吸附剂一般有以下特点

合集下载

吸附剂

吸附剂

吸附剂2009-02-22 23:16虽然吸附现象早已为人们发现和熟知,但是作为工业上应用则是近几十年的事情。

从理论上讲,固体物质的表面对于流体都具有一定的物理吸附作用,但要达到工业上的使用要求,还需要有一个选择与评价的问题,这是吸附操作中首先要解决的问题。

1.对工业吸附剂的要求(1)要有巨大的内表面积和大的孔隙率也就是说,吸附剂必须是具有高度疏松结构和巨大暴露表面的多孔物质。

只有这样,才能给吸附提供很大的表面。

吸附剂的有效表面包括颗粒的外表面和内表面,而内表面总是比外表面大得多,例如硅胶的内表面高达600m2/g,活性炭的内表面可高达1000m2/g。

这些内部孔道通常都很小,有的宽度只有几个分子的直径,但数量极大,这是由吸附剂的孔隙率决定的。

因此,要求吸附剂要有很大的孔隙率。

除此之外,还要求吸附剂具有合适的孔隙和分布合理的孔径,以便吸附质分子能到达所有的内表面而被吸附。

(2)对不同的气体要具有选择性的吸附作用工业上应用吸附剂的目的,就是为了对某些气体组分有选择地吸附,从而达到分离气体混合物的目的。

因此要求所选的吸附剂对所要吸附的气体具有很高的选择性。

例如活性炭吸附二氧化硫(或氨)的能力,远大于吸附空气的能力,故活性炭能从空气与二氧化硫(或氨)的混合气体中优先吸附二氧化硫(或氨),达到净化废气的目的。

(3)吸附容量要大吸附剂的吸附容量是指一定温度下,对于一定的吸附质浓度,单位质量(或体积)的吸附剂所能吸附的最大吸附质质量。

吸附容量大小的影响因素很多,它包括吸附剂的表面大小,孔隙率大小和孔径分布的合理性,还与分子的极性以及吸附剂分子上官能团的性质有关。

(4)要有足够的机械强度和热稳定性及化学稳定性吸附剂是在湿度、温度和压力条件变化的情况下工作的,这就要求吸附剂有足够的机械强度和热稳定性,对于用来吸附腐蚀性气体时,还要求吸附剂有较高的化学稳定性。

当采用流化床吸附装置时,对吸附剂的机械强度要求更高,主要原因是在流化状态下运行,吸附剂的磨损大。

有机废气净化(溶剂回收)技术---活性炭纤维吸附回收技术d

有机废气净化(溶剂回收)技术---活性炭纤维吸附回收技术d

有机废气净化(溶剂回收)技术---活性炭纤维吸附回收技术一、吸附原理吸附剂具有高度发达的孔隙构造,其中有一种被叫做毛细管的小孔,毛细管具有很强的吸附能力,同样发达的孔隙构造也意味着吸附剂有着很大的表面积,使气体(杂质)能与毛细管充分接触,从而被毛细管吸附。

当一个分子被毛细管吸附后,由于分子之间存在相互吸引力的原因,会导致更多的分子不断被吸引,直到添满毛细管为止。

必须指出的是,不是所有的微孔都能吸附有害气体,这些被吸附的杂质的分子直径必须是要小于活性炭的孔径,即只有当孔隙结构略大于有害气体分子的直径,能够让有害气体分子完全进入的情况下才能保证杂质被吸附到孔径中,过大或过小都不行。

所以需要通过不断地改变原材料和活化条件来创造具有不同的孔径结构的吸附剂,从而适用于各种杂质吸附的应用。

吸附剂在活化过程中,巨大的表面积和复杂的孔隙结构逐渐形成,吸附剂的孔隙的半径大小可分为:大孔半径>20000nm;过渡孔半径150~20000nm;微孔半径<150nm。

二、吸附剂活性炭是一种含碳材料制成的外观呈黑色,内部孔隙结构发达,比表面积大、吸附能力强的一类微晶质碳素材料,是一种常见的吸附剂、催化剂或催化剂载体。

活性碳分为粒状活性碳、粉末活性碳及活性碳纤维,但是由于粉末活性碳有二次污染且不能再生而被限制利用。

粒状活性碳(GAC-granular activated carbon)一般为直径在0.42 -0.85毫米之间的圆柱状颗粒,理论上讲粒状活性炭产品颗粒越小,接触空气面积就越大,比表面积也越大,吸附性能就越好,但是颗粒越小,粉碎制作过程中损耗也越大,粉尘也越多,成本也就越高,所以很多厂家为降低成本,使用大颗粒活性炭,性能当然不好,一般颗粒大小在0.5毫米左右的活性炭既达到了最佳性能,又确保不是粉末,没有污染。

GAC的孔结构一般是具有三分散态的孔分布,既具有按IUPAC(International Union of Pure and Applied Chemistry)分类的孔径大于50nm的大孔,也有2.0~50nm的中孔(过渡孔)和小于2.0nm的微孔。

