变压器合闸时的励磁涌流

合集下载

变压器产生励磁涌流的原因

变压器产生励磁涌流的原因

变压器产生励磁涌流的原因1. 你知道吗,变压器产生励磁涌流的一个原因就是铁芯的饱和呀!就好比一个人吃撑了,再也吃不下更多东西一样,铁芯饱和了就会导致电流一下子涌出来。

比如说,家里的电器突然都打开,变压器就可能出现这种情况呢!2. 嘿,变压器产生励磁涌流还可能是因为合闸瞬间的电压突变呀!这就好像你跑步的时候突然被人推了一把,速度一下子就变快了。

像工厂里机器启动的瞬间,不就可能引发这样的情况嘛!3. 哇哦,绕组的电感也会让变压器产生励磁涌流呢!这就好像是道路上的一个弯道,会让车流的速度和方向发生变化。

比如大型电机启动时,不就类似这种情况嘛!4. 哎呀呀,变压器的剩磁也能引起励磁涌流呀!这就跟你心里一直记着一件事一样,会产生影响呢。

像有时候停电后再来电,就可能出现这样的问题哟!5. 嘿呀,合闸角也对励磁涌流有影响呢!这不就跟你进门的时机一样嘛,如果时机不对,可能就会有不一样的结果。

就像在特定的时刻合闸,就可能导致励磁涌流增大呢!6. 哇,变压器的铁芯材质也有关系哦!这就好像不同材质的锅,做饭的效果不一样。

比如铁芯材质不太好的变压器,就更容易出现励磁涌流啦!7. 你想想看,变压器的匝数也能让它产生励磁涌流呀!就像一群人排队,人数不一样效果也不同。

匝数不合理的时候,可不就容易有这个问题嘛!8. 哎呀,系统的阻抗也会影响变压器的励磁涌流呢!这就好像路上的阻碍,会改变车流的情况。

当系统阻抗小的时候,励磁涌流可能就会比较大呢!9. 嘿,变压器自身的特性也能导致励磁涌流呢!就如同每个人都有自己的脾气一样。

有些变压器就是容易出现这种情况呀!10. 哇塞,外部的干扰因素也会让变压器产生励磁涌流呢!这就好比平静的水面被扔了一块石头,会泛起涟漪。

像附近有大的电磁干扰时,不就可能这样嘛!我觉得啊,了解这些原因对于我们更好地使用和维护变压器真是太重要啦!。

简述变压器的励磁涌流对电网稳定运行的影响

简述变压器的励磁涌流对电网稳定运行的影响

简述变压器的励磁涌流对电网稳定运行的影响摘要:正常运行时,变压器的励磁电流很小,通常只有额定电流的3% ~ 8%,大型变压器甚至不到1%。

但是,当变压器空载合闸时,会产生与电压初始相角和变压器特性有关的涌流。

在最不利的情况下,涌流可以达到额定电流的几倍,其最直接的影响就是变压器保护装置的误动作。

关键词:励磁涌流;变压器;一、励磁涌流导致的破坏性影响第一,引发继电保护误动作。

因为变压器在空载合闸时,会对过流保护产生误动作,从而导致变压器无法成功投运。

此外,由于保护误动被诱发,又将引起变压器各侧负荷电源切断,最终停电[1]。

第二,导致和应涌流现象出现。

由于变压器因短路问题切除时,诱发邻近另外一个或多个变压器(或发电机)出现保护装置误动,进而引发大面积停电。

第三,产生大量的谐波污染。

由于很多高次谐波存在于励磁涌流之中,所以当励磁涌流产生时,必然会伴随大量谐波出现,所以电网电能质量会受到较为严重的谐波污染,所以电能质量也因此下降。

第四,损坏变压器及断路器。

因为励磁涌流过大,会产生较强的电动力,从而引发对系统的强烈冲击,变压器和断路器由于超出承受能力,所以会产生一定的损害。

第五,影响继电保护装置的精度。

由于励磁涌流直流分量的出现必然会导致TA 磁路出现过量磁化,所以 TA 精度受到严重影响,发生骤降,进而导致继电保护装置精度的下降。

二、变压器励磁涌流出现的原因要想明确变压器励磁涌流出现的原因,就要借助磁链守恒定理的作用进行研究。

磁链守恒定律的含义为:用电设备回路中的全体磁链综合在换路的瞬间时刻都是处于不变的[1]。

同时研究发现,变压器出现励磁涌流的问题时,变压器中的磁链仍然是满足磁链守恒定理的,以此为切入点对变压器的投运过程进行分析,变压器由空载运行转为带载运行时,在其接入负载的瞬间,变压器绕组上电压会突然增加,突增的电压将促使变压器内部出现一个的新磁通,与此同时,为了抵消这个突增电压导致的新磁通,变压器的绕组中将会产生一个与其大小相等但是极性相反的磁通,称为偏磁。

双绕组变压器空载合闸的励磁涌流的特点

双绕组变压器空载合闸的励磁涌流的特点

双绕组变压器空载合闸的励磁涌流的特点示例文章篇一:哎呀呀,这题目也太难懂啦!啥叫双绕组变压器空载合闸的励磁涌流的特点呀?对于我这个小学生来说,简直像外星人的语言!不过嘛,让我努力想想。

