x2﹣8x﹣33=0,解得x=﹣3或x=11(不合题意,舍去);∴x的值为﹣3.故选:A.8.【解答】解:∵=(2,﹣1,4),=(﹣1,1,﹣2),∴与不平行,又∵,,三向量共面,则存在实数x,y使=x+y,即(2x﹣y,﹣x+y,4x﹣2y)=(7,5,m)即,解得:m=14,故选:B.9.【解答】解:∵向量=(﹣1,﹣2,2)的模为||==3,故与向量=(﹣1,﹣2,2)共线的单位向量是±,即=(﹣,﹣,)或﹣=(,,﹣).故选:A.10.【解答】解:设点C坐标为(x,y,z),则=(x,y,z).又=(﹣3,7,﹣5),=,∴x=﹣2,y=,z=﹣.则C的坐标是(﹣2,,﹣).故选:B.11.【解答】解:∵直线l的方向向量为(2,1,m),平面α的法向量为(1,,2),且l⊥α,∴l的方向向量为(2,1,m)与平面α的法向量为(1,,2)平行,∴(2,1,m)=λ(1,,2).∴,解得m=4.故选:C.12.【解答】解:因为=(m﹣1,1,m﹣2n﹣3),=(2,﹣2,6),由题意,得∥,所以==,所以m=0,n=0,所以m+n=0.故选:A.13.【解答】解:∵向量,,∴2+=(4,﹣1,1),∴==3.故选:D.14.【解答】解:∵向量=(﹣1,0,1),=(1,1,﹣1),∴+k=(﹣1+k,k,1﹣k),∵+k与互相垂直,∴()•=﹣1+k+k﹣1+k=0,解得k=.故选:B.15.【解答】解:.故选:B.16.【解答】解:如图,取CD中点F,连结AF,EF,∵三棱锥A﹣BCD中,E是BC的中点,∴﹣(+)=﹣==.故选:D.17.【解答】解:在空间直角坐标系中,A(1,1,0),=(3,0,1),设点B的坐标为B(x,y,z),则=(x﹣1,y﹣1,z﹣0)=(3,0,1),解得x=7,y=1,z=2.∴点B的坐标为(7,1,2).故选:D.18.【解答】解:由题意可得==.故选:D.19.【解答】解:由向量,,所以=(﹣3,1,﹣2).故选:A.20.【解答】解:因为向量,,,所以﹣=(﹣2,3,1);又,所以•(﹣)=0,即﹣2×(﹣2)+3x+2×1=0,解得x=﹣2.故选:A.21.【解答】解:设x,y∈R,向量=(x,1,1),=(1,y,1),=(2,﹣4,2),且⊥,∥,∴,解得x=1,y=﹣2,∴=(1,1,1)+(1,﹣2,1)=(2,﹣1,2),∴|+|=.故选:C.22.【解答】解:因为=(2,﹣3,1)和=(1,x,4)满足条件=0,即2﹣3x+4=0⇒x=2;故选:D.23.【解答】解:∵空间点A(x,y,z),O(0,0,0),,|AO|=1,∴A是以O为球心,1为半径的球上的点,∵,∴|OB|==3.∴|AB|的最小值为:|OB|﹣||OA|=3﹣1=2.故选:B.24.【解答】解:以D1为坐标原点,以D1A1,D1C1,D1D所在直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示;设正方体内切球球心为S,MN是该内切球的任意一条直径,则内切球的半径为1,所以•=(+)•(+)=(+)•(﹣)=﹣1∈[0,2].所以的取值范围是[0,2].故选:B.25.【解答】解:在C中,由++=,得=﹣﹣,则、、为共面向量,即M、A、B、C四点共面;对于A,由=﹣﹣,得1﹣1﹣1=﹣1≠1,不能得出M、A、B、C四点共面;对于B,由=++,得++≠1,所以M、A、B、C四点不共面;对于D,由+++=,得=﹣(++),其系数和不为1,所以M、A、B、C四点不共面.