化工原理课程设计1
化工原理课程设计
化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。
1.掌握流体的密度、粘度、热导率等物理性质。
2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。
3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。
4.理解气液平衡的基本原理,包括相图、相律和相变换等。
5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。
6.能够运用流体力学基本方程分析流体流动问题。
7.能够计算流体流动和压力降的基本参数,如流速、压力降等。
8.能够分析气液平衡问题,确定相态和相组成。
9.能够运用传质过程的基本方法分析和解决化工问题。
情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。
2.培养学生严谨的科学态度和良好的职业道德。
3.培养学生团队协作和自主学习的意识。
二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。
1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。
2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。
3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。
4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。
5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。
三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。
2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。
3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。
化工原理课程设计完整版
化工原理课程设计完整版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,了解化工生产的基本过程和设备,培养学生运用化工原理解决实际问题的能力。
具体目标如下:1.知识目标:(1)理解化工原理的基本概念和原理;(2)熟悉化工生产的基本过程和设备;(3)掌握化工计算方法和技能。
2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化能力;(3)学会使用化工设备和仪器进行实验和调试。
3.情感态度价值观目标:(1)培养学生的团队合作意识和沟通能力;(2)增强学生对化工行业的认识和兴趣;(3)培养学生对科学研究的热爱和责任感。
二、教学内容本课程的教学内容主要包括以下几个方面:1.化工原理基本概念和原理:包括溶液、蒸馏、吸收、萃取、离子交换等基本操作原理和方法。
2.化工生产过程和设备:包括反应器、换热器、蒸发器、膜分离设备等的基本结构和原理。
3.化工计算方法:包括物料平衡、热量平衡、质量平衡等计算方法。
具体教学大纲安排如下:第1-2周:化工原理基本概念和原理;第3-4周:化工生产过程和设备;第5-6周:化工计算方法。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、原理和方法,引导学生理解和掌握;2.案例分析法:分析实际案例,让学生学会运用化工原理解决实际问题;3.实验法:进行实验操作,培养学生的实践能力和实验技能;4.小组讨论法:分组讨论,培养学生的团队合作意识和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《化工原理》;2.参考书:相关化工原理的教材和学术著作;3.多媒体资料:教学PPT、视频、动画等;4.实验设备:反应器、换热器、蒸发器、膜分离设备等。
以上教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和理解能力。
化工原理课程设计柴诚敬
化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。
技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。
本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。
教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。
二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。
2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。
3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。
4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。
5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。
教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。
化工原理课程设计(第二版)
精彩摘录
精彩摘录
这是《化工原理课程设计(第二版)》的读书笔记模板,可以替换为自己的精彩内容摘录。