就好像我们跑步比赛,一开始起跑的时候,大家都拼命往前冲,那股劲头可大啦。

双绕组变压器空载合闸的时候,是不是也像这样,突然就有一股很强的力量涌出来呢?老师说,这个励磁涌流啊,它一开始的时候数值特别大!哇塞,这就好像是洪水突然冲出来一样,一下子特别凶猛。

这要是控制不好,会不会像调皮的小朋友捣乱,把整个电路都搞乱套呀?而且哦,这个励磁涌流里面还有很多谐波呢!谐波是啥?嗯,我想想,就好比我们唱歌,本来应该唱得很整齐好听,结果有人跑调了,这跑调的声音就是谐波。

那这么多谐波在里面,是不是就像一群乱哄哄的小鸟,叽叽喳喳叫个不停,让整个电流都变得乱糟糟的?还有还有,这个励磁涌流衰减得还挺快!这是不是有点像我们放烟花,一开始“砰”的一下特别亮,特别好看,但是很快就消失不见了?我觉得吧,搞清楚双绕组变压器空载合闸的励磁涌流的特点真的很重要。

不然的话,电路出了问题,那可就糟糕啦!我们家里的电灯不亮了,电视看不了了,那得多烦人呀!所以科学家们一定要好好研究,让我们能更安全、更稳定地用电!这就是我这个小学生对这个超级难的问题的一点点想法,我也不知道对不对,但是我真的很努力去想啦!示例文章篇二:哎呀呀,这题目也太难了吧!我一个小学生哪里懂什么双绕组变压器空载合闸的励磁涌流的特点呀!这对我来说简直就像天上的星星那么遥远,摸都摸不着。

不过呢,为了完成这个任务,我还是要努力试试看。

我觉得这个双绕组变压器就好像是一个神秘的大盒子,而空载合闸的励磁涌流就像是突然从盒子里冲出来的一群小怪兽。

这些小怪兽可不好对付,它们来势汹汹,一会儿大一会儿小,一点儿规律都没有。

它们就像调皮的小孩子,一会儿跑这儿,一会儿跑那儿。

听说它们出现的时候电流会突然增大很多很多,这难道不可怕吗?就好像平静的小河突然变成了汹涌的大河,一下子能把小船都掀翻!而且啊,这些励磁涌流的大小还跟好多东西有关系呢。

变压器励磁涌流原理

变压器励磁涌流原理

变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。

励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。

由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。

在这个过程中,电流会迅速增加,导致励磁涌流。

2. 初级绕组和次级绕组之间的电容效应。

变压器的初级绕组和次级绕组之间会存在一定的电容效应。

当变压器接通时,由于电容的充电过程,会导致涌流的产生。

3. 磁芯饱和和磁滞。

在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。

这些现象会导致磁路中的电流迅速变大,从而产生涌流。

励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。

2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。

为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。

励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。

2. 采用软起动方式。

通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。

3. 提前预热变压器。

在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。

三相变压器空载合闸励磁涌流的大小和波形

三相变压器空载合闸励磁涌流的大小和波形

三相变压器空载合闸励磁涌流的大小和波形1. 引言三相变压器是电力系统中常见的设备之一,用于将电能从一个电压等级传输到另一个电压等级。

在变压器启动或切换时,需要进行励磁操作,以产生磁场并建立变压器的工作状态。

励磁涌流是指在变压器合闸励磁过程中产生的瞬态电流。

本文将深入探讨三相变压器空载合闸励磁涌流的大小和波形,并解释其原因和影响。

2. 励磁涌流的定义与原理励磁涌流是指在变压器合闸过程中,由于电源电压突然施加到变压器绕组上而产生的暂态电流。

这种暂态电流是由于绕组中的自感、互感和铁芯饱和等因素引起的。

当变压器合闸时,输入侧绕组上突然施加了额定电源电压。

由于绕组中存在着自感和互感,突然施加的电压会导致绕组中产生较大的暂态电流。

铁芯饱和也会导致励磁涌流的增大。

3. 励磁涌流的大小励磁涌流的大小取决于多个因素,包括变压器的参数、电源电压和频率等。

一般来说,励磁涌流的大小与变压器的容量成正比。

在变压器空载合闸时,励磁涌流的峰值通常为额定电流的2-6倍。

具体数值取决于变压器的设计和制造质量。

4. 励磁涌流波形分析励磁涌流通常呈现出一个尖峰,其波形可以分为三个阶段:启动阶段、衰减阶段和稳定阶段。

•启动阶段:在合闸刹那间,突然施加到绕组上的电压会导致绕组中产生一个很大的暂态电流尖峰。

这个尖峰通常持续几个周期。

•衰减阶段:随着时间的推移,暂态电流逐渐减小并趋于稳定。

这个过程通常持续约20-30个周期。

•稳定阶段:励磁涌流逐渐趋于稳定状态,维持在一个较小的数值上。

这个阶段可以持续几分钟到几十分钟。

励磁涌流的波形与变压器的设计和制造有关,不同类型的变压器可能会产生不同的波形特征。

5. 励磁涌流的影响励磁涌流对变压器和电力系统都会产生一定的影响。

5.1 对变压器的影响励磁涌流会在变压器绕组中产生较大的暂态电流,这会引起电阻损耗和额外的温升。

长期以来,大幅度的励磁涌流可能导致绕组过热,从而降低变压器的寿命。

励磁涌流还可能导致铁芯饱和。

变压器空载合闸产生的励磁涌流及其影响?