故选:C.二.填空题(共5小题)26.【解答】解:∵,∴+λ=(2+6λ,﹣1﹣3λ,2+2λ),由,得:2(2+6λ)+(1+3λ)+2(2+2λ)=0,解得:λ=﹣,故答案为:﹣.27.【解答】解:设点O是此正方体的内切球的球心,半径R=1.∵•≤||||,∴当点P,M,N三点共线时,•取得最大值.当且仅当点P为正四面体的一个顶点时上式取得最大值,∴(•)max=×=,故答案为:.28.【解答】解:向量=(x,﹣1,1)与=(3,1,﹣2),因为与夹角为钝角,所以,且cos<,>≠﹣1,解得x<1,所以x的取值范围为(﹣∞,1).故答案为:(﹣∞,1).29.【解答】解:由=(﹣2,1,3),=(3,﹣4,2),=(7,λ,5),且,,共面,所以存在实数m,n,使得,即(7,λ,5)=m(﹣2,1,3)+n(3,﹣4,2),列方程组,得,解得,;所以.故答案为:.30.【解答】解:向量=(7,λ,8),=(1,﹣1,2),=(2,3,1),且,,共面,所以存在两个实数x、y使得=x+y;即,解得;所以λ=3.故答案为:3.三.解答题(共10小题)31.【解答】解:以D为坐标原点,建立空间直角坐标系D﹣xyz,如图所示;则E(0,0,1),F(1,1,0),B1(2,2,2),C(0,2,0),C1(0,2,2);(1)∵=(1,1,﹣1),=(﹣2,0,﹣2),∴•=1×(﹣2)+1×0﹣1×(﹣2)=0,∴⊥,∴EF⊥B1C;(2)由CG=CD知,C(0,2,0),∴G(0,,0),∴=(0,﹣,﹣2),∴•=1×0+1×(﹣)﹣1×(﹣2)=,||=,||==,∴cos<,>===;(3)∵H为C1G的中点,∴H(0,,1),F(1,1,0),∴=(﹣1,,1),∴||==,即FH的长为.32.【解答】解:(Ⅰ)在给定空间直角坐标系中,相关点及向量坐标为A1(2,0,2),E(1,2,0),D1(0,0,2),F(2,2,1),=(﹣1,2,﹣2),=(2,2,﹣1),…(2分)所以;…(4分)(Ⅱ)存在唯一直线MN,使MN⊥平面ABCD;设M(x1,y1,z1),N(x2,y2,z2),且,;则(x1﹣2,y1,z1﹣2)=λ(﹣1,2,﹣2),(x2,y2,z2﹣2)=t(2,2,﹣1),所以M(2﹣λ,2λ,2﹣2λ),N(2t,2t,2﹣t),故,…(8分)若MN⊥平面ABCD,则与平面ABCD的法向量=(0,0,1)平行,所以,解得;所以点M,N的坐标分别是(,,),(,,).…(12分)33.【解答】证明:(1)∵,,,∴,,,∴.(2)①∵∃λ>0,使,∴∃λ>0,使得(b1﹣a1,b2﹣a2,b3﹣a3)=λ(c1﹣b1,c2﹣b2,c3﹣b3),即∃λ>0,使得b i﹣a i=λ(c i﹣b i),其中i=1,2,3,∴b i﹣a i与c i﹣b i(i=1,2,3)同为非负数或同为负数.∴,即.②不一定∃λ>0,使得.反例如下:取,,,,,,则∵,,∴不存在λ>0,使得.34.【解答】解:(1)由四面体P﹣BCG的体积为.∴PG=4以GP,GB,GC构造长方体,外接球的直径为长方体的体对角线.∴(2R)2=16+4+4,∴∴V=4π×6=24π.(2)由GB=GC=2∴△BGC为等腰三角形,GE为∠BGC的角平分线,作DK⊥BG交BG的延长线于K,∴DK⊥面BPG.由平面几何知识可知:,设直线DP与平面PBG所成角为α∴.