谢谢观看
6.2转盘萃取塔的 工艺设计
6.1概述
6.3转盘塔的结构 设计
第6 章液- 液萃取装置的工艺设计
6 .4 转盘塔工艺 设计示例6 .5 转盘萃取塔 设计任务一则
第7 章干燥装置的工艺设计
7 .1 概述
7 .2 喷雾干燥器的工 艺设计
7 .3 流化床干燥器的 设计
7 .4 干燥装置设计任 务两则
附录
附录1输送流体 1
用无缝钢管 规格
2
附 录 2 泵与风机 的性能参数
3 附 录 3 换热器系
列标准
4
附 录 4 管法兰
5
附 录 5 椭圆形封 头
作者介绍
同名作者介绍
这是《化工原理课程设计(第二版)》的读书笔记模板,暂无该书作者的介绍。
读书笔记
读书笔记
这是《化工原理课程设计(第二版)》的读书笔记模板,可以替换为自己的心得。
第3 章换热装置的工艺设计
3 .1 概述
3 .2 管壳式换热器的 工艺设计
3 .3 再沸器的工艺设 计
3 .4 换热器设计任务 四则
第4 章蒸发装置的工艺设计
4 .1 概述
4 .2 多效蒸发过程的 工艺计算
4 .3 蒸发器主要工艺 结构尺寸的设计计算
4 .4 蒸发装置的辅助 设备
第4 章蒸发装置的工艺设计
化工原理课程设计( 第二版)
读书笔记模板
01 思维导 图
03 目录分 析
05 读书笔 记
目录
02 内容摘 要
04 作者介 绍
06 精彩摘 录
化工原理课程设计模板
化工原理课程设计模板一、课程目标知识目标:1. 理解并掌握化工原理中流体流动与传输的基本概念,包括流体性质、流动状态及流体力学方程。
2. 学习并掌握热量传递的三种基本方式,即导热、对流和辐射,及其在化工过程中的应用。
3. 掌握质量传递的基本原理,包括扩散、对流传质和膜分离等,并能应用于化工单元操作中。
4. 分析典型化工单元操作的工作原理和设备结构,理解其工程实践意义。
技能目标:1. 能够运用流体力学原理,解决实际流体流动问题,如流量测量、泵和风机的选型等。
2. 能够运用热量传递原理,分析和解决化工过程中的热量控制问题,如换热器的设计和优化。
3. 能够运用质量传递原理,进行物质的分离和提纯,如吸收、蒸馏等操作。
4. 能够结合单元操作原理,设计简单的化工流程,进行初步的工程计算和设备选型。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热情,激发学生探索科学规律的积极性。
2. 培养学生的工程意识,使其认识到化工原理在国民经济发展中的重要地位和作用。
3. 培养学生的团队协作精神和沟通能力,使其在解决实际问题时能够与他人合作,共同完成任务。
4. 培养学生的创新思维,使其在遇到问题时能够主动思考,寻求解决方案。
本课程针对高年级本科生,结合化工原理的学科特点,以理论知识与工程实践相结合的方式进行教学。
课程目标旨在使学生在掌握基本理论知识的基础上,能够运用所学知识解决实际问题,并培养其工程素养和创新能力,为未来从事化工领域的工作打下坚实基础。
二、教学内容1. 流体流动与传输:包括流体性质、流体静力学、流体动力学、流体流动阻力与能量损失、泵与风机等章节内容。
- 流体性质:密度、粘度、表面张力等。
- 流体静力学:压力、压强、流体静力平衡。
- 流体动力学:连续性方程、伯努利方程、动量方程。
- 流体流动阻力与能量损失:摩擦阻力、局部阻力、雷诺数。
- 泵与风机:类型、工作原理、性能参数。
2. 热量传递:涵盖导热、对流、辐射及换热器设计等内容。
化工原理课程设计
化工原理课程设计(一)——碳八分离工段原料预热器设计学生姓名:왕량学校:대련대학专业班级:화공101学号:10412041指导老师:왕위징时间:2012.07.08目录一、设计任务书 (3)二、概述及设计方案简介 (4)1.碳八芳烃分离工艺简介 (4)2.换热器简介 (4)三、设计条件及主要物性参数 (7)1.设计条件 (7)2.主要物性参数 (7)四、工艺设计计算 (9)1.估算传热面积 (9)2.选择管径和管内流速 (11)3.选取管长、确定管程数和总管数 (12)4.平均传热温差校正及壳程数 (13)5.传热管排列 (14)6.管心距 (15)7.管束的分程方法 (15)8.壳体内径 (16)9.折流板和支承板 (16)10.其它主要附件 (17)11.接管 (17)五、换热器核算 (17)1.热流量核算 (17)2. 传热管和壳体壁温核算 (24)3. 换热器内流体阻力计算 (26)六、设计自我评述 (31)七、参考文献 (32)八、主要符号表 (32)八、附录 (33)附录1 工艺尺寸图 (33)附录2工艺流程图 (34)一、设计任务书化工原理课程设计任务书姓名:王亮班级:化工101碳八分离工段原料预热器设计冷流体:液体(流量15Koml/h)组成摩尔分率乙苯对二甲苯间二甲苯邻二甲苯18% 18% 40% 24%加热水蒸气压力为122Kg cm/由20℃加热到162℃要求管程和壳程压差均小于50KPa,设计标准式列管换热器二、概述及设计方案简介1.碳八芳烃分离工艺简介碳八芳烃分离即C8芳烃分离,根据工业需要将碳八芳烃分离成单一组分或馏分的过程。
C8芳烃分离的主要目的是活的经济价值较高的对二甲苯和邻二甲苯。
因此,C8芳烃分离有常常与碳八芳烃异构化结合在一起,以获得更多的对、邻二甲苯。
在个别情况下,也要分离出高纯度的乙苯、苯乙烯。
各种C8芳烃间沸点很接近难以用一般的精馏方法分离,各种C8芳烃沸点如表所示。
马江权化工原理课程设计
马江权化工原理课程设计一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如反应速率、化学平衡、传质过程等;2. 使学生了解化工过程中常见单元操作的基本原理,如蒸馏、吸收、萃取等;3. 帮助学生理解化工设备的设计与优化原则。
技能目标:1. 培养学生运用所学知识解决实际化工问题的能力;2. 提高学生进行实验操作和数据分析的能力;3. 培养学生运用化工软件进行模拟计算的能力。