变压器空载合闸产生的励磁涌流及其影响?

变压器空载合闸产生的励磁涌流及其影响?
煤炭是国民经济发展的主要动力,煤矿的生产为电能,直接决定了供电系统的可靠性、安全性和稳定性。

变压器作为煤矿供电系统的主要电气设备,对供电系统的安全稳定运行具有重要意义。

在实际生产中,变压器的误动作是影响其稳定运行的关键故障因素,而导致误动作的主要因素是励磁涌流。

因此,有效地抑制变压器空载合闸产生的励磁涌流十分重要。

所谓的空载合闸就是在变压器二次侧不带负载的情况下,将一次侧合闸接入额定电压。

变压器铁芯中的磁通相位落后电压90度,所以此时铁芯中的磁通为最大,但磁通是不能突变的,所以铁芯中会产生一个方向相反随时间衰减速的直流磁通来抵消这个最大值,经过半个周期后,这个直流磁通又与交流磁通方向相同,二者相加,就使得铁芯饱和,就会产生很大的励磁涌流。

显然,励磁涌流的发生,是受励磁电压的影响。

只要系统电压一有变动,励磁电压受到影响,就会产生励磁涌流。

在不同的情况下将产生如下所述的初始、电压复原及共振等不同程度的励磁涌流。

其瞬时尖峰值及持续时间,将视下列各因素的综合情况而定,可能会高达变压器额定电流的8~30倍。

励磁涌流的发生,会使变压器的铁芯饱和,造成涡流损耗、铁损增大,漏磁通增强。

较大的励磁涌流使变压器过热,绝缘老化,影响变压器寿命,严重时可能造成周围绝缘介质损伤,烧毁变压器,甚至造成大面积的停电。

时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。

变压器空载合闸产生励磁涌流的原因

变压器空载合闸产生励磁涌流的原因

变压器空载合闸产生励磁涌流的原因变压器是电力系统中常见的电力设备之一,其主要功能是将电能从一种电压等级转换为另一种电压等级,以满足不同用电需求。

在变压器运行中,空载合闸是一种常见的操作方式,但它会产生励磁涌流。

本文将从原因角度探讨空载合闸产生励磁涌流的原因。

我们需要了解什么是励磁涌流。

励磁涌流是指在变压器空载合闸瞬间,由于变压器磁路中的磁通量变化导致的涌流现象。

这种涌流会引起变压器绕组和铁芯中的电流增大,可能导致设备振动、声响和绝缘老化等问题,甚至对电力系统的稳定运行产生不利影响。

那么,为什么空载合闸会产生励磁涌流呢?主要有以下几个原因。

励磁涌流与变压器的磁化特性有关。

变压器的铁芯是由硅钢片叠压而成的,具有一定的磁滞特性。

当变压器断开后,铁芯中的磁通量并不会立即消失,而是会逐渐衰减。

当再次合闸时,铁芯中的磁通量需要重新建立,这就需要一定的时间。

在这个过程中,会产生一段时间的励磁涌流。

励磁涌流还与变压器的电容特性有关。

变压器的绕组之间和绕组与地之间都存在一定的电容。

当变压器断开后,这些电容会被放电,导致励磁涌流。

同时,当再次合闸时,由于电容的存在,电流需要一定的时间才能建立起来,从而产生励磁涌流。

变压器的电感特性也会影响励磁涌流的产生。

变压器的绕组之间存在一定的电感,当断开变压器后,这些电感会形成自感电动势。

当再次合闸时,电流需要克服这个自感电动势才能建立起来,这也会导致励磁涌流的产生。

除了上述主要原因外,还有一些次要因素也会对励磁涌流产生影响。

例如,变压器的铁芯饱和程度、变压器的负载情况、电源电压的波动等。

这些因素的变化都会导致励磁涌流的大小和波形发生变化。

为了减小变压器空载合闸产生的励磁涌流,可以采取一些措施。

首先,可以合理设计变压器的磁路和绕组结构,增加铁芯的饱和磁场强度,减小励磁涌流的产生。

其次,可以通过合理选择合闸时机,避免在电网电压波动较大的时候进行空载合闸操作。

此外,还可以采用励磁变流器等装置来调节变压器的励磁电流,从而减小励磁涌流的影响。

为什么变压器合闸时发生的励磁涌流很大?

为什么变压器合闸时发生的励磁涌流很大?