吸附影响因素

吸附影响因素

吸附影响因素
1、吸附剂的性质
吸附剂的种类不同,吸附效果不同。

一般是极性分子(或离子)型的吸附剂容易吸附极性分子(或离子)型的吸附质,非极性分子型的吸附剂容易吸附非极性分子的吸附质。

由于吸附作用是发生在吸附剂的内外表面上,所以吸附剂的比表面积越大,吸附能力就越强。

另外,吸附剂的颗粒大小、孔隙构造和分布情况,以及表面化学特性等,对吸附也有很大的影响。

2、吸附质的性质
如果吸附质是有机物,其分子尺寸越小,吸附反应就进行得越快;极性的吸附剂容易吸附极性的吸附质,非极性的吸附剂容易吸附非极性的吸附质。

3、温度
吸附反应通常是放热的,因此温度越低对吸附越有利。

4、共存物的影响
当多种吸附质共存时,吸附剂对其中一种吸附质的吸附能力要比只含这种吸附质时的吸附能力低。

悬浮物会阻塞吸附剂的孔隙,油类物质会浓集于吸附剂的表面形成油膜,它们均对吸附有很大影响。

因此在吸附操作之前,必须将它们除去。

5、时间
吸附质与吸附剂要有足够的接触时间,才能达到吸附平衡。

平衡所需时}间取决于吸附速度,吸附速度越快,达到平衡所需时间越短。

吸附剂的类型与选择

吸附剂的类型与选择

吸附剂的类型与选择吸附剂是一种可以吸附水分、有机物、气体等有害物质的材料。

在工业、环境保护、农业等领域中,吸附剂的应用越来越广泛。

选择合适的吸附剂对于工艺效果和成本控制具有重要意义。

下面介绍吸附剂的类型和选择。

一、吸附剂的类型1. 活性炭活性炭是一种非常常见的吸附剂,它可以吸附气体和液体中的有机物质和沉淀颗粒。

活性炭的表面积较大,能够提供更多的吸附反应位点。

一般来说,活性炭的吸附能力比较强,但是成本较高。

2. 分子筛分子筛是由特殊的化学成分制成的材料,其结构像是一个三维网状的晶体。

分子筛的孔径很小,一般在0.3至10纳米之间,能够选择性地吸附分子大小符合其孔径大小的有机物质和气体。

3. 硅胶硅胶是由硅酸盐等化合物制成的材料,具有很强的吸湿性,在干燥剂和除湿剂等方面有广泛应用。

4. 活性白土活性白土是由天然白土和酸等化物混合而成的材料,具有很好的吸附能力。

由于其成本较低,是一种常用的吸附剂。

5. 硅酸钠硅酸钠是一种无机盐,常常用作吸附剂和填料。

二、吸附剂的选择1.吸附物质的性质吸附剂的选择需要考虑吸附物质的性质,如分子大小、极性、电荷等特性。

不同的吸附剂选择会有不同的适用物质范围,需要根据实际情况进行选择。

2.吸附剂的成本不同的吸附剂成本不同,需要根据实际情况选择合适的吸附剂。

3.材料的可再生性一些吸附剂,如活性炭和分子筛,可以通过再生循环使用,具有较好的经济性。

因此,在需要长期使用吸附剂的应用场景中,可再生性是重要考虑因素之一。

4.吸附剂的容量和反应速率不同的吸附剂的吸附容量和反应速率不同,需要根据实际需要进行选择。

5.重金属污染的处理在重金属污染的处理中,需要选择具有选择性吸附特性的吸附剂,如离子交换树脂。

吸附剂的选择需要考虑吸附物质的特性、成本、可再生性、容量和反应速率以及重金属污染处理等方面,选择合适的吸附剂可以提高工艺效果并控制成本。

吸附和溶解知识点总结

吸附和溶解知识点总结

吸附和溶解知识点总结一、吸附的概念及分类1. 吸附的概念吸附是指气体、液体或溶液中的分子或离子在接触到固体表面后,由于表面的吸附作用而附着在固体表面上的过程。

吸附分为物理吸附和化学吸附两种类型。

2. 物理吸附物理吸附是指吸附物在吸附表面上的分子之间通过范德华力而发生的现象。

物理吸附一般发生在低温下,吸附物与吸附剂之间的作用力较弱,吸附物可以在吸附剂表面上自由移动。

3. 化学吸附化学吸附是指吸附物在吸附表面上与吸附剂发生化学反应而发生的现象。

化学吸附一般发生在高温下,吸附物与吸附剂之间的作用力较强,吸附物难以在吸附剂表面上移动。

二、吸附的影响因素1. 温度温度对吸附过程有着明显的影响。

一般情况下,物理吸附随着温度的升高而减弱,而化学吸附则随着温度的升高而增强。

2. 吸附剂的性质吸附剂的种类、表面积、颗粒大小以及孔隙结构都会影响吸附过程的效果。

通常来说,表面积大、孔隙多的吸附剂对吸附效果更好。

3. 吸附物的性质吸附物的分子大小、形状、极性以及浓度都会对吸附过程产生影响。

4. 溶液的性质溶液的pH值、离子浓度、溶液颜色等因素都会对吸附过程产生影响。

三、溶解的概念及分类1. 溶解的概念溶解是指固体、液体或气体在液体中形成溶液的过程。

溶解分为溶解度、溶解过程和溶解热。

2. 溶解度溶解度是指在特定温度下,单位体积溶剂中最大能溶解的溶质的量。

溶解度与温度、压强等因素有关。

3. 溶解过程溶解过程包括固体、液体或气体在液体中形成溶解过程。