情感态度价值观目标:1. 激发学生对化工学科的兴趣,培养良好的学习习惯;2. 培养学生具备团队合作精神,善于倾听他人意见;3. 增强学生的环保意识,认识到化工在可持续发展中的重要性。
课程性质分析:本课程为高中化学选修课程,旨在让学生了解化工原理在实际生产中的应用,提高学生的理论联系实际的能力。
学生特点分析:学生已具备一定的化学基础知识,具有较强的学习能力和探究精神。
在此基础上,通过本课程的学习,有助于拓展学生的知识面,提高综合运用能力。
教学要求:1. 结合实际案例,深入浅出地讲解化工原理知识;2. 注重实验操作与理论学习相结合,提高学生的实践能力;3. 创设情境,引导学生主动探究,培养学生的创新意识。
二、教学内容1. 化工原理基本概念:反应速率、化学平衡、传质过程等;- 教材章节:第二章《化学反应速率与化学平衡》2. 常见单元操作原理:蒸馏、吸收、萃取等;- 教材章节:第三章《化工单元操作原理》3. 化工设备设计与优化:换热器、反应釜、塔设备等;- 教材章节:第四章《化工设备设计与优化》4. 实验操作与数据分析:进行实验操作,分析实验数据,探讨实验现象;- 教材章节:第五章《实验操作与数据分析》5. 化工软件模拟计算:运用化工软件进行流程模拟与优化;- 教材章节:第六章《化工过程模拟与优化》6. 化工案例分析与讨论:分析实际化工生产案例,探讨化工原理在实际生产中的应用;- 教材章节:第七章《化工案例分析》教学进度安排:第1周:化工原理基本概念第2周:常见单元操作原理第3周:化工设备设计与优化第4周:实验操作与数据分析第5周:化工软件模拟计算第6周:化工案例分析与讨论教学内容确保科学性和系统性,结合教材章节,使学生能够逐步掌握化工原理知识,提高实际应用能力。
对化工原理课程设计
对化工原理课程设计一、课程目标知识目标:1. 理解化工原理的基本概念,掌握化学工程中常用的原理和定律;2. 学会运用化工原理分析化学过程中的问题,如质量守恒、能量守恒和动量守恒等;3. 掌握化学工程中重要的单元操作,如反应器设计、传质、传热和流体流动等。
技能目标:1. 能够运用化工原理解决实际问题,设计简单的化工流程;2. 培养学生的实验操作能力,熟练使用实验设备进行化工实验;3. 提高学生的数据处理和分析能力,能够对实验数据进行合理的解释。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学习热情;2. 培养学生的团队协作精神,学会与他人共同完成实验任务;3. 增强学生的环保意识,认识到化工技术在环境保护和可持续发展中的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握化工原理基本知识的基础上,能够运用所学理论解决实际问题。
课程目标具体、可衡量,有助于学生和教师在教学过程中明确预期成果,为后续的教学设计和评估提供依据。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 化工原理基本概念:质量守恒、能量守恒、动量守恒、反应速率、平衡常数等;- 教材章节:第一章 化工原理概述2. 化工单元操作:反应器设计、传质、传热、流体流动、沉降、过滤、蒸发等;- 教材章节:第二章至第六章 单元操作原理及设备3. 化工流程设计:流程图的绘制、物料平衡、能量平衡、设备选型与设计;- 教材章节:第七章 化工流程设计4. 化工实验操作与数据处理:实验原理、实验方法、实验操作技巧及数据处理;- 教材章节:第八章 化工实验5. 化工技术在环保和可持续发展中的应用:废水处理、废气处理、节能减排等;- 教材章节:第九章 环保与可持续发展教学内容安排和进度如下:第一周:化工原理概述,基本概念;第二周:质量守恒、能量守恒;第三周:动量守恒、反应速率;第四周:平衡常数,单元操作原理;第五周:单元操作设备,化工流程设计;第六周:化工实验操作与数据处理;第七周:化工技术在环保和可持续发展中的应用。
王卫东化工原理课程设计
王卫东化工原理课程设计一、课程目标知识目标:1. 理解并掌握化工原理中的基本概念,如反应速率、化学平衡、传质过程等;2. 掌握化工过程中的基本计算方法,如物质的量、浓度、转化率等计算;3. 了解化工设备的基本原理和结构,如反应釜、塔设备、换热器等。
技能目标:1. 能够运用所学原理分析和解决实际问题,如设计简单的化工流程、计算反应所需物质量等;2. 能够运用实验方法和设备进行简单的化工实验,如测定反应速率、分析物质成分等;3. 能够运用图表、数据和文字表达实验结果,进行数据分析。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热情,激发探究精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的环保意识,了解化工生产过程中的环保要求。
本课程针对高中年级学生,结合化工原理学科特点,注重理论联系实际,提高学生的实践操作能力。
课程目标具体、可衡量,旨在使学生掌握化工原理的基本知识,培养实际操作技能,同时注重情感态度价值观的培养,为后续学习打下坚实基础。
二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
主要包括以下部分:1. 化工原理基本概念:反应速率、化学平衡、传质过程等;- 教材章节:第一章 化工基本概念2. 化工过程中的基本计算方法:物质的量、浓度、转化率等计算;- 教材章节:第二章 化工计算3. 化工设备基本原理和结构:反应釜、塔设备、换热器等;- 教材章节:第三章 化工设备4. 实验方法和设备:测定反应速率、分析物质成分等;- 教材章节:第四章 化工实验方法5. 实际案例分析:设计简单的化工流程、计算反应所需物质量等;- 教材章节:第五章 化工案例分析教学进度安排如下:第一周:基本概念学习,反应速率和化学平衡;第二周:化工计算,物质的量、浓度、转化率;第三周:化工设备原理和结构;第四周:实验方法和设备,进行简单实验;第五周:实际案例分析,设计化工流程。
