微生物的遗传变异和育种

合集下载

微生物遗传变异与育种

微生物遗传变异与育种
根据感受态建立的方式,可以分为: ①自然遗传转化 ②人工转化
(二)转导(transduction)
1.转导
➢细菌细胞间进行遗传交换的另一种方式,指通过缺陷噬菌 体的媒介,将供体细胞的小片段DNA携带到受体细胞中,通 过交换与整合,使后者获得前者部分遗传性状的现象。
➢转导子:由转导作用获得部分新性状的重组细胞。 ➢转导噬菌体:能将一个宿主(细菌)的部分染色体或质粒 DNA带到另一个宿主(细菌)的噬菌体。
(一)转化(transformation)
1、转化
R型活菌+S型死菌→ →S型活菌 ➢定义:受体菌自然或在人工技术作用下直接摄取来自供体菌 的游离DNA片段,并把它整合到自己的基因组中,而获得部 分新的遗传性状的基因转移过程,称为转化。转化后的的受 体菌称为转化子(transformant)。 ➢有关名词:
2.转导的种类
➢普遍转导(generalized transduction):通过少数完全缺陷 噬菌体对供体菌基因组上任何小片段进行“误包”而将其遗 传性状转移给受体菌的现象。 ➢局限性转导:也称局限转导,指通过部分缺陷的温和噬菌 体把供体菌的少数特定基因携带到受体菌中,并与后者的基 因整合、重组形成转导子的现象。 ➢溶源转变:当温和噬菌体感染宿主而使其发生溶源化时, 因噬菌体的基因整合到宿主的核基因组上,而使后者获得了 除免疫性以外的新性状的现象,称为溶源转变。
原生质体融合的优点: ➢ 可以提高重组率 ➢ 双亲可以少带标记或不带标记 ➢ 可进行多亲本融合 ➢ 有利于不同种间、属间微生物的杂交 ➢ 通过原生质体融合提高产量 发展点:有关原生质体融合的遗传机制,尚未研究清楚, 目前还在探索中。
➢细菌:G – 较为多见如E. coli等最为常见。 ➢放线菌:Streptomyces 、Nocardia。 ➢接合还可发生在不同属的菌种之间。 ➢E. coli的F因子:决定性别的质粒,属于附加体(episome), 可以通过接合作用获得,也可以通过丫啶类化合物、溴化乙锭 或丝裂霉素C的处理而消除。

第八章-微生物的遗传变异与育种答案

第八章-微生物的遗传变异与育种答案

第七章习题答案一、名词解释1.转座因子:具有转座作用得一段DNA序列、2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌得现象称为普遍转导。

3.准性生殖:就是一种类似于有性生殖,但比它更为原始得两性生殖方式,这就是一种在同种而不同菌株得体细胞间发生得融合,它可不借减数分裂而导致低频率基因重组并产生重组子、4.艾姆氏试验:就是一种利用细菌营养缺陷型得回复突变来检测环境或食品中就是否存在化学致癌剂得简便有效方法5.局限转导:通过部分缺陷得温与噬菌体把供体得少数特定基因携带到受体菌中,并与后者得基因整合,重合,形成转导子得现象、6.移码突变:诱变剂使DNA序列中得一个或几个核苷酸发生增添或缺失,从而使该处后面得全部遗传密码得阅读框架发生改变、7、感受态:受体细胞最易接受外源DNA片段并能实现转化得一种生理状态、8、高频重组菌株:该细胞得F质粒已从游离态转变为整合态,当与F菌株相接合时,发生基因重组得频率非常高、9、基因工程:通过人工方法将目得基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新得遗传性状得一种育种措施称基因工程。