液体和气体的溶解过程一般通过溶解度来描述,而固体的溶解过程通常通过溶解速率来描述。

4. 溶解热溶解热是指溶质在溶剂中溶解时所伴随产生或吸收的热量。

溶解热的大小与溶质、溶剂的性质、溶解度、温度等因素有关。

四、溶解的影响因素1. 温度温度对溶解度和溶解过程有着显著的影响。

一般来说,溶解度随着温度的升高而增大,而溶解过程也会随着温度的升高而加快。

2. 压力对于气体溶解,压力对溶解度有着重要的影响。

天然药物化学作业

天然药物化学作业

天然药物化学作业《天然药物化学》>作业系统>答题第一次作业:1、有效成分和无效成分的区别与联系?试举例说明。

有效成分是指具有医疗效用或生理活性的单体化合物,能用分子式和结构式表示,并具有一定的物理常数。

常见的有效成分主要有:生物碱类、糖苷类、萜类挥发油、黄酮类、醌类等。

如果尚未提纯而得到的是一个混合物,但是在药理和临床上有效则称为"有效部分”或"有效部位”。

无效成分是指相对某一疾病而显无效的化学成分,如糖类、蛋白、油脂等。

无效成分又叫做杂质,可分为水溶性杂质和脂溶性杂质。

有效成分和无效成分的划分不是绝对的。

例如鞣质:在多数中药中为无效成分,但在地榆、五倍子等中则被认为是有效成分,具有抗菌、收敛的作用。

过去认为无效的成分,如多糖、蛋白质等,目前通过研究发现蘑菇多糖、天花粉蛋白质等具有重要的医药功能,而成为有效成分。

2、说出一级代谢产物和二级代谢产物的区别,每类产物举三例。

一级代谢物:生物体为了维持正常生存所产生的产物,每种生物都含有的,包括糖类、蛋白质、脂类、核酸等。

二级代谢物是生物体通过各自特殊代谢途径产生,反映科、属、种的特性物质,不是每种中药都有。

二级代谢产物往往有特殊活性。

如:糖和苷、苯丙素类、生物碱类、糖苷类、萜类挥发油、黄酮类、三萜、甾体及醌类等。

3、溶剂提取法的基本原理及影响提取的因素1)、基本原理利用药材中各种化学成分在不同极性溶剂中溶解性的不同,选择与有效成分能相互溶解,而对无效成分及其它成分溶解度小的溶剂,将有效成分从中药药材组织中尽可能的溶解出来的方法。

2)、影响因素:药材的粉碎度:药材粉碎越细、总表面积越大,接触越充分,提取效率越高。

温度:一般温度越高,溶解度越大,扩散速度加快,有利于提取。

浓度差:粉碎后的药材颗粒界面内外,提取溶剂的中有效成分的浓度差越高,提取效率越大。

最好的增大浓度差的方法是:搅拌、换溶剂、渗漉。

时间:提取需要时间,但却不是越长越好。

吸附剂

吸附剂

吸附剂(吸收剂)用以选择性吸附气体或液体混合物中某些组分的多孔性固体物质称吸附剂。

吸附剂通常制成球形、圆柱形或无定形的颗粒或粉末。

优良吸附剂应具有的特性主要是单位质量吸附剂具有较大的表面积,对吸附质具有较大的吸附能力(即平衡吸附量大)。

并且具有良好的选择性,即能优先吸附混合物中某些组分。

此外,还要求容易再生(即平衡吸附量对温度或压力的变化敏感),具有足够的强度和耐磨性等。

常用的吸附剂有:①活性白土、硅藻土等天然物质。

常用于油品和糖液的脱色精制;②活性炭。

由各种含炭物质经炭化和活化处理而成,耐酸碱但不耐高温,吸附性能良好,多用于气体或液体的除臭、脱色、以及溶剂蒸气回收和低分子烃类的分离;③硅胶。

由硅酸钠水溶液脱钠离子制成的坚硬多孔的凝胶颗粒,能大量吸收水分,吸附非极性物质量很少,常用于气体或有机溶剂的干燥以及石油制品的精制;④活性氧化铝。

由氧化铝的水合物加热脱水制成的多孔凝胶和晶体的混合物,常用于气体和有机物的干燥;⑤合成沸石。

又称分子筛,人工合成的硅铝酸盐,具有均匀的孔径,热稳定性高,选择性好,用于气体和有机溶剂的干燥及石油馏分的吸附分离等;⑥合成树脂。

具有巨型网状结构,常用的有非极性树脂,如苯乙烯-二乙烯基苯共聚体;极性树脂,如聚甲基丙烯酸酯,用于废水处理、维生素的分离、药剂的脱色和净制等。

1、吸附分离应用背景:吸附操作在化工、轻工、炼油、冶金和环保等领域都有着广泛的应用。

如气体中水分的脱除,溶剂的回收,水溶液或有机溶液的脱色、脱臭,有机烷烃的分离,芳烃的精制等。

2、吸附的定义及概念:固体物质表面对气体或液体分子的吸着现象称为吸附。

其中被吸附的物质称为吸附质,固体物质称为吸附剂。

3、吸附机理的分类:根据吸附质和吸附剂之间吸附力的不同,吸附操作分为物理吸附与化学吸附两大类。

⑴、物理吸附或称范德华吸附:它是吸附剂分子与吸附质分子间吸引力作用的结果,因其分子间结合力较弱,故容易脱附,如固体和气体之间的分子引力大于气体内部分子之间的引力,气体就会凝结在固体表面上,吸附过程达到平衡时,吸附在吸附剂上的吸附质的蒸汽压应等于其在气相中的分压。