化工原理课程设计编辑版
化工原理课程设计编辑版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,培养学生运用化工原理解决实际问题的能力。
通过本课程的学习,学生应达到以下目标:1.知识目标:(1)掌握化工原理的基本概念和理论;(2)了解化工过程的基本计算和分析方法;(3)熟悉化工设备的工作原理和操作方法。
2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化的能力;(3)学会使用化工设备和仪器进行实验操作。
3.情感态度价值观目标:(1)培养学生的科学精神和创新意识;(2)增强学生对化工行业的认识和兴趣;(3)培养学生关爱生命、关注环保的责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.化工原理的基本概念和理论:包括流体力学、热力学、传质传热等方面的基础知识;2.化工过程的基本计算和分析方法:包括速率定律、平衡定律、质量守恒定律等;3.化工设备的工作原理和操作方法:包括反应器、换热器、分离器等主要化工设备的特点和应用。
具体的教学安排如下:第一章:化工原理概述1.1 化工原理的基本概念1.2 化工原理的研究方法和内容第二章:流体力学基础2.1 流体的性质和流动现象2.2 流体力学的计算和分析方法第三章:热力学基础3.1 热力学基本定律3.2 热力学计算和分析方法第四章:传质传热4.1 传质传热的基本原理4.2 传质传热的计算和分析方法第五章:化工设备及操作5.1 反应器的工作原理和操作方法5.2 换热器的工作原理和操作方法5.3 分离器的工作原理和操作方法三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握化工原理的基本概念和理论;2.讨论法:引导学生通过讨论,深入理解化工原理的知识点;3.案例分析法:通过分析实际案例,使学生学会运用化工原理解决实际问题;4.实验法:让学生亲自动手进行实验,加深对化工设备和工作原理的理解。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的化工原理教材;2.参考书:提供相关的化工原理参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的PPT课件,辅助教学;4.实验设备:准备完善的实验设备,让学生亲身体验化工原理的操作过程。
化工原理课程设计范本
化工原理课程设计范本一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念、原理和应用,能够运用化工原理解决实际问题。
具体分为以下三个部分:1.知识目标:(1)了解化工原理的基本概念和原理;(2)掌握化工过程的基本计算和方法;(3)了解化工原理在工业中的应用。
2.技能目标:(1)能够运用化工原理进行简单的工艺计算;(2)能够分析化工过程中存在的问题,并提出解决方案;(3)能够运用化工原理的知识,进行实验设计和操作。
3.情感态度价值观目标:(1)培养学生对化工原理学科的兴趣和热情;(2)培养学生运用知识解决实际问题的能力;(3)培养学生的创新意识和团队合作精神。
二、教学内容本节课的教学内容主要包括以下三个方面:1.化工原理的基本概念和原理:包括流体流动、传热、传质、反应工程等基本内容;2.化工过程的基本计算和方法:包括流体流动阻力、传热面积、反应速率等基本计算;3.化工原理在工业中的应用:包括化工工艺流程设计、设备选型、操作优化等实际应用。
三、教学方法为了达到本节课的教学目标,我们将采用以下教学方法:1.讲授法:用于讲解化工原理的基本概念、原理和计算方法;2.案例分析法:通过分析实际案例,让学生了解化工原理在工业中的应用;3.实验法:让学生亲自动手进行实验,加深对化工原理的理解和掌握。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:为学生提供化工原理的基本知识和理论;2.参考书:为学生提供化工原理的深入理解和拓展知识;3.多媒体资料:通过视频、图片等形式,为学生提供直观的学习材料;4.实验设备:为学生提供动手实践的机会,加深对化工原理的理解和掌握。
五、教学评估本节课的教学评估将采用多元化评价方式,全面客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评价学生的学习态度和积极性;2.作业:布置与本节课内容相关的作业,评估学生对知识的理解和运用能力;3.考试成绩:通过期末考试或期中考试,评估学生对化工原理知识的掌握程度;4.实验报告:评估学生在实验过程中的操作技能、数据处理和分析能力;5.小组项目:评估学生在团队合作中的沟通协作、问题解决和创新能力。
化工原理课程设计柴诚敬
化工原理课程设计柴诚敬一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本公式,能够运用化工原理解决实际问题。
具体来说,知识目标包括:了解化工原理的基本概念,掌握化工原理的基本公式,理解化工过程的基本原理。
技能目标包括:能够运用化工原理的基本公式进行计算,能够分析化工过程的基本原理,能够解决实际的化工问题。
情感态度价值观目标包括:培养学生的科学思维能力,提高学生对化工行业的认识和理解,激发学生对化工原理的兴趣和热情。
二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本公式和基本原理。
具体来说,教学大纲如下:1.化工原理的基本概念:介绍化工原理的定义、特点和作用。
2.化工原理的基本公式:讲解化工原理的基本公式,包括质量守恒定律、能量守恒定律、动量守恒定律等。