为什么变压器合闸时发生的励磁涌流很大?
前期,了解了变压器产生励磁涌流的原因。

本期,接着了解变压器合闸时为什么发生的励磁涌流很大?
变压器线圈中,励磁电流和磁通的关系,由磁化特性决定,铁芯愈饱合,产生一定的磁通所需要的励磁电流愈大。

在正常情况下,铁芯中的磁通就已饱合,如在不利条件下合闸,铁芯中磁通密度最大值可达两倍的正常值,铁芯饱和将非常严重,使其导磁数减小,励磁电抗大大减小,因而励磁电流数值大增,由磁化特性决定的电流波形很尖,这个冲击电流可超过变压器额定电流的6-8倍。

所以,由于变压器电、磁能的转换,合闸瞬间电压的相角,铁芯的饱合程度等,决定了变压器合闸时,有励磁涌流,励磁涌流的大小,将受到铁芯剩磁与合闸电压相角的影响。

变压器合闸时发生励磁涌流很大的原因主要有以下2点:
一、t=0时铁芯中的磁链不能突变,产生磁通的自由分量使铁芯中磁通最大,最严重的情况下,磁通可达稳态最大值的2倍;
二、由于铁芯深度饱和使电流急剧增加。

电流增大的程度与合闸时电压的相角及铁芯的饱和程度有关。

在电压的相角为0时合闸,励磁涌流最大。

励磁涌流衰减很快,小容量变压器仅几个周波就可达到稳态,大容量变压器衰减的慢,约20s才衰减完。

励磁涌流对变压器本身没有什么危害,但有可能引起继电保护装置误动。

因此,新安装及大修后的电力变压器在正式投入运行前一定要做冲击合闸试验。

目的是检查变压器的绝缘强度和机械强度,检验差动保护躲过励磁涌流的性能。

时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。

变压器励磁涌流特点及措施

变压器励磁涌流特点及措施

变压器励磁涌流特点及措施变压器励磁涌流,这个名字听上去就有点儿高深莫测,对吧?简单来说,励磁涌流就是在变压器接通电源的时候,瞬间产生的一种电流。

这股电流就像一阵狂风,来得快去得也快,但可别小看它,搞不好会给变压器带来不少麻烦。

这种情况尤其在变压器初次启动的时候,简直就像是在开一场电流的派对,喧闹得很。

想象一下,你一打开电源,变压器就像被打了兴奋剂似的,电流猛地蹿上去,瞬间达到了很高的水平。

这种现象发生的原因,其实是因为变压器内部的铁芯在电流的作用下,产生了磁场,这个磁场又带动了电流的流动。

就好比你在喝饮料的时候,气泡一下子涌上来,真是让人措手不及。

不过,这种强烈的涌流其实是短暂的,过不了多久就会回归到正常水平。

但在这短短的瞬间,它可能会带来设备的过热、老化,甚至损坏,想想都让人心惊。

面对这样的涌流,咱们应该怎么办呢?预防是关键,绝对不能掉以轻心。

在设计变压器的时候,就得考虑到这个问题,采用一些保护措施。

比如,选用合适的保护装置,像是限流器和保护继电器,这些可都是可以帮助咱们控制涌流的好帮手。

就像是在家里遇到突如其来的大雨,提前准备好雨具总是比临时慌忙找伞强多了。

还有一种常见的做法,就是设置一个合理的启动程序。

比如,逐步加压,慢慢来,而不是一下子给它来个“电量满格”。

想象一下,像是在给小猫喂食,慢慢地让它适应,不然一下子喂太多,它可受不了。

逐步启动的好处就是能够有效降低涌流的强度,给设备一个缓冲期,减少冲击。

此外,定期维护也是不可或缺的环节。

就像我们的身体需要定期检查,变压器也需要定期检修。

检查铁芯的状态,看看有没有松动的情况,或是绝缘材料是否老化。

保持设备在最佳状态,能让我们在关键时刻减少涌流对设备的冲击。

当然了,理论归理论,实践才是王道。

有些情况下,即使做足了准备,涌流还是会出现。

这个时候,咱们就得冷静应对,快速启动保护措施,让设备安全度过这个“狂欢派对”。

有些高级一点的变压器,甚至会配备自动保护系统,一旦检测到涌流过大,立马就会切断电源,简直是个聪明的小家伙。

变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施

采用交流励磁:通过控制交流励磁电压来调节磁通,从而抑制励磁涌流。
采用无功功率补偿:通过无功功率补偿来调节磁通,从而抑制励磁涌流。
采用磁通控制策略:通过优化磁通控制策略来抑制励磁涌流。
PART FOUR
深度学习:利用深度学习算法,如卷积神经网络(CNN)、长短时记忆网络(LSTM)等,对励磁涌流进行预测和识别。
影响电力系统的安全性:励磁涌流可能导致电力系统故障,影响电力系统的安全性。
影响电力设备的寿命:励磁涌流可能导致电力设备过热、绝缘老化等,影响设备的使用寿命。
励磁涌流可能导致继电保护装置误动作,影响电力系统的安全运行。
励磁涌流可能导致继电保护装置的测量误差增大,影响保护装置的准确性。
励磁涌流可能导致继电保护装置的通信中断,影响电力系统的监控和调度。
励磁涌流可能导致继电保护装置的硬件损坏,影响电力系统的可靠性。
PART THREE
采用Y/△接线方式:将变压器的三相绕组连接成Y/△形,可以有效抑制励磁涌流。
采用自耦变压器:自耦变压器具有抑制励磁涌流的作用,可以降低变压器的励磁涌流。
采用串联电抗器:在变压器的输入端串联电抗器,可以有效抑制励磁涌流。
原理:利用数字信号处理技术对励磁涌流信号进行实时监测和处理
01
应用:适用于各种类型的变压器,包括电力变压器、特种变压器等
03
特点:实时性强,响应速度快,抑制效果好
02
技术难点:信号采集、数据处理、控制策略等
04
现代控制理论:包括自适应控制、模糊控制、神经网络控制等
01
模糊控制:利用模糊逻辑进行控制,适用于非线性、时变系统
CONTENTS
PART ONE
01
变压器是一种利用电磁感应原理进行能量转换的电气设备。