(3)∵GB,GC,GP两两垂直,分别以GB,GC,GP为x,y,z轴建立坐标系假设F存在且设F(0,y,4﹣2y)(0<y<2)∵∴,又直线DF与GC所成的角为900∴∴∴当时满足条件.35.【解答】解:(1)∵,,∴=.(2)∵,又=,∴===+.(3)由空间向量的基本定理可设,∵四点A1、B、C、N共面,∴k+m+n=1.∵,∴=,∴,利用k+m+n=1,可得,化为即为所求的关系式.36.【解答】解:(1)以{,,}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴=(2,0,﹣4),=(1,﹣1,﹣4),∴cos<,>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为=(2,﹣2,1),设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<,>|=||=,∴平面ADC1与ABA1所成二面角的余弦值为:.37.【解答】证明:(1)=+,=+.因为BB1⊥平面ABC,所以•=0,•=0.又△ABC为正三角形,所以<,>=π﹣<,>=π﹣=.因为•=(+)•(+)=•+•++•=||•||•cos<,>+=﹣1+1=0,所以AB1⊥BC1.解:(2)由(1)知•=||•||•cos<,>+=﹣1.又||===||,所以cos<,>==,所以||=2,即侧棱长为2.38.【解答】(Ⅰ)证明:在图1△ABC中,D,E为AC,AB边中点所以DE∥BC.又AC⊥BC,所以DE⊥AC.在图2中DE⊥A1D,DE⊥DC,且A1D∩DC=D,则DE⊥平面A1CD.又因为A1C⊂平面A1CD,所以DE⊥A1C.(Ⅱ)解:由(Ⅰ)知DE⊥平面A1CD,且DE⊂平面BCDE,所以平面A1CD⊥平面BCDE,且平面A1CD∩平面BCDE=DC,在正△A1CD中,过A1作A1O⊥CD,垂足为O,所以A1O⊥平面BCDE.A1O即为三棱锥A1﹣BCE底面上的高,在△A 1CD中,.在△A 1BE中,,,所以.在梯形BCDE中,.设点C到平面A1BE的距离为h,因为,所以,解得.即点C到平面A1BE的距离为.39.【解答】证明:(Ⅰ)取BC的中点F,连接BD、DF和SF,因为△SBC为等边三角形,所以SF⊥BC;又四边形ABCD是菱形,且∠ABC=120°,所以△BCD为等边三角形,所以DF⊥BC;又SF∩DF=F,SF⊂平面SDF,DF⊂平面SDF,所以BC⊥平面SDF,又SD⊂平面SDF,所以BC⊥SD;(Ⅱ)解:因为平面SBC⊥平面ABCD,平面SBC∩平面ABCD=BC,SF⊥BC,SF⊂平面SBC,所以SF⊥平面ABCD;又DF⊥BC,所以SF、BC、DF两两垂直;以点F为坐标原点,FC、FD、FS所在直线分别为x、y、z轴建立空间直角坐标系F﹣xyz,如图所示;不妨设AB=2,则A(﹣2,,0),B(﹣1,0,0),S(0,0,);所以=(1,﹣,0),=(2,,);设平面SAB的一个法向量为=(x,y,z),由,得,令y=1,得=(,1,﹣1),又==(﹣,,﹣),所以E(﹣,,),又D(0,,0),所以=(﹣,﹣,),设直线DE与平面SAB所成的角为θ,则sinθ===.40.【解答】解:(1)l⊂α;m⊄α;m∩α=A;A∉l;示意图如下:(2)如图,分别延长DB,D1E相交于点L,分别延长DC,D1F相交于点I,直线IL即为所求.。