3.化工过程的基本原理:讲解化工过程的基本原理,包括反应原理、传递原理、控制原理等。
三、教学方法为了达到本节课的教学目标,我将采用多种教学方法进行教学。
包括讲授法、案例分析法和实验法。
1.讲授法:通过讲解化工原理的基本概念、基本公式和基本原理,使学生掌握化工原理的基本知识。
2.案例分析法:通过分析实际的化工过程案例,使学生能够运用化工原理解决实际问题。
3.实验法:通过实验操作,使学生能够直观地了解化工过程的基本原理,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我将准备以下教学资源:1.教材:选用《化工原理》作为主教材,为学生提供系统的化工原理知识。
2.参考书:提供相关的化工原理参考书,供学生自主学习。
3.多媒体资料:制作多媒体课件,通过图片、动画等形式,丰富学生的学习体验。
4.实验设备:准备化工原理实验设备,为学生提供实验操作的机会。
五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
化工原理课程设计00(1)
《化工原理》课程设计乙醇—水筛板塔分离设计学院专业班级姓名学号指导教师目录(一) 设计方案的确定 (3)(二) 精馏塔的物料衡算 (4)2.1原料液及塔顶、塔底产品的摩尔分数 (4)2.2 原料液及塔顶、塔底产品的平均摩尔质量 (4)2.3 物料衡算 (4)(三) 塔板数的确定 (4)3.1理论塔板数N T的求取 (4)3.1.1乙醇与水的平均相对挥发度的计算 (4)3.1.2最小回流比及操作回流比计算 (5)3.1.3求精馏塔的气、液相负荷 (5)3.1.4逐板法求塔板数 (5)3. .2实际板层数的求取 (6)(四)精馏塔的工艺条件及有关物性数据的计算 (6)4.1操作压力的计算 (6)4.2操作温度计算 (6)4.3 平均摩尔质量计算 (7)4.4 平均密度计算 (7)4.5 液体片平均表面张力计算 (8)4.6液体平均黏度的计算 (9)(五)精馏塔的塔体工艺尺寸计算 (9)5.1塔径的计算 (9)5.2 精馏塔有效高度的计算 (10)(六)塔板主要工艺尺寸的计算 (11)6.1溢流装置计算 (11)6.1.1堰长l w (11)6.1.2溢流堰高度h w (11)6.1.3弓形降液管宽度W d和截面积A f (11)6.1.4 降液管底隙高度 h0 (11)6.2 塔板布置 (12)6.2.1塔板的分块 (12)6.2.2边缘区宽度确定 (12)6.2.3 开孔区面积的计算 (12)6.2.4 筛孔计算及其排列 (12)(七) 塔板的流体力学验算 (12)7.1 塔板压降 (13)7.1.1 干板阻力hc 计算 (13)7.1.2气体通过液层的阻力h1 计算 (13)7.1.3液体表面张力阻力hσ计算 (13)7.2液面落差 (13)7.3液沫夹带 (13)7.4漏液 (14)7.5 液泛 (14)(八)塔板负荷性能图 (14)8.1漏液线 (14)8.2液沫夹带线 (15)8.3 液相负荷下限线 (15)8.4 液相负荷上限线 (16)8.5 液泛线 (16)(九)精馏塔接管尺寸计算 (17)9.1 塔顶蒸汽出口管径计算 (17)9.2回流液管径计算 (17)9.3加料管径计算 (18)9.4 塔底釜液出口 (18)(十)所设计筛板塔的主要结果汇总如下表 (18)(十一)设计过程的评述和讨论 (19)(一)设计方案的确定本设计任务为分离乙醇—水的混合物。
化工原理课程设计全部
化工原理课程设计全部一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念、原理和应用,培养学生分析和解决化工问题的能力。
具体目标如下:1.知识目标:(1)了解化工原理的基本概念和原理;(2)掌握化工过程中的质量守恒、能量守恒和动量守恒定律;(3)熟悉化工单元操作的基本流程和设备。
2.技能目标:(1)能够运用化工原理分析和解决实际问题;(2)具备化工工艺设计和操作能力;(3)学会使用化工原理相关的计算软件和实验设备。
3.情感态度价值观目标:(1)培养学生对化工行业的兴趣和热情;(2)增强学生的创新意识和团队合作精神;(3)培养学生关注化工领域的发展和社会责任的意识。
二、教学内容本节课的教学内容主要包括以下几个部分:1.化工原理的基本概念和原理;2.化工过程中的质量守恒、能量守恒和动量守恒定律;3.化工单元操作的基本流程和设备;4.化工工艺设计和操作方法;5.化工原理相关的计算软件和实验设备的使用。
6.导论:介绍化工原理的定义、作用和意义;7.质量守恒定律:讲解质量守恒定律的基本原理和应用;8.能量守恒定律:讲解能量守恒定律的基本原理和应用;9.动量守恒定律:讲解动量守恒定律的基本原理和应用;10.化工单元操作:介绍化工单元操作的分类、原理和流程;11.化工工艺设计:讲解化工工艺设计的基本方法和步骤;12.实验操作:介绍化工原理相关的实验设备和操作方法;13.化工原理软件应用:讲解化工原理相关软件的使用方法和技巧。
三、教学方法本节课采用多种教学方法相结合的方式,以激发学生的学习兴趣和主动性:1.讲授法:讲解化工原理的基本概念、原理和应用;2.讨论法:学生进行小组讨论,培养学生的思考和表达能力;3.案例分析法:分析实际化工案例,让学生学会将理论知识应用于实践;4.实验法:学生进行实验操作,培养学生的动手能力和实验技能;5.软件模拟法:利用化工原理相关软件进行模拟操作,让学生更好地理解化工原理。
四、教学资源本节课的教学资源包括以下几个方面:1.教材:选用权威、实用的化工原理教材;2.参考书:提供相关的化工原理参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的PPT、动画和视频,直观地展示化工原理的相关概念和设备;4.实验设备:准备充足的实验设备,保证学生能够进行实验操作;5.化工原理软件:为学生提供化工原理相关软件的使用权限,方便学生进行模拟操作。