变压器励磁涌流及鉴别方法ppt课件

变压器励磁涌流及鉴别方法ppt课件

很大,励磁电流iμ近似为零; 铁芯饱和后-----磁化曲线的斜率Lμ 很小,iμ大大增加,形成励磁涌流。 在(0,2π)周期内:
图6-13
i
0, 0 1, or, 2 1 m (cos1 cos ) / L ,1
2
(6 47)
1
励磁涌流的波形如图6-14所示,波形完全偏离时间轴一侧, 且是间断的。波形间断的宽度称为励磁涌流的间断角θJ,显 然:
间断角原理的优点:由于采用按相闭锁的方法,在变压器合闸 于内部故障时,能够快速动作。
缺点:对于其它内部故障,暂态高次谐波分量会使电流波形畸 变(微分后畸变更加严重)。畸变会影响电流的波宽。若波形 畸变很严重导致波宽小于整定值,差动保护也将暂时闭锁而造 成动作延缓。
变压器的过励磁----对于有些工况,例如超高压远距离输电线路 由于突然失去负荷而造成变压器的过电压时,会造成铁芯饱和 ,使励磁电流大大增加。
• 6.3.3 防止励磁涌流引起误动的方法 • 1 采用速饱和中间变流器
励磁涌流中含有大量的非周期分量,所以可以采用速饱和中 间变流器来防止差动保护误动。对于Y,d11接线方式的三相 变压器,常常有一相是对称性涌流,没有非周期分量,中间 变流器不能饱和,只能通过差动继电器的动作电流来躲过。 考虑到对称性涌流的幅值比较小,整定计算时,在式(6-27 )Iset=KrelKuIn中取Ku=1。
间断角判据:间断角的整定值一般取65°。当检测到间断角大 于65°时将差动保护闭锁。对于Y,d11接线方式的三相变压器 ,非对称涌流的间断角比较大,间断角闭锁元件能够可靠的 动作,并有足够的裕量;而对称性涌流的间断角有可能小于 65°。进一步减小整定值并不是好方法,因为整定值太小会影 响内部故障时的灵敏度和动作速度。

变压器励磁涌流原理

变压器励磁涌流原理

当变压器空载合闸时会产生励磁涌流,设系统电压)sin(211a wt U u +=由dtd N ue Φ-==11得: 在合闸瞬间在变压器铁芯中产生的磁通:)]cos([cos a wt a m +-Φ=Φ,其中112wN U m =Φ 1)2,0π==a t 时合闸:wt m sin Φ=Φ,马上进入稳态运行,没有励磁涌流。

2)0,0==a t 时合闸:'''cos ]cos 1[Φ+Φ=Φ-Φ=-Φ=Φwt wt m m m从t=0经过半个周期wt π=,Φ达最大值,m Φ=Φ2max 。

可达稳态量2倍,此时励磁电流f i 可达额定励磁电流100倍,即:Nf f i i 0100=而额定励磁电流约等于额定电流的3%,即: N Nf i i %30=所以:N f i i 3=。

而这是在变压器没有剩磁的理想情况下推出的结论,如果变压器有剩磁时合闸,励磁涌流会更大,可达10倍额定电流。

当空载合闸时励磁涌流只出现在高压侧,这样会产生很大的差动电流,引起差动保护误动。

励磁涌流原理图U1图6-3 变压器励磁涌流的产生机理tu ϕμI μI φ(a) 稳态情况下磁通与电压的波形(b) 在电压为零瞬间合闸时,磁通与电压的波形(c) 变压器铁芯的磁化曲线(d) 励磁涌流的波形励磁涌流识别方法二:波形识别在RCS-978微机变压器保护中采用的方法是当+>S K S b 且t S S >时开放保护。