9界面吸附过程热力学教学全解

9界面吸附过程热力学教学全解

采用Gibbs界面模型, dV 0
简化为
p( )
p( )
dAS dV ( )
如果界面是平面
dAS dV ( )
0
p( ) p( ) 0
43
如果界面是曲面,假设相是半径为r的液相
dAS dV ( )
2 r
p( ) p( ) 2 / r Laplace公式
平衡时每一组分在各相的化学位相等,各相温度相等, 而界面两侧的压力符合Laplace公式。
H ( )
S ( )
35
界面化学位
根据热力学基本方程式
dG
(
t
)
S
(
t
)dT
V
(
t
)d
p
d
AS
(
i
)
dn
(
i
)
i
i S
G
( i
)
G
( t
)
n
( i
)
T
,
p,
,
n
( ) j[i]
( i
)
A S,i
组分i界面化学位
组分i偏摩尔界面表面积
界面相中组分i的 化学位
A
S,i
AS
n
(
i
)
T , p , ,n36(j[ i)]
20
Langmuir 与 Freundlich方程
Freundlich
q
Langmuir
p
21
水中乙醇在分子筛 上的吸附等温线
Langmuir
水中乙醇在活性炭上的吸 附等温线
Freundlich
22
(3) Langmuir -Freundlich方程

吸附原理及应用

吸附原理及应用
实验证实: XAD-2上吸附,pH3~7吸附量都一 样;
头孢菌素 两性物质,应在什么条件下吸附? pK1=2.6(羧基);pK2=3.3 (羧基) ;pK3=9.8
(氨基)
大孔吸附剂解吸条件
1. 选择洗脱剂原那么
a. 洗脱剂应容易溶胀大网格吸附剂。
–溶质对聚合物的溶胀才能可用溶解度参数δ来表征。
溶剂 2-丁酮 2-丙酮 丁醇 丙醇 乙醇 甲醇 水 δ 19.0 20.4 23.3 24.3 25.9 29.6 47.3
吸附剂通常应具备以下特征: 外表积大、颗粒均匀、 对被别离的物质具有较强的
吸附才能 有较高的吸附选择性 机械强度高 常再用的生吸容附剂易有、极性性的能和稳非极定性的两种。 价格低廉。
几种常用的吸附剂
按其化学构造可分为有 有机吸附剂 无机吸附剂
有机吸附剂有活性炭、球性炭化树脂、聚酰 胺、纤维素、大孔树脂等;
大孔吸附树脂
分 类
1. 非极性大孔吸附树脂 2. 中等极性大孔吸附树脂 3. 极性大孔吸附树脂
大孔吸附树脂
非极性大孔吸附树脂
苯乙烯--------二乙烯苯
交联、聚合
大孔吸附树脂
中极性大孔吸附树脂
单体 甲基丙烯酸酯
大孔吸附树脂
极性大孔吸附树脂 (硫氧基、酰胺、N-O基、磺酸基)
酰胺基团 硫氧基团 N-O基团
图21-1界面上分子和内部分子所受的力
吸附过程理论根底
吸附的类型
〔1〕 物理吸附: 放热小,可逆,单分子层或多 分子层,选择性差
〔2〕 化学吸附: 放热量大,单分子层,选择性 强
〔3〕 交换吸附: 吸附剂吸附后同时放出等量的 离子到溶液中
吸附过程理论根底
吸附过程理论根底

吸氢机的制氢原理

吸氢机的制氢原理

吸氢机的制氢原理
吸氢机是一种利用吸附材料吸附氢气,然后通过热解或气体分离将氢气释放出来的设备。

其制氢原理一般包括以下几个步骤:
1. 吸附:吸氢机内部设置吸附剂,常用的吸附剂有金属有机骨架材料(MOF)、多孔材料、分子筛等。

这些吸附剂的特点是具有较高的表面积和孔隙结构,能够吸附大量的氢气分子。

2. 吸附剂再生:当吸附剂吸附了一定量的氢气后,需要进行再生。

再生的方法通常有两种:热解和气体分离。

热解是将吸附剂加热至一定温度,使吸附剂内部的氢气分子解离并释放出来。

气体分离是将吸附剂暴露在低压气体中,通过压力差使吸附在吸附剂上的氢气与气体分离。

3. 收集:释放出的氢气通过吸附机内部的管道系统被收集起来,并送入储氢容器中。

在整个制氢过程中,吸附剂的选择和再生方法的设计很重要,它们直接影响到吸附机的制氢效率和稳定性。

另外,制氢过程中的温度、压力和气体流量等参数也需要进行合理控制,以确保制氢的效果和安全性。

吸附剂的类型及性质

吸附剂的类型及性质

吸附剂的种类与性质常用的吸附剂有硅胶、氧化铝、活性炭、聚酰胺等。

(1) 硅胶:是一种酸性吸附剂,适用于中性或酸性成分的柱色谱。

同时硅胶又是一种弱酸性阳离子交换剂,其表面上的硅醇基能释放弱酸性的氢离子,当遇到较强的碱性化合物,则可因离子交换反应而吸附碱性化合物。

硅胶作为吸附剂有较大的吸附容量,分离范围广,能用于极性和非极性化合物的分离,如有机酸、挥发油、蒽醌、黄酮、氨基酸、皂苷等,但不宜分离碱性物质。

天然物中存在的各类成分大都用硅胶进行分离。

(2) 氧化铝:有碱性氧化铝、中性氧化铝和酸性氧化铝。

①碱性氧化铝,因其中混有碳酸钠等成分而带有碱性,对于分离一些碱性成分,如生物碱类的分离颇为理想,但是碱性氧化铝不宜用于醛、酮、酯、内酯等类型的化合物分离,因为有时碱性氧化铝可与上述成分发生次级反应,如异构化、氧化、消除反应等。