10、限制性内切酶:就是一类能够识别双链DNA分子得特定序列,并能在识别位点内部或附近进行切割得内切酶。

11.基因治疗:就是指向靶细胞中引入具有正常功能得基因,以纠正或补偿基因得缺陷,从而达到治疗得目得。

12.克隆:作为名词,也称为克隆子,它就是指带有相同DNA序列得一个群体可以就是质粒,也可以就是基因组相同得细菌细胞群体。

作为动词,克隆就是指利用DNA体外重组技术,将一个特定得基因或DNA序列插入一个载体DNA分子上,进行扩增。

二、填空1.微生物修复因UV而受损DNA得作用有光复活作用与切除修复、2.基因组就是指一种生物得全套基因。

3.基因工程中取得目得基因得途径有 _____3_____条。

4.基因突变可分为点突变与染色体突变两种类型。

第七章微生物的遗传变异和育种2

第七章微生物的遗传变异和育种2

10-6~10-9
若干细菌某一性状的突变率
菌名
突变性状
突变率
Escherichia coil (大肠杆菌)
抗T1噬菌体
3×10-8
E.coil
抗T3噬菌体
1×10-7
E.coil
不发酵乳糖
1×10-10
E.coil
Staphylococcus aureus(金黄色葡 萄球菌)
S.aureus
抗紫外线 抗青霉素 抗链霉素
间接引起置换的诱变剂:
引起这类变异的诱变剂都是一些碱基类似物,如5-溴尿嘧 啶(5-BU)、5-氨基尿嘧啶(5-AU)、8-氮鸟嘌呤 (8-NG)、2-氨基嘌呤(2-AP)和6-氯嘌呤(6-CP) 等。它们的作用是通过活细胞的代谢活动掺入到DNA 分子中后而引起的,故是间接的。
(2)移码突变(frame-shift mutation 或phase-shift mutation)
(四) 基因突变的自发性和不对应性的证明
一种观点:突变是“定向变异”,是“驯化”,是由环 境因子诱发出来的;
另一种观点;基因突变是自发的,且与环境因素是不对 应的,后者只不过是选择因素;
1、 变量试验(fluctuation test) 又称波动试验或彷徨试 验。
2、涂布试验(Newcombe experiment) 3、平板影印培养试验(replica plating) 1952年,J.Lederberg夫妇
2、定向培育优良品种:指用某一特定因素长期处理某微生 物的群体,同时不断的对它们进行移种传代,以达到积 累并选择相应的自发突变株的目的。由于自发突变 的 频 率较低,变异程度较轻微,所以培育新种的过程十分缓 慢。与诱变育种、杂交育种和基因 工程技术相比,定向 培育法带有“守株待兔”的性质,除某些抗性突变外, 一般要相当长的时间

微生物的遗传变异与育种答案解析

微生物的遗传变异与育种答案解析

第七章习题答案一.名词解释1.转座因子:具有转座作用的一段DNA序列.2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌的现象称为普遍转导。

3.准性生殖:是一种类似于有性生殖,但比它更为原始的两性生殖方式,这是一种在同种而不同菌株的体细胞间发生的融合,它可不借减数分裂而导致低频率基因重组并产生重组子.4.艾姆氏试验:是一种利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌剂的简便有效方法5.局限转导:通过部分缺陷的温和噬菌体把供体的少数特定基因携带到受体菌中,并与后者的基因整合,重合,形成转导子的现象.6.移码突变:诱变剂使DNA序列中的一个或几个核苷酸发生增添或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变.7.感受态:受体细胞最易接受外源DNA片段并能实现转化的一种生理状态.8. 高频重组菌株:该细胞的F质粒已从游离态转变为整合态,当与F- 菌株相接合时,发生基因重组的频率非常高.9.基因工程:通过人工方法将目的基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新的遗传性状的一种育种措施称基因工程。

10.限制性内切酶:是一类能够识别双链DNA分子的特定序列,并能在识别位点内部或附近进行切割的内切酶。

11.基因治疗:是指向靶细胞中引入具有正常功能的基因,以纠正或补偿基因的缺陷,从而达到治疗的目的。

12.克隆:作为名词,也称为克隆子,它是指带有相同DNA序列的一个群体可以是质粒,也可以是基因组相同的细菌细胞群体。

作为动词,克隆是指利用DNA体外重组技术,将一个特定的基因或DNA序列插入一个载体DNA分子上,进行扩增。

二. 填空1.微生物修复因UV而受损DNA的作用有光复活作用和切除修复.2.基因组是指一种生物的全套基因。

3.基因工程中取得目的基因的途径有 _____3_____条。

4.基因突变可分为点突变和染色体突变两种类型。

微生物遗传育种学

微生物遗传育种学

微生物遗传育种学
微生物遗传育种学是研究微生物的遗传变异、遗传改良及育种技术的学科。

微生物指的是细菌、真菌、病毒等单细胞生物。

微生物遗传育种学主要关注微生物在遗传水平上的变异、变异的调控机制以及如何通过遗传改良来获得具有特定性状的微生物株系。

微生物遗传育种学的研究内容包括:
1. 遗传变异的检测与分析:通过分子生物学、基因组学等技术手段,研究微生物中存在的遗传变异,探究变异的产生机制和变异位点的定位。