式中S 是差动电流的全周积分值,在每周采样24次的情况下∑∑=-=023m mS I T S &。

+S 是相距半周的差动电流瞬时值之和的全周积分值,∑∑∑+=-=-+023m 12m m S I I T S &&。

b K 为大于1的常数。

当差动电流中没有励磁涌流而是短路电流且波形是对称的话,相距半周的差动电流瞬时值之和是零,其全周积分值+S 也为零。

而差动电流的全周积分值S 很大,满足+>S K S b 条件可以开放保护。

220kV变压器空载合闸励磁涌流及抑制措施分析

220kV变压器空载合闸励磁涌流及抑制措施分析

220kV变压器空载合闸励磁涌流及抑制措施分析引言励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。

对变压器差动保护来讲,励磁涌流可视为一种差动电流。

暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。

随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。

1励磁涌流产生机理及危害变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。

涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。

励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。

励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。

其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。

由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。

变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。

励磁涌流主要危害:(1)可能引起变压器差动保护动作,造成投运失败,影响送电效率。

(2)数值大的励磁涌流会导致变压器及断路器因电力过大而受损,连续冲击会降低变压器绕组机械强度,损坏电气设备。

(3)导致周边换流站直流换相失败或功率波动。

2涌流检测方法当电力变压器合闸电源时,灵敏的差动保护可能误动。

为使差动保护躲过涌流,必须采取措施使算法能区分涌流状况与故障状况。

波形对称法:将流入继电器的差流进行微分,将微分后波形的前半周数据和后半周数据逐点做对称比较,故障电流基本上是工频正弦波,波形对称。

而励磁涌流时,三相差动电流中有大量的二次谐波和三次谐波分量存在,波形发生畸变、间断、不对称,利用算法检测出这种畸变,即可识别出励磁涌流。

变压器空载合闸时的励磁涌流

变压器空载合闸时的励磁涌流

变压器空载合闸时的励磁涌流
变压器是电力系统中不可或缺的重要设备,它起着将电能从一
电压等级传输到另一电压等级的关键作用。

在变压器运行过程中,
空载合闸时的励磁涌流是一个非常重要的问题,它会对设备的安全
稳定运行产生影响。

励磁涌流是指变压器在空载合闸时,由于磁路突然饱和而产生
的瞬时大电流现象。

这种电流会导致变压器线圈和铁芯中产生过大
的磁场,从而引起变压器的震动和噪音,甚至可能损坏设备。

因此,励磁涌流对变压器的安全运行构成了潜在的威胁。

为了有效应对变压器空载合闸时的励磁涌流问题,我们可以采
取以下措施:
1. 采用先合闸后通电的操作方式,通过逐步增加励磁电流的方法,减小励磁涌流的影响。

2. 在设计变压器时,可以采用合理的磁路结构和材料,以减小
励磁涌流的大小。

3. 在变压器的运行控制系统中,设置合适的励磁控制装置,对励磁电流进行合理控制,以减小励磁涌流的影响。

4. 对变压器进行定期的检测和维护,及时发现和处理励磁涌流带来的问题。

总之,变压器空载合闸时的励磁涌流是一个需要引起重视的问题,只有通过科学合理的手段和措施,才能有效地减小励磁涌流的影响,确保变压器的安全稳定运行。

变压器励磁涌流及其鉴别方法、励磁涌流的产生、-励磁涌流的特征、励磁涌流的鉴别方法精选全文

变压器励磁涌流及其鉴别方法、励磁涌流的产生、-励磁涌流的特征、励磁涌流的鉴别方法精选全文

4.波形偏离时间轴一侧,出现间断,饱和越严重,间断角越小
mcos(t+)+mcos+r S
1
t1
arccos
mcos r
m
S
2 2 (1 )
J 2 (2 1)
2(1 )
2 arccos mcos+r S
m
励磁涌流的间断角,与铁芯饱和磁通、剩磁的大小,合 闸时刻都有很大关系。
三、励磁涌流的鉴别方法
1. 二次谐波制动原理
(1)常用判别式: I 2 / I1 k
其中:I2 为二次谐波的幅值,I1 为基波的幅值; k 通常取 0.15~0.20 左右(运行经验)
一般采用或门制动的方式,即三相中有一相二次谐 波含量超过此定值就闭锁差动保护。
max (I2F / I1F ) k
F取为A、B、C
三、励磁涌流的鉴别方法
1. 二次谐波制动原理
(2)存在的问题:
现代变压器铁心饱和点低而剩磁大,二次谐波含量可能 低于10%,K值整定困难;
由于超高压输电线路分布电容的影响,变压器内部故障时 短路电流谐波含量增加,造成保护延时动作。
三、励磁涌流的鉴别方法
2.间断角原理
判据1:当差流的间断角 J 65o时判为励磁涌流,闭锁差动
(2)剩磁的大小和方向 剩磁较大时,暂态磁通较大,涌流也较大。
3. 影响励磁涌流的因素
(3)饱和磁通 变压器越易饱和,励磁涌流越大。
(4)TA饱和
基波电流变小,I2 / I1 增大;
间断角变小,甚至消失。
二、 励磁涌流的特征
1. 励磁涌流的幅值大
远远大于变压器正常工作时的励磁电流。其最大 值 可以达到变压器额定电流的 4~8 倍,与故障电流可以比 拟。