②中性氧化铝是由碱性氧化铝除去氧化铝中碱性杂质再用水冲洗至中性得到的产物。

中性氧化铝仍属于碱性吸附剂的范畴,不适用于酸性成分的分离。

③酸性氧化铝是氧化铝用稀硝酸或稀盐酸处理得到的产物,不仅中和了氧化铝中含有的碱性杂质,并使氧化铝颗粒表面带有NO3-或Cl-的阴离子,从而具有离子交换剂的性质,酸性氧化铝适合于酸性成分的柱色谱。

(3) 活性炭:是使用较多的一种非极性吸附剂。

一般需要先用稀盐酸洗涤,其次用乙醇洗,再用水洗净,于80℃干燥后即可供柱色谱用。

柱色谱用的活性炭,最好选用颗粒活性炭,若为活性炭细粉,则需加入适量硅藻土作为助滤剂一并装柱,以免流速太慢。

活性炭是非极性吸附剂,其吸附作用与硅胶和氧化铝相反,对非极性物质具有较强的亲和能力,在水溶液中吸附力最强,在有机溶剂中较弱,因此水的洗脱能力最弱而有机溶剂较强。

从活性炭上洗脱被吸附物质时,溶剂的极性减小,活性炭对溶质的吸附能力也随之减小,洗脱剂的洗脱能力增强。

主要分离水溶性成分,如氨基酸、糖、苷等。

(4) 聚酰胺:商品聚酰胺(polyamice) 均为高分子聚合物质,不溶于水、甲醇、乙醇、乙醚、氯仿及丙酮等常用有机溶剂,对碱较稳定,对酸尤其是无机酸稳定性较差,可溶于浓盐酸、冰醋酸及甲酸。

Ch8-9 吸附法与离子交换法

Ch8-9 吸附法与离子交换法

稳定 洗涤要水解 需过量的 强酸 快
再生
交换速度
很容易 慢(除非离 子化后)
需要过量 再生容易,可用 的强碱 碳酸钠或氨 快 慢(除非离子化后)
二、离子交换树脂的理化性能和测定方法:
1.外观和粒度(颗粒度);P107 2.机械强度(不破损率%) 3.含水量;P108 4.总交换容量*** 5.滴定曲线:P108

红霉素的分离纯化

SOD的分离纯化
其他类型的吸附 P153


疏水作用吸附 盐析吸附 亲和吸附 染料配位体吸附 免疫吸附 固定金属亲和吸附 羟基磷灰石吸附
本章小结: 重点: 难点;

1 .有哪几种吸附等温线,各有何特点? 2.大孔网格聚合物吸附剂的吸附机理 如何?
第九章 离子交换法
吸附与离子交换
第八章
吸附法
吸附法是利用适当的吸附剂,在一定 的 pH 条件下,使发酵液中的产物被吸附, 然后再适当的洗脱将吸附的产品从吸附剂 上解吸下来,达到浓缩和提纯的目的。这 样的提取方法称为吸附法。 应用:
还可以用于蛋白质、核酸、酶、抗生 素、氨基酸以及废水处理等方面。
吸附法的优缺点


优点:不用或少用有机溶剂;操作简便、 安全、设备简单;pH变化小,对生化物 质的活性影响小。 缺点:选择性差;收率较低;无机吸附 剂不稳定、劳动强度大、污染环境等。
溶液浓度(mol/L)
比较三种吸附等温线的特点
常见的吸附等温线方程有以下二种:
吸附等温线表示平衡吸附量,并可用来推
断吸附剂结构、吸附热和其它理化特性。
五、影响吸附过程的因素



1、吸附剂的影响
比表面大、空隙度高,吸附容量大; 颗粒度较小、孔径适当,吸附速度快;