2. 遗传改良的策略和方法:通过基因工程、突变育种、自然选择等手段,改良微生物的遗传性状,如产量、耐受性、代谢能力等,以提高微生物在工业生产、环境修复、药物开发等方面的应用性能。

3. 突变育种的应用:通过诱变剂或辐射等方法,诱发微生物的突变,筛选出具有特定性状的突变株系,进一步进行遗传改良。

4. 基因工程的应用:通过外源基因的引入、基因的删除或修改等手段,改变微生物的基因组,使其具有特定的功能或产物。

通过微生物遗传育种学的研究与应用,可以获得具有工业、农业、医疗等方面应用潜力的微生物种类,为人类社会的发展和生活带来诸多好处。

微生物的遗传变异和育种

微生物的遗传变异和育种

第一节 微生物遗传的物质基础
三、基因表达 在所有的生物中,基因的主要功能是把遗传信息转变 为特定氨基酸顺序的多肽,从而决定生物性状的过程,这 一过程称为基因表达。基因表达包括以下两个步骤,首先 以DNA为模板,通过RNA聚合酶转录出mRNA(信使RNA), 然后将mRNA的碱基顺序翻译成由相应氨基酸顺序组成的蛋 白质(图6-1)。
第一节 微生物遗传的物质基础
(四)核苷酸 各种遗传密码子储存着各自对应的信息,而单个核苷 酸或碱基则是密码子的组成单位,是基因突变的最小单位。 从绝大多数微生物的DNA组分来看,其分别由腺苷酸、胸 苷酸、鸟苷酸和胞苷酸4种脱氧核苷酸组成。其上的碱基 分别为腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞 嘧啶(C)。
第一节 微生物遗传的物质基础
相结合。不论真核微生物的细胞核还是原核微生物细胞的 核区都是该微生物遗传信息的大本营和信息库,因此被称 为核基因组、核染色体组或简称基因组。再从细胞内的染 色体数目来看,不同的微生物的染色体数目差别很大,真 核微生物常有较多的染色体,如酵母菌属中有的种有17条 之多,而原核微生物中常只有一条裸露的环状DNA大分子 核酸,即一条染色体。
第一节 微生物遗传的物质基础
二、DNA的结构与复制 (一)DNA的结构 1953年,Watson和Crick首先提出DNA的结构模型,认 为DNA是由两条反向平行的多核苷酸组成的双螺旋结构, 两条多核苷酸链通过碱基间的氢键相结合。此结构已经扫 描隧道显微镜所证实。
第一节 微生物遗传的物质基础
(二)DNA的复制 在细胞分裂和传代的过程中,作为微生物遗传物质 的DNA必须准确无误地复制,才能使子代细胞含有相同的 遗 传 信 息 , 以 保 持 物 种 的 稳 定 。 1 9 5 8 年 , Meselson 和 Stahl用15N标记的碱基培养大肠杆菌,并定时取样分离DNA, 进行密度梯度离心。研究结果证明,DNA是以独特的半保 留方式进行复制的,即每一子代DNA分子的一条链来自亲 代,另一条链是新合成的。

微生物的遗传变异和育种

微生物的遗传变异和育种

第七章微生物的遗传变异和育种第一节微生物的遗传变异的概述遗传和变异是生物体最本质的属性之一。

所谓遗传,讲的是发生在亲子间的关系,即指生物的上一代将自己的一整套遗传因子稳定地传递给下一代的行为或功能,它具有极其稳定的特性。

而变异是指子代与亲代之间的不相似性。

遗传是相对的,变异是绝对的。

遗传保证了物种的存在和延续,而变异推动了物种的进化和发展。

在学习遗传、变异内容时,先应清楚掌握以下几个概念:(一)遗传型又称基因型,指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。

遗传型是一种内在可能性或潜力,其实质是遗传物质上所负载的特定遗传信息。

具有某遗传型的生物只有在适当的环境条件下,通过自身的代谢和发育,才能将它具体化,即产生表型。

(二)表型指某一生物体所具有的一切外表特征及内在特性的总和,是其遗传型在合适环境下通过代谢和发育而得到的具体体现。

所以,它与遗传型不同,是一种现实性。

(三)变异指在某种外因或内因的作用下生物体遗传物质结构或数量的改变,亦即遗传型的改变。

变异的特点是在群体中以极低的概率(一般为10-5~10-10)出现,性状变化的幅度大,且变化后的新性状是稳定的、可遗传的。

(四)饰变指一种不涉及遗传