大二化工原理课程设计
大二化工原理课程设计一、课程目标知识目标:1. 理解并掌握化工原理的基本概念、原理及方法,如流体力学、热力学、传质和反应工程等。
2. 掌握化工过程中常见单元操作的基本原理,如蒸馏、吸收、萃取、干燥等。
3. 了解化工设备的设计、选型和优化方法,以及化工工艺流程的编制。
技能目标:1. 能够运用化工原理分析和解决实际问题,如进行简单工艺流程的设计、计算和优化。
2. 掌握使用化工软件(如Aspen Plus、HYSYS等)进行模拟和计算,辅助解决化工问题。
3. 培养查阅化工专业文献、资料的能力,提升自主学习及团队合作能力。
情感态度价值观目标:1. 培养学生对化工原理课程的兴趣,激发学习热情,形成积极的学习态度。
2. 增强学生的环保意识,认识到化工生产过程中环保的重要性,培养责任感。
3. 培养学生的创新意识和实践能力,鼓励他们勇于探索、解决实际问题。
本课程针对大二学生,在已有一定化学基础的前提下,进一步深化对化工原理的理解和应用。
课程性质为理论联系实际,注重培养学生的实践能力和工程观念。
教学要求强调理论与实践相结合,通过案例分析和实际操作,使学生更好地掌握化工原理知识,为今后的学习和工作打下坚实基础。
课程目标的设定旨在使学生在知识、技能和情感态度价值观等方面取得全面发展,为化工行业培养高素质的专业人才。
二、教学内容本课程教学内容主要包括以下几部分:1. 化工原理基本概念:流体力学、热力学、传质和反应工程等基础理论。
- 教材章节:第一章 流体力学基础,第二章 热力学基础,第三章 传质过程,第四章 反应工程基础。
2. 常见单元操作原理及设备:蒸馏、吸收、萃取、干燥等单元操作。
- 教材章节:第五章 蒸馏,第六章 吸收,第七章 萃取,第八章 干燥。
3. 化工设备设计与选型:化工设备结构、设计原理、选型方法及优化。
- 教材章节:第九章 化工设备设计基础,第十章 设备的选型与优化。
4. 化工工艺流程编制:工艺流程图绘制、流程计算、流程优化。
化工原理教学课程设计
化工原理教学课程设计一、引言化工原理是化工专业的基础课程之一,对学生的基础知识和技能的培养起着重要作用。
本文旨在设计一门全面且高效的化工原理教学课程,通过理论教学、实验教学、案例分析等方法,帮助学生掌握化工原理的理论知识和实际应用能力,提高学生的学习兴趣和学习效果。
二、教学目标1. 理论学习目标:通过本课程的学习,学生应具备扎实的化工原理基础知识,包括化学反应动力学、质量传递、能量传递、流体力学等方面的知识。
2. 实践学习目标:学生应能够熟练操作化工实验仪器设备,掌握常用实验操作技能,并能够分析和解决实践中的问题。
3. 应用目标:学生应能够将所学的化工原理知识应用于实际工程中,理解化工过程中的原理和规律,具备一定的工程设计和问题解决能力。
三、教学内容和教学方法1. 理论教学内容:(1) 化学反应动力学:化学反应速率和化学平衡,反应动力学和反应速率常数,反应速率和温度的关系等。
(2) 质量传递:质量传递的基本概念,质量传递过程的速度控制因素,质量传递的传递机制等。
(3) 能量传递:热力学基本概念和热力学定律,热传导的基本理论,传热方式与传热设备等。
(4) 流体力学:流体的基本性质,流体流动的基本方程和物理规律,流体传动设备等。
2. 实验教学内容:(1) 基础实验:采用常规实验装置,进行化工原理相关的实验,如酸碱中和反应速率的测定,质量传递过程的实验,热传导实验等。
(2) 设计和创新实验:通过设计实验方案,解决实际问题,培养学生的创新能力和实践能力。
3. 教学方法:(1) 理论部分:采用讲授和互动式教学相结合的方式,引导学生主动学习,理解化工原理的基本概念和原理。
(2) 实验部分:注重实践操作,引导学生进行实验操作和数据处理,培养学生的动手能力和实验思维能力。
(3) 案例分析:通过真实的案例分析,帮助学生将理论知识应用于实际工程问题的解决,并培养学生的问题分析和解决能力。
四、教学评估和成绩评定1. 理论部分评估:通过平时作业、课堂互动和小测验等形式进行评估,占总评成绩的30%。
化工原理教学设计样例
化工原理教学设计样例第一部分:课程简介《化工原理教学设计样例》是一门旨在系统性地介绍化工原理的课程。
通过深入的理论讲解和丰富的实例分析,本课程旨在帮助学生建立对化工原理的扎实理解和应用能力,为他们今后的学习和工作打下坚实基础。
第二部分:教学目标本课程的教学目标包括:1. 理解化工原理的基本概念和理论框架;2. 掌握化工过程的基本原理和热力学、动力学等方面的知识;3. 能够应用化工原理的知识解决实际问题;4. 提高学生的创新能力和团队合作能力;第三部分:教学内容与方法1. 教学内容:本课程的主要内容包括但不限于:(1) 化工原理基本概念;(2) 化工热力学;(3) 化工动力学;(4) 化工传质过程;(5) 化工反应工程基础;(6) 化工流程模拟与优化;2. 教学方法:(1) 理论讲授:通过课堂授课,系统性地讲解化工原理的基本理论和概念,引导学生建立牢固的理论基础;(2) 实例分析:通过真实的案例分析,让学生了解化工原理在实际应用中的具体情况,培养学生的问题解决能力;(3) 实验操作:进行化工原理相关的实验操作,让学生通过亲自动手来观察和实践,加深对化工原理的理解;(4) 讨论交流:组织学生就特定的化工原理问题展开讨论,激发学生的思维,培养他们的团队合作能力。
第四部分:教学评价方式评价方式包括但不限于:1. 日常表现:包括出勤情况、课堂参与度等;2. 作业与实验报告:对学生的作业和实验报告进行评价;3. 期中、期末考试:进行笔试、实验操作等形式的考核;4. 课程设计:组织学生进行化工原理相关的课程设计,综合考察学生的综合能力。