请分别简述物理吸附和化学吸附的主要特征。

请分别简述物理吸附和化学吸附的主要特征。

请分别简述物理吸附和化学吸附的主要特征。

一、物理吸附和化学吸附的定义,特征,实例。

物理吸附:物质的颗粒直径大于吸附剂分子的直径而被吸附,吸附属非特异性吸附。

化学吸附:化学吸附剂分子与吸附质的分子或原子间通过范德华力相互作用而被吸附,吸附属特异性吸附。

在日常生活中,一般人们所说的“吸附”多是指物理吸附,它的基本方式就是范德华力。

物理吸附除了作为一种纯物理作用外,对于一些特殊的吸附,如配合物的形成等,都是主要靠这种力来完成的。

范德华力本身并没有性质,因此对吸附体系的选择不具有选择性,因此只要温度不是太高或太低,化学反应速率足够快,范德华力也可以使吸附质脱附。

范德华力也是一种较弱的力,故只能进行一些简单的物理吸附。

例如,二氧化硅晶体和水分子之间的吸附就是通过范德华力进行的。

固体表面的吸附作用也是通过范德华力来实现的,但需要增加活性点。

化学吸附的研究比物理吸附复杂得多。

首先,对于一个吸附剂,必须考虑它与吸附质分子的结合方式,是范德华力还是化学键。

范德华力对吸附的影响很小,但对其他吸附则起决定性作用,对于化学吸附来说,键能是重要的参数。

其次,由于物理吸附和化学吸附的竞争,在同一吸附过程中会发生吸附的分级。

最后,同一吸附剂上,在不同条件下,对同一吸附质的吸附也可能不同。

化学反应可以使吸附质脱附,但化学吸附能力强弱的转变受温度的影响很大。

温度较低时,吸附质较容易从吸附剂上脱附,故化学吸附能力较弱。

当温度升高到一定程度时,吸附质的化学吸附能力显著增强,即吸附质不再容易被脱附。

化学吸附能力较强的吸附质一般用于催化转化,即借助于它的化学吸附使吸附在活性碳上的化学物质脱附。

化学吸附能力弱的吸附质可用作吸附剂的载体,因为它在一定程度上增加了吸附质的表面积,提高了吸附量,且又不失去活性。

一般来说,在同一类型的吸附剂上,各种吸附质的化学吸附能力并不一致,它们各自的吸附能力也不相同。

同一种吸附质在同一吸附剂上可有不同的吸附能力,因此吸附质在吸附剂上的分布情况就不同。

吸附剂与洗脱剂

吸附剂与洗脱剂

吸附剂与洗脱剂(一)吸附剂与洗脱剂根据待分离组分的结构和性质选择合适的吸附剂和洗脱剂是分离成败的关键。

1.吸附剂的要求①对样品组分和洗脱剂都不会发生任何化学反应,在洗脱剂中也不会溶解。

②对待分离组分能够进行可逆的吸附,同时具有足够的吸附力,使组分在固定相与流动相之间能最快地达到平衡。

③颗粒形状均匀,大小适当,以保证洗脱剂能够以一定的流速(一般为1.5mL·min-1)通过色谱柱。

④材料易得,价格便宜而且是无色的,以便于观察。

2、常用吸附剂的种类:氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。

3、几种常见吸附剂的特性(1)氧化铝:市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目。

碱性氧化铝(pH9—10):适用于碱性物质(如胺、生物碱)和对酸敏感的样品(如缩醛、糖苷等),也适用于烃类、甾体化合物等中性物质的分离。

但这种吸附剂能引起被吸附的醛、酮的缩合。

酯和内酯的水解、醇羟基的脱水、乙酰糖的去乙酰化、维生素A和K等的破坏等不良副反应。

所以,这些化合物不宜用碱性氧化铝分离。

酸性氧化铝(pH3.5—4.5):适用于酸性物质如有机酸、氨基酸等以及色素和醛类化合物的分离。

中性氧化铝(pH7—7.5):适用于醛、酮、醌、苷和硝基化合物以及在碱性介质中不稳定的物质如酯、内酯等的分离,也可以用来分离弱的有机酸和碱等。

(2)硅胶:硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。

柱色谱用硅胶一般不含粘合剂。

适用范围:非极性和极性化合物,适用于芳香油、萜类、甾体、生物碱、强心甙、蒽醌类、酸性、酚性化合物、磷脂类、脂肪酸、氨基酸,以及一系列合成产品如有机金属化合物等。

(3)聚酰胺:色谱用聚酰胺主要又锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺)两种,分子量一般在16000~20000,其亲水性和亲脂性均较好,因此既可分离水溶性成份,也可分离脂溶性成分。