励磁涌流产生的原因

励磁涌流产生的原因

1. 铁芯饱和变压器铁芯是磁通的主要通道,当变压器电压过高或电流过大时,铁芯中的磁通量会超过其饱和磁通量,导致铁芯饱和。

此时,铁芯的导磁率下降,励磁电抗减小,从而产生较大的励磁涌流。

铁芯饱和程度与变压器电压、电流、频率、铁芯材料等因素有关。

2. 剩余磁通变压器在停止运行一段时间后,铁芯中会保留一定的剩余磁通。

当变压器重新投入运行时,剩余磁通与变压器投入时工作电压产生的磁通方向相同时,会导致总磁通量增大,从而产生励磁涌流。

剩余磁通的大小与变压器的工作时间、铁芯材料、温度等因素有关。

3. 系统电压相角变压器投入时,系统电压的相角对励磁涌流的大小有较大影响。

当系统电压经过零点瞬间,磁通达到峰值,此时励磁涌流最大。

随着电压相角的变化,励磁涌流的大小也会发生变化。

4. 电源系统阻抗电源系统阻抗对励磁涌流的大小和衰减速度有较大影响。

当电源系统阻抗较大时,励磁涌流的衰减速度会减慢,从而延长了涌流的时间。

电源系统阻抗与系统电压、线路长度、线路材料等因素有关。

5. 合闸操作变压器合闸操作过程中,由于断路器触头接触不良、操作速度过快等原因,可能导致合闸瞬间电压波动,从而产生较大的励磁涌流。

6. 线路参数变压器线路参数,如线路长度、线路材料、线路截面等,也会对励磁涌流产生影响。

线路长度越长,线路阻抗越大,励磁涌流越大;线路材料导电性能越好,励磁涌流越小。

7. 变压器容量变压器容量对励磁涌流的大小有较大影响。

一般而言,变压器容量越大,励磁涌流越大。

这是因为大容量变压器铁芯截面积较大,磁通密度较高,容易发生饱和。

综上所述,励磁涌流产生的原因是多方面的,包括铁芯饱和、剩余磁通、系统电压相角、电源系统阻抗、合闸操作、线路参数和变压器容量等因素。

在实际工作中,应根据具体情况采取相应的措施,降低励磁涌流的影响。

变压器合闸时的励磁涌流

变压器合闸时的励磁涌流

变压器合闸时的励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。

当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。

2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。

2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。

因此,在开始瞬间衰减很快,以后逐渐减慢,经~1s后其值不超过~In。

3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。

4)励磁涌流的数值很大,最大可达额定电流的8~10倍。

当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。

3 励磁涌流的大小合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。

如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。

在这种情况下,变压器不会产生励磁涌流。

合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。

可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。

因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。

这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。

铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。

因此,在电压瞬时值为零时合闸情况最严重。

虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。

变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。

变压器空载合闸励磁涌流及其抑制措施

变压器空载合闸励磁涌流及其抑制措施

变压器空载合闸励磁涌流及其抑制措施随着低压隔离变压器容量的不断增大,空载合闸励磁涌流的危害愈发严重,甚至严重影响了大容量低压隔离变压器的应用。

由于变压器铁芯材料励磁特性具有非线性特性,当铁芯磁通低于饱和时也就是变压器处于处于空载的稳态运行时,励磁电流是十分小的,仅占额定电流的0.2%~1%。

但是,当变压器空载合闸时,就会收到变压器铁芯剩余励磁及当变压器刚刚进行初载合闸时初相角所带来的随机性,而导致铁芯磁通逐渐趋于饱和状态,产生较大幅度值的励磁涌流其最大的峰值甚至可以达到变压器标准额定电流的6~8倍。

发生如此大的励磁涌流,必然会造成电网电压的不断波动,造成变压器的继电保护错误动作,从而诱发操作过电压,给电力电气设备带来严重的安全隐患。

为了有效抑制变压器空载合闸产生的励磁涌流,可以采取以下5种措施:一、变压器低压侧并联电容法在变压器低压侧并联一定的电容,变压器低压侧产生的磁通与高压侧磁通极性相反,对主磁通起去磁作用,从而达到抑制励磁涌流的目的。

二、在变压器的输入端串联电阻变压器合闸时,在变压器的输入端与电网间串联适当电阻可以限制冲击电流,串联电阻法能有效限制合闸冲击电流。

三、控制三相开关的合闸速断由于合闸瞬间外施交流电压的峰值为最大值时,变压器不会产生励磁涌流的特点,通过控制三相开关合闸的角度抑制励磁电流。

四、内插接地电阻由于变压器空载合闸时三相励磁涌流不平衡,在三相变压器的中性点处连接一个接地电阻,来抑制变压器的励磁涌流。

五、在升压变低压侧安装变压器合闸涌流一体化抑制装置变压器合闸涌流一体化抑制装置是基于电感线圈遵循磁链守恒原理,在变压器内部无剩余磁通时,选择在电压峰值,磁通为0时合闸将有效的避免涌流的产生;而在变压器内部有剩余磁通时,若能得知剩磁的极性和数值,在预期磁通等于剩磁通电压角度合闸,将有效的避免涌流的产生。

了解了变压器空载合闸励磁涌流及其抑制措施,有助于抑制变压器励磁涌流。

时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。

变压器励磁涌流及鉴别方法

变压器励磁涌流及鉴别方法

变压器励磁涌流及鉴别方法变压器励磁涌流是指在变压器接通电源时,励磁电流瞬时增大的现象。

励磁涌流的存在会给变压器的运行带来一些问题,如变压器铁心和线圈的温升增加、损耗增加、噪声增大等。

因此,对变压器励磁涌流的鉴别和控制非常重要。

首先,需要理解变压器励磁涌流的原因。

当变压器首次通电或重新通电时,因为铁心和线圈都处于剩磁状态,当励磁电流突然通过时,会产生涌流现象。

这是因为当励磁电流突变时,铁心和线圈的电磁场需要时间来建立,而在这个过程中,电流会增大。

对于励磁涌流的鉴别,可以采取以下几种方法:1.观察电流波形:励磁涌流一般为短暂的高幅值电流,如果在接通电源后出现电流突变、尖顶或波形不规则的情况,说明存在励磁涌流现象。