2024年高考真题分类汇编九 空间向量与立体几何

2024年高考真题分类汇编九 空间向量与立体几何
且 ⊥ ,以为坐标原点,, , 分别为, , 轴建立空间直角坐标系,
则 0,
可得⃗
1,0 , 1,
0,
1,
1,0 , 1,0,0 , 0,2,0 , 0,0,2 ,
2 , ⃗
1,
1,
2 , ⃗
1,0,
2 , ⃗
0,2,
2 ,
6 / 14
, , ,则
则 0,0,0 , 0,0,2 3 , 0,3 3, 0 , 3,3 3, 0 , 2,0,0 , 0,

2 3, 0 ,
因为是的中点,所以 4,2 3, 0 ,
所以⃗
3,3 3,
2 3 , ⃗
0,3 3,
2 3 , ⃗
4,2 3,
2 3 , ⃗
2,0,
1 1 0
分别取1
2
1,则1
⃗⋅⃗
|⃗|⋅|⃗|
则 cos⃗, ⃗
3、1
1、2
2 22
22 0

0,即⃗
1,3,1 、⃗
0,0,2 ,平面1 的法向量为⃗
1,3,1 ,
1 3
1 9 1⋅ 1 1
1,2
0
1,1,0 ,
2 22

11
故平面1 与平面1 1 的夹角余弦值为2 22;
设平面的法向量为⃗

1,则取
2,可得⃗
0,
2,则
则 cos⟨⃗, ⃗⟩

2,1 ,
1
5
2 0 ,
2 2 0
2,1,1 ,
1,可得⃗
⃗⋅⃗
|⃗|⋅|⃗|
0,

, , ,则 ⃗ ⋅
⃗ ⋅ ⃗

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。

A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。

高考必刷大题 空间向量与立体几何

高考必刷大题 空间向量与立体几何

故 2λ=-2,2λ+2μ-μt=0, 3μt= 3,
解得
t=23,从而D→F=0,43,2
3
3.
123456
所以直线AE与DF所成角的余弦值为
|cos〈A→E,D→F〉|=|AA→→EE|·|DD→→FF|=
2 7×2
7=37. 3
123456
4.(2023·成都模拟)如图所示,直角梯形ABDE和三角形ABC所在平面互相 垂直,DB⊥AB,ED∥AB,AB=2DE=2BD=2,AC=BC,异面直线DE 与AC所成角为45°,点F,G分别为CE,BC的中点,点H是线段EG上靠近 点G的三等分点.
则有nn··B—C→CC→=1 =x+-x+3y=30z,=0,
可取 n=( 3,-1,1),又—BA→1 =(1,0, 3),
—→
所以点
A1 到平面
BCC1B1 的距离为| BA|n1|·n|=2
3=2 5
515,
所以所求距离为2 515.
123456
3.(2024·丹东模拟)如图,平行六面体ABCD-A1B1C1D1的所有棱长都相等, 平面CDD1C1⊥平面ABCD,AD⊥DC,二面角D1-AD-C的大小为120°, E为棱C1D1的中点.
(1)求证:A,B,F,H四点共面;
123456
如图,取AB的中点O,连接OC,OE, 因为AC=BC,故∠BAC为锐角, 又ED∥AB, 故∠BAC即为异面直线DE与AC所成角, 则∠BAC=45°, 则∠ACB=90°,即AC⊥CB, 因为直角梯形ABDE和三角形ABC所在平面互相垂直,DB⊥AB, 平面ABDE∩平面ABC=AB,DB⊂平面ABDE,
123456
设平面PBD的法向量为n=(x,y,z), 则nn··PP→→DB==22xy--22zz==00,, 取 x=1,得 n=(1,1,1), ∵A→M=n,∴AM⊥平面 PBD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与立体几何典型例题一、选择题:1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C )A .13BCD .231.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =.另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅=== 则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=.二、填空题:1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C ABD --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 61. 1.答案:16.设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM AN EM ⋅= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,)222222M N ---,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===, 故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.三、解答题: 1.(2008安徽文)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。

1.方法一(综合法)(1)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CD P ⊥于连接MP ⊥⊥平面A B C D ,∵OA ∴CD MP ,42ADP π∠=∵∴DP =MD ==∵ 1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴所以 AB 与MD 所成角的大小为3π(2)AB 平面∵∴‖OCD,点A 和点B 到平面OCD的距离相等,连接OP,过点A 作AQ OP ⊥于点Q ,,,,AP CD OA CD CD OAP ⊥⊥⊥平面∵∴ ,AQ OAP AQ CD ⊂⊥平面∵∴又 ,AQ OP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离2OP ====∵,2AP DP ==2222332OA AP AQ OP ===∴,所以点B 到平面OCD 的距离为23方法二(向量法)作AP CD ⊥于点P,如图,分别以AB,AP,AO 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,A B P D O M(1)设AB 与MD 所成的角为θ,(1,0,0),(1)22AB MD ==--∵ 1cos ,23AB MDAB MD πθθ===⋅∴∴ ,∴AB与MD 所成角的大小为3π (2) 22(0,,2),(2)22OPOD =-=--∵ ∴设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==即2020y z x y z -=⎨⎪+-=⎪⎩取z =解得(0,n =设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,n =上的投影的绝对值, (1,0,2)OB =-∵, 23OB n d n⋅==∴. 所以点B 到平面OCD 的距离为232.(2008安徽理)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。