吸附树脂——精选推荐

吸附树脂——精选推荐

吸附树脂摘要:吸附树脂是以吸附为特点,具有多孔立体结构的树脂吸附剂。

它是最近几年高分子领域里新发展起来的一种多孔性树脂,由二乙烯苯等单体,在甲苯等有机溶剂存在下,通过悬浮共聚法制得的鱼籽样的小圆球。

广泛用于废水处理、药剂分离和提纯,用作化学反应催化剂的载体,气体色谱分析及凝胶渗透色谱分子量分级柱的填料。

其特点是容易再生,可以反复使用。

如配合阴、阳离子交换树脂,可以达到极高的分离净化水平。

关键词:吸附树脂,选择吸附引言:吸附树脂又称高分子吸附剂,是一类多孔性的、高度交联的高分子共聚物,是最早的功能高分子材料。

具有较大的比表面积和适当的孔径,可从气相或溶液中吸附某些物质,多用来提取金属离子或处理有机污水,但作为选择性吸附树脂,分离有机混合物的的研究报道较少。

1、吸附树脂的定义吸附树脂又称聚合物吸附剂(Polymerad sorbents),是指一类多孔性的、高度交联的高分子共聚物。

这类高分子材料具有较大的比表面积和适当的孔径,可从气相或溶液中吸附某些物质。

吸附树脂与被吸附物质之间的作用主要是物理作用,如范德华力、偶极一偶极相互作用、氢键等较弱的作用力[1]。

吸附树脂有许多品种,吸附能力和所吸附物质的种类也有区别。

但其共同之处是具有多孔性,并具有较大的比表面积(主要指孔内的比表面积)。

在化学结构上有些不带任何功能基,有些则带不同极性的功能基。

2、吸附树脂的分类及特点高分子吸附剂的结构包括化学结构和物理结构。

在化学结构上有些不带任何功能基,有些则带不同极性的功能基;有些参与反应的单体不具有极性,有的则有较强极性。

按其化学结构的不同可分为以下几类:(1 )非极性吸附树脂,一般是指电荷分布均匀,在分子水平上不存在正负电荷相对集中的极性集团的树脂。

其不带任何功能基团,最适用从极性溶剂(如水)中吸附非极性物质。

目前工业生产和应用的非极性吸附剂均为有二乙烯苯(DVB)交联的聚苯乙烯大孔树脂,由于孔径和比表面积的不同,从而对吸附质的分子大小呈现出不同的选择性。

吸附技术介绍

吸附技术介绍

吸附技术介绍一、吸附基本知识1.1吸附利用某些固体能够从流体混合物中选择性地凝聚一定组分在其表面上的能力,使混合物中的组分彼此分离的单元操作过程。

1.2吸附原理1、吸附是一种界面现象,其作用发生在两个相的界面上。

2、根据吸附剂对吸附质之间吸附能力的不同,可分为物理吸附和化学吸附。

1.2.1物理吸附概念:当气体或液体分子与固体表面分子间的作用力为分子间力时产生的吸附。

特点:1、是一种可逆过程;2、吸附质在吸附剂表面形成单层或多层分子吸附时,其吸附热比较低;3、吸附无选择性,任何固体可以吸附任何气体,当然吸附量会有所不同;4、吸附稳定性不高,吸附和解吸速率都很快;5、吸附不需要活化能,吸附速率并不因温度的升高而变快。

1.2.2化学吸附概念:由吸附质与吸附剂表面原子间的化学键合作用造成的,即在吸附质与吸附剂之间发生了电子转移、原子重排或化学键的破坏与生成等现象。

特点:1、化学吸附往往是不可逆的;2、化学吸附的吸附热接近于化学反应的反应热,比物理吸附大的多;3、吸附很稳定,一旦吸附,不易解吸;4、吸附是单分子层的;5、吸附需要活化能,温度升高,吸附和解吸速率加快。

1.3常见的吸附剂常见的吸附剂有:活性炭、硅胶、活性氧化铝、合成沸石和天然沸石分子筛。

目前用在VOCs治理中的吸附剂主要是活性炭。

1.3.1吸附剂的性能要求1、有较大的比表面积2、对吸附质有较高的吸附能力和高选择性3、较高的强度和耐磨性4、颗粒大小均匀5、具有良好的化学稳定性、热稳定性以及价廉易得6、容易再生二、吸附法技术优缺点2.1吸附法优点1、可回收有机溶剂2、可净化大风量、低浓度、低温度废气3、废气不需要加热,低温或常温操作4、可回收痕量物质2.2吸附法缺点1、需要预处理废气中的粉尘、烟等杂质2、高温废气需要冷却3、吸附剂使用寿命不长4、投资费用较大三、吸附法适用范围吸附法用于治理喷漆、包装、印刷、机械、化工及生产过程产生苯类、酯、醇、酮、醛、酚汽油等场合。

荧光水吸附剂

荧光水吸附剂

荧光水吸附剂
荧光水吸附剂是一种具有吸附和储存能力的材料,广泛应用于水处理、环境保护和资源回收等领域。

本文将介绍荧光水吸附剂的特点、应用及未来发展趋势。

荧光水吸附剂是一种具有荧光性能的吸附剂,通常由吸附剂和荧光染料组成。

其主要特点是具有高效吸附能力和荧光检测功能。

在水处理领域,荧光水吸附剂可以有效吸附水中的有机污染物、重金属离子和微生物等有害物质,从而净化水质。

同时,其荧光性能可以实现对吸附物质的快速检测和监测,使水处理过程更加智能化和便捷化。

在环境保护方面,荧光水吸附剂也发挥着重要作用。

其高效吸附能力可以帮助减少水体污染物的浓度,保护生态环境。

同时,荧光水吸附剂可以应用于河流、湖泊和地下水等水体的治理,促进环境可持续发展。

除此之外,荧光水吸附剂还具有良好的资源回收潜力。

通过对吸附剂的再生和回收利用,可以有效减少材料的浪费和资源的消耗,实现循环经济的目标。

未来,随着科技的进步和研究的深入,荧光水吸附剂在水处理、环境保护和资源回收领域的应用将会得到进一步拓展和完善。

荧光水吸附剂作为一种具有吸附和荧光功能的材料,具有广阔的应
用前景和发展空间。

在未来的研究和实践中,我们应该进一步发挥其优势,推动其在水处理、环境保护和资源回收等领域的应用,为构建清洁美丽的环境做出更大的贡献。

希望通过不懈的努力和创新,荧光水吸附剂可以成为环境保护和资源利用的重要利器,为人类创造更加美好的未来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸附剂一般有以下特点
一、概述
能有效地从气体或液体中吸附其中某些成分的固体物质。

吸附剂一般有以下特点:大的比表面、适宜的自动馏程孔结构及表面结构;对吸附质有强烈的吸附能力;一般不与吸附质和介质发生化学反应;制造方便,容易再生;有良好的机械强度等。

吸附剂可按孔径大小、颗粒形状、化学成分、表面极性等分类,如粗孔和细孔吸附剂,粉状、粒状、条状吸附剂,碳质和氧化物吸附剂,极性和非极性吸附剂等。

常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂(如硅胶、氧化铝、分子筛、天然黏土等)。

衡量吸附剂的主要指标有:对不同气体杂质的吸附容量、磨耗率、松装堆积密度、比表面积、抗压碎强度等。

用于滤除毒气,精炼石油和植物油,防止病毒和霉菌,回收天然气中的汽油溴价以及食糖和其他带色物质脱色等。

二、吸附剂的种类
工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。

气体吸附分离成功与否,极大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。

1.硅胶
是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。

它是用硫酸处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及石油组分的分离等。

工业上用的硅胶分成粗孔和细孔两种。

粗孔硅胶在相对压力变送器湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。

活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初氢氧化物的结构状态,一般都不是纯粹的Al2O3,多次开关机即可使被磁化的金属部件消磁,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。