2.测量涌流电流:利用电流互感器等装置测量接通电源后的涌流电流幅值和时间,如果幅值较大且持续时间较长,也可鉴别励磁涌流的存在和大小。

3.算法鉴别:通过计算和分析接通电源后的电流波形和幅值,可以采用一些算法来鉴别励磁涌流。

例如,可以通过监测电流的突变率、上升时间、频率谱等特征参数,利用滤波、积分等算法进行判定。

对于变压器励磁涌流的控制,可以采取以下几种方法:1.采用预磁饱和变压器:预磁饱和变压器是一种特殊的变压器,其次级绕组先与直流电源接通,产生饱和磁通,然后再从精确整流变压器中加入正弦交流电源,使得饱和磁通随着交流电源的加入逐步减小。

这样可以有效降低励磁涌流的大小和影响。

2.增加限流电阻:可以在变压器绕组电路中增加限流电阻,通过限制励磁电流的上升速度来控制涌流。

3.采用细分启动方式:将变压器的绕组分成多个段,逐段启动。

通过控制每段绕组的接通时间和顺序,可以有效地控制励磁涌流。

4.使用变压器励磁控制装置:现代变压器通常配备励磁控制装置,通过监测和调整电流波形和幅值等参数,自动控制励磁涌流的大小和时间。

需要注意的是,励磁涌流的存在是正常的,只要涌流电流不超过变压器的额定值,并且持续时间不过长,一般不会对变压器的安全和稳定运行产生太大的影响。

变压器合闸涌流的产生及剩磁对其的影响?

变压器合闸涌流的产生及剩磁对其的影响?

变压器合闸涌流的产生及剩磁对其的影响?当变压器合闸励磁涌流较大时,在合闸时将导致断路器出现跳闸现象,严重时,还会引起断路器的烧毁。

由于励磁涌流幅值很大且仅流经变压器电源侧,将引起变压器纵差动保护产生很大的差流,导致差动保护误动作跳闸。

想要抑制变压器合闸涌流,首先来了解变压器合闸涌流是如何产生的?变压器在空载合闸投入电网时在其绕组中产生的暂态电流。

若变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,使铁芯瞬间饱和,因此产生极大的冲击励磁电流也叫励磁涌流或者合闸涌流。

励磁涌流最大峰值可达到变压器额定电流的6-8倍。

由于变压器合闸励磁涌流在空载合闸时,变压器铁芯中的磁通不能突变,导致励磁磁通除周期分量外产生直流分量。

到约1/2周期时,周期分量与直流分量磁通相加达到最大值。

如果合闸瞬间铁芯无剩磁,电压经过零值,则这个最大值接近周期分量磁通幅值的两倍。

如果合闸瞬间铁芯有剩磁,那么当剩磁方向与周期分量方向相同时,将削弱这个最大值,当剩磁方向与周期分量方向相反时,将增大这个最大值。

当剩磁方向与周期分量方向相反同时电压经过零值时,这个最大值接近周期分量磁通幅值的两倍再加上剩余磁通。

在这种情况下,铁芯必将严重饱和,励磁涌流大大增加,甚至会发生严重畸变。

由此可见,剩磁对合闸涌流的影响是很大的,不仅可以增大合闸涌流还可以削弱合闸涌流。

此外,变压器合闸励磁涌流其大小不仅与剩磁大小有关,还与电源容量、电压、合闸相角、铁芯饱和特性等因素有关,分析时要综合考虑。

了解了变压器合闸涌流的产生及剩磁对变压器合闸涌流的影响,有助于抑制变压器励磁涌流。

时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器合闸时的励磁涌流
1 概述
变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。

当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。

2 励磁涌流的特点
当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:
1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。

2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。

因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。

3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。

4)励磁涌流的数值很大,最大可达额定电流的8~10倍。

当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。

3 励磁涌流的大小
3.1 合闸瞬间电压为最大值时的磁通变化
在交流电路中,磁通Φ总是落后电压u90°相位角。

如果在合闸
瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。

在这种情况下,变压器不会产生励磁涌流。

3.2 合闸瞬间电压为零值时的磁通变化
当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。

可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。

因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。

这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。

铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。

因此,在电压瞬时值为零时合闸情况最严重。

虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上
面论述的两种极限情况之间。

变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。

由于在最不利的合闸瞬间,铁芯中磁通密度最大值可达2Φm,这时铁芯的饱和情况将非常严重,因而励磁电流的数值大增,这就是变压器励磁涌流的由来。

励磁涌流比变压器的空载电流大100倍左右,在不考虑绕组电阻的情况下,电流的峰值出现在合闸后经过半周的瞬间。

但是,由于绕组具有电阻,这个电流是要随时间衰减的。

对于容量小的变压器衰减得快,约几个周波即达到稳定,大型变压器衰减得慢,全部衰减持续时间可达几十秒。

综上所述,励磁涌流和铁芯饱和程度有关,同时铁芯的剩磁和合闸时电压的相角可以影响其大小。

4 励磁涌流的影响
励磁涌流对变压器并无危险,因为这个冲击电流存在的时间很短。

当然,对变压器多次连续合闸充电也是不好的,因为大电流的多次冲击,会引起绕组间的机械力作用,可能逐渐使其固定物松动。

此外,励磁涌流有可能引起变压器的差动保护动作,故进行变压器操作时应当注意。

相关文档
最新文档