第五部分:课程设置为了达到以上的教学目标,本课程设置如下:1. 第一章:化工原理基本概念2. 第二章:化工热力学3. 第三章:化工动力学4. 第四章:化工传质过程5. 第五章:化工反应工程基础6. 第六章:化工流程模拟与优化第六部分:总结《化工原理教学设计样例》旨在通过系统、全面的教学安排,引导学生深入理解化工原理的核心概念和方法,培养其分析问题、解决问题的能力,为今后的学习和工作奠定坚实基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计1南京工业大学《材料工程基础》课程设计设计题目:列管式换热器设计——专业:高分子材料与工程班级学号:姓名:日期: 2012年6月 18日——6月29日指导教师:叶旭初设计成绩:日期: 6月29日目录设计任务书 (3)一设计题目 (3)二设计任务及操作条件 (3)三设计要求及内容 (3)第1章设计方案简介 (4)1.1 概述 (4)1.2 方案设计和拟定 (5)1.3 确定设计原则 (7)第2章固定式换热器的设计计算 (7)2.1 设计计算基本步骤 (7)2.2 确定列管换热器的形式 (8)2.3 初选换热器规格 (9)第3章列管式换热器的设计校核 (11)3.1 换热器核算 (11)3.2 换热器压强降核算 (13)第4章辅助设备的计算与选择 (15)4.1折流板 (15)4.2 接管 (18)4.3 壁厚的确定、封头 (18)4.4.管板 (20)4.5换热管 (21)4.6分程隔板 (22)4.7拉杆 (23)4.8换热管与管板的连接 (24)4.9 防冲板或导流筒的选择、鞍式支座的示意图(BI型) (25)4.10膨胀节的设定讨论 (26)4.11换热器设计主要结构尺寸一览表 (26)第5章附图 (28)4.1 工艺流程图 (28)4.2 主体设备工艺图 (28)第6章设计小结 (29)参考文献 (30)列管式换热器设计任务书(一)设计题目列管式换热器设计——(二)设计任务及操作条件1、处理能力列管式换热器设计——2、设备型式列管式换热器3、操作条件(1)釜残液:硫酸混合液,入口温度20℃,出口温度80℃(2)加热介质:蒸汽,入口温度120℃,出口温度100℃(3)换热器的管程和壳程压强降:不大于0.4M Pa(4)重油平均温度下的物性参数:(三)设计要求及内容(1)根据换热任务和有关要求确认设计方案(2)初步确认换热器的结构和尺寸(3)核算换热器的传热面积和管,壳程流体阻力(4)确认换热器的工艺结构(5)绘制列管式换热器的工艺流程图及主体设备工艺图列管式换热器设计说明书第1章设计方案简介1.1 概述列管式换热器是目前应用最广泛的一种换热设备,设计资料和数据比较完善,目前在许多国家已有系列化标准,列管式换热器在换热效率,紧凑型性和金属消耗等方面不及其他新型换热器,但由于它有结构牢靠,使用性大,材料广泛等独特特点,因而在各种换热器的竞争中占有绝对优势1.1.1列管式换热器的优点列管式换热器列管式换热器又称管壳式换热器,是目前石油化工生产中应用最广泛的一种换热器。
它与其它换热器相比,主要优点是单位体积所具有的传热面积大,传热效果好,结构比较简单,处理能力大,适应性强,操作弹性大,尤其在高温、高压和大型装置中应用更为普遍。
1.1.2 列管式换热器种类列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:浮头式换热器、固定式换热器、U型管换热器、填料式换热器等。
1)浮头式换热器(代号F)浮头式换热器两端的管板,一端不与壳体相连,该端称为浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。
图1 浮头式列管换热器1—管程隔板;2—壳程隔板;3—浮头浮头式换热器的特点是一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动。
这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。
其缺点是结构复杂,造价高,在运行中浮头处发生泄漏,不易处理。
浮头式换热器是适用于壳体和管束温差较大或壳程介质易结垢的条件。
2)固定管板式换热器(代号G)固定管板式换热器的两端管板和壳体制成一体,当两流体的温度相差较大时,在外壳的适当位置上焊上一个补偿圈。
当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性形变来补偿因温差应力而引起的热膨胀。
固定管板式换热器主要由外壳、管板、管束、封头压盖等部件组成。
结构特点是在壳体上设置管束,管束两端用焊接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头用螺栓紧固,管束内根据换热管的长度设置了若干块折流板。
这种换热器管程可以用隔板分成任何程数。
这类换热器的结构比较简单、紧凑、造价便宜,但壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。
固定板式换热器的优点可归结为:①旁路渗流较小。
②造价低。
③无内漏。
缺点是壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。
3)U型管式换热器(代号Y)这类换热器只有一个管板,管程至少两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。
4)填料式换热器这类换热器管束一断可以自由膨胀,结构比浮头式换热器简单,造价也较低。
但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。
1.2方案设计和拟定1.2.1 流体流经管程或壳程的选择原则(1)不清洁或易结垢的流体宜走容易清洗的一侧。
对于直管管束,宜走管程;对于U 形管管束,宜走壳程。
(2)腐蚀性流体宜走管程,以免壳体和管束同时被腐蚀。
(3)压力高的流体宜走管程,以避免制造较厚的壳体。