由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。

它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。

在一定操作条件下,它的干燥深度可达露点-70℃以下。

2.活性炭
是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。

活化方法可分为两大类,即药剂活化法和气体活化法。

药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中差压变送器加热进行炭化和活化。

气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。

活性炭含有很多毛细孔构造所以具有优异的吸附能力。

因而它用途遍及水处理、脱色、气体吸附等各个方面。

3.沸石分子筛
又称合成沸石或分子筛,其化学组成通式为:
O.Al2O3.nSiO2.mH2O
式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石,一般n=2~10,m=0~9。

沸石的特点是具有分子筛的作用,它有均匀的孔称重传感器径,如3A0、4A0、5A0、10A0细孔。

有4A0孔径的4A0沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。

它已广
泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。

4.碳分子筛
实际上也是一种活性炭,它与一般的碳质吸附剂不同之处,在于其微孔孔径均匀地分布在一狭窄的范围内,微孔孔径大小与被分离的气体分子直径相当,微孔的比表面积一般占碳分子筛所有表面积的90%以上。

碳分子筛的孔结构主要分布形式为:大孔直径与碳粒的外表面相通,过渡孔从大孔分支出来,微孔又从过渡孔分支出来。

在分离过程中,大孔主要起运输通道作用,微孔则起分子筛的作用。

以煤为原料制取碳分子筛的方法有碳化法、气体活化法、碳沉积法和浸渍法。

其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。

碳分子筛在空气分离制取氮气领域已获得了成功,在其它气体分离方面也有广阔的前景。

三、吸附剂的物理性质
吸附剂的良好吸附性能是由于它具有密集的细孔构造。

与吸附剂细孔有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常超声波液位计以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g).孔容是吸附剂的有效体积,它是用饱和吸附量推算出来的值,也就是吸附剂能容纳吸附质的体积,所以孔容以大为好。

吸附剂的孔体积(Vk)不一定等于孔容(VP),吸附剂中的微孔才有吸附作用,所以VP中不包括粗孔。

而Vk中包括了所有孔的体积,一般要比VP大。

b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g。

吸附剂表面积每克有数百至千余平方米。

吸附剂的表面积主要是微孔孔壁的表面,吸附剂外表面是很小的。

c.孔径与孔径分布:在吸附剂内,孔的形状极不规则,孔隙大小也各不相同,来减小管壳程间介质的压差。

直径在数埃(A0)至数十埃的孔称为细孔,直径在数百埃以上的孔称为粗孔。

细孔愈多,则孔容愈大,比表面超净工作台也大,有利于吸附质的吸附。

粗孔的作用是提供吸附质分子进入吸附剂的通路。

粗孔和细孔的关系就象大街和小巷一样,外来分子通过粗孔才能迅速到达吸附剂的深处。

所以粗孔也应占有适当的比例。

活性炭和硅胶之类的吸附剂中粗孔和细孔是在制造过程中形成的。

沸石分子筛在合成时形成直径为数微米的晶体,其中只有均匀的细孔,成型时才形成晶体与晶体之间的粗孔。

孔径分布是表示孔径大小与之对应的孔体积的关系。

由此来表征吸附剂的孔特性。

d.表观重度(dl):又称视重度。

吸附剂颗粒的体积(Vl)由两部分组成:固体骨架的体积(Vg)和孔体积(Vk),即:
Vl= Vg+ Vk
表观重度就是吸附颗粒的本身重量(D)与其所占有的体积(Vl)之比。

吸附剂的孔体积(Vk)不一定等于孔容(VP),吸附剂中的微孔才有作用,所以VP中不包括粗孔。

而Vk中包括了所有孔的体积,一般要比VP大。

e.真实重度(dg):又称真重度或吸附剂固体的重度,即吸附剂颗粒的重量(D)与固体骨架的体积Vg之比。

假设吸附颗粒重量以一克为基准,根据表观重度和高效过滤器真实重度的定义则:
dl==l/Vl ; dg=l/Vg
于是吸附剂的孔体积为:
Vk=l/dl – l/dg
f.堆积重度(db):又称填充重度,即单位体积内所填充的吸附剂重量。

此体积中还包括有吸附颗粒之间的空隙,堆积重度是计算吸附床容积的重要参数。

以上的重度单位常用g/cm3、kg/l、kg/m3表示。

g.孔隙率(εk):即吸附颗粒内的孔体积与颗粒体积之比。

εk=Vk/(Vg+Vk)=(dg-dl)/ dg=1-dl/dg
h.空隙率(ε):即吸附颗粒之间的空隙与整个吸附剂堆积体积之比。

ε=(Vb-Vl)/Vb=(dl-db)/dl=1-db/dl
四、其他
吸附剂也称吸收剂.这种物质可使活性成分附着在其颗粒表面,使液态微量化合物添加剂变为固态化合物,有利于实施均匀混合.其特性是吸附性强,化学性质稳定.
吸附剂一般也分为有机物和无机物两类,有机物类如小麦胚粉,脱脂的玉米胚粉,玉米芯碎片,粗麸皮,大豆细粉以及吸水性强的谷物类等.无机物类则包括二氧化硅,蛭石,硅酸钙等.
最具代表性的吸附剂是活性炭,吸附性能相当好,但是通风橱成本比较高,曾应用在松花江事件中用来吸附水体中的甲苯。

其次还有分子筛、硅胶、活性铝、聚合物吸附剂和生物吸附剂等等。

相关文档
最新文档