(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

2. 方法一(综合法)(1)取OB 中点E ,连接ME ,NEME CD ME CD ∴,‖AB,AB ‖‖又,NE OC MNE OCD ∴平面平面‖‖MN OCD ∴平面‖ (2)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角)作,AP CD P ⊥于连接MP ⊥⊥平面A B C D ,∵OA ∴CD MP ,4ADP π∠=∵∴DP =MD ==NB1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴ 所以 AB 与MD 所成角的大小为3π(3)AB 平面∵∴‖OCD,点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴ 又 ,AQOP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离OP ====∵,2AP DP ==2222332OA AP AQ OP ===∴,所以点B 到平面OCD 的距离为23方法二(向量法)作APCD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D O MN ,(1)2222(1,,1),(0,,2),(2)4422MN OP OD =--=-=-- 设平面OCD 的法向量为(,,)n x yz =,则0,n OP n =即2022022y z x y z -=⎪⎪⎨⎪-+-=⎪⎩取z =解得(0,n =22(1,,1)(0,4,2)044MN n =--=∵ MN OCD ∴平面‖ (2)设AB 与MD 所成的角为θ,(1,0,0),(1)22AB MD ==--∵ 1cos ,23AB MDAB MD πθθ===⋅∴∴ , AB 与MD 所成角的大小为3π(3)设点B 到平面OCD 的交流为d ,则d 为OB 在向量(0,n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为233.(2008北京文)如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC⊥AC .(Ⅰ)求证:PC ⊥AB ;(Ⅱ)求二面角B -AP -C 的大小.3.解法一:(Ⅰ)取AB 中点D ,连结PD ,CD . ∵AP =BP , ∴PD ⊥AB . ∵AC =BC . ∴CD ⊥AB . ∵PD ∩CD =D . ∴AB ⊥平面PCD . ∵PC ⊂平面PCD , ∴PC ⊥AB .(Ⅱ)∵AC =BC ,AP =BP , ∴△APC ≌△BPC . 又PC ⊥AC , ∴PC ⊥BC.又∠ACB =90°,即AC ⊥BC , 且AC ∩PC =C , ∴AB =BP , ∴BE ⊥AP .∵EC 是BE 在平面P AC 内的射影, ∴CE ⊥AP .∴∠BEC 是二面角B -AP-C 的平面角. 在△BCE 中,∠BCE =90°,BC=2,BE =623=AB , ∴sin ∠BEC =.36=BE BC ∴二面角B -AP -C 的大小为aresin.36解法二:(Ⅰ)∵AC =BC ,AP =BP , ∴△APC ≌△BPC . 又PC ⊥AC . ∴PC ⊥BC. ∵AC ∩BC =C , ∴PC ⊥平面ABC . ∵AB ⊂平面ABC , ∴PC ⊥AB .(Ⅱ)如图,以C 为原点建立空间直角坐标系C-xyz. 则C (0,0,0),A (0,2,0),B (2,0,0). 设P (0,0,t ),∵|PB |=|AB |=22, ∴t =2,P (0,0,2).取AP 中点E ,连结BE ,CE .∵|AC |=|PC |,|AB |=|BP |, ∴CE ⊥AP ,BE ⊥AP .∴∠BEC 是二面角B-AP -C 的平面角. ∵E (0,1,1),),1,1,2(),1,1,0(--=--=EB EC ∴cos ∠BEC.33622=⋅=∴二面角B-AP-C 的大小为arccos.33 4.(2008北京理)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.4.解法一:(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =, PD AB ∴⊥. AC BC =, CD AB ∴⊥. PD CD D =, AB ∴⊥平面PCD . PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且AC PC C =, BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角. 在BCE △中,90BCE ∠=,2BC =,BE AB ==sin BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin(Ⅲ)由(Ⅰ)知AB ⊥平面PCD , ∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB 平面PCD PD =, CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离.AB D PACBE P ACBDPH由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =,PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥. 在Rt PCD △中,12CD AB ==PD PB ==2PC ∴==. 233PC CD CH PD ∴==.∴点C 到平面APB .解法二:(Ⅰ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C =, PC ∴⊥平面ABC . AB ⊂平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -. 则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t,,.PB AB ==,2t ∴=,(002)P ,,. 取AP 中点E ,连结BE CE ,. AC PC =,AB BP =, CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =--,,,(211)EB =--,,, 23cos 326EC EB BEC EC EB∴∠===. ∴二面角B AP C --的大小为arccos3. (Ⅲ)AC BC PC ==,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离. 如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE =,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,.233CH ∴=.∴点C 到平面APB.5. (2008福建文) 如图,在四棱锥中,侧面PAD ⊥底面ABCD,侧棱,底面ABCDy为直角梯形,其中BC ∥AD,AB ⊥CD,AD=2AB=2BC=2,O 为AD 中点。

相关文档
最新文档