(4)为增大对流传热系数,需要提高流速的流体宜走管程,因管程流通截面积一般比壳程的小,且做成多管程也叫容易。
(5)两流体温差较大时,对于固定管板式换热器,宜将对流传热系数大的流体走壳程,以减小管壁和壳体的温差,减小热应力。
(6)蒸汽冷凝宜在壳程,以减小排除冷凝液。
(7)需要冷却的流体宜选壳程,便于散热,以减少冷却剂用量。
但是温度很高的流体,其热能可以利用,宜选管程,以减少热损失。
(8)黏度大或者流量较小的流体宜走壳程,因有折流挡板的作用,在低Re下(Re>100)即可达到湍流。
以上原则中,可能有时是相互矛盾的,在实际使用中不能同时满足要求。
所以,在实际的设计中,应该认真调查研究,对具体情况做出具体分析,抓住主要方面进行设计。
1.2.2 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
下表为列管式换热器内的适宜流速范围:下表为不同粘度的流体流速范围(以普通钢管为例):1.2.3 选择列管式换热器的类型两流体温度变化情况,冷流体进口温度20℃,出口温度80℃;蒸汽进口温度120℃,出口温度接近100℃,该换热器用蒸汽来加热混合液,考虑到清洗等各方面的因素,初步确定为固定式的列管式换热器。
1.2.4 换热器材质的选择对于列管式换热器,首先根据换热流体的腐蚀性或其他特性选择其结构材料,同时具有耐热性、高强度、及耐腐蚀性的材料很少。
目前常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等,金属材料有石墨、聚四氟乙烯和玻璃等。
不锈钢和有色金属虽然抗腐蚀性能好,但价格高且稀缺,尽量少用,本次设计中采用的材料为不锈钢。
1.2.5 流动空间及管子规格及排列方法对一定的传热面积而言,传热管径越小,换热器单位体积的传热面积越大。
对清洁的流体,管径可取小些,而对粘度较大或易结垢的流体,考虑灌输的清洁方便或避免管子堵塞,管径可取大些。
目前我国试行的系列标准中,管径有φ19mm ×2mm 、φ25mm ×2mm 和φ25mm ×2.5mm 等规格。
管板上管子的排列方法常用的有等边三角形、正方形直列和正方形错列等。
1.2.6 壳体有圆缺形折流挡板时对流传热系数的计算对关外装有切去25%(直径)的圆缺形折流挡板时,可用图4-53求取对流传热系数。
当Re >10000时,用下式计算比较简便0.8=0.023()()p n C du d λραμλ流体被加热时,n=0.4:流体被冷却,n=0.3蒸汽在水平管外冷凝的对流传热系数231/42/30=0.725()g r n d t ρλαμ管子的当量直径管子正方形排列时,()0202/44d d t d e ππ⎪⎭⎫ ⎝⎛-= 管子正三角形排列时,()0202/4234d d t d e ππ⎪⎪⎭⎫ ⎝⎛-=1.2.7管程和壳程数的确定当流体的流量较小或传热面积较大而需管数较多时,有时会使管内流速变低,因而对流传热系数较小,为了提高管内流速,可采用多管程。
但是程数过多,导致管程流体阻力加大,增加动力费用,同时多程会使平均温度差下降,使管板上可利用得面积减少,设计时应全面考虑。
列管式换热器的系列标准中的管程数有1、2、4和6程等四种。
采用多程时,通常应使每程的管子数大致相等。
第2章 列管式换热器的设计计算2.1 设计计算基本步骤列管式换热器的尺寸与其结构形式有关,步骤大概如下:① 确定流体两端温度,选择列管式换热器的形式;② 换热器的热负荷计算;③ 确定流体的流动途径,计算定性温度,确定物性数据;④ 计算平均温差,如果温差校正系数ψ﹤0.8,应增加ψ值,使其不小于0.8; ⑤ 依据生产实际情况或经验之范围,选择合适的总传热系数K ;⑥ 初估传热面积;⑦ 选择管子尺寸(管子直径);⑧ 计算管子数和管长,对管子进行排列,确定壳体直径;⑨ 根据管长与壳体直径的比值,确定管程数;⑩ 计算管程和壳程压力降,若压力降不符合要求,调整流速,再确定管程数或折流板的间距,或选择另一个规格的换热器,重新计算压力降直至满足要求为止; ○11 计算管程和壳程的对流传热系数,确定污垢热阻,计算得到总传热系数K ’,比较初设值K 与计算值K ’,若K ∕K` =1.15~1.25,则初选或初步设计的换热器合适;如果不满足上述要求,用计算值代替初设值,从步骤6起,重复以上计算,直至满足要求为止。
2.2 确定列管换热器的形式2.2.1 确定流体通入空间混合液走壳程,蒸汽走管程2.2.2 确定流体的定性温度、物性数据:可取流体进出口温度的平均值 T 1=120℃,T 2=100℃;t 1=20℃,t 2=-80℃壳程油的定性温度为 20+80==502t C ︒管程流体水的定性温度为120+100==1102T C ︒ 两流体温差 =110-50=60T t C -︒由于两流体温差较大,故选用固定式列管换热器。
根据定性温度,分别查取壳程和管程流体的有关物性数据如下:2.3 初选换热器规格2.3.1 计算热负荷Q362p2218000==3.9971060=1.2103600m Q q C T W ⨯⨯⨯⨯忽略换热器的热损失,水的流量可由热量衡算求得,即6m16312 1.210q ===0.524/r+C (T -T ) 2.20510+4.23310(120-100)p s Q kg s ⨯⨯⨯⨯2.3.2 平均对数温度差逆流时有 蒸汽: 120℃ → 100℃混合液: 80℃ ← 20℃ 逆流温差为:1212t -t 80-40===57.7t 80ln ln40t m t C ︒逆其中Δt 1=T 1-t 2,Δt 2=T 2-t 1 2.3.3 计算平均传热温差、校正系数平均温差为:2111t -t 60==0.6-t 100P T =122120===0.33t t 60T T R --按单壳程,偶数管程结构,查温差校正系数查有关图表得,=0.950.8ψ>,故可选用单壳程的固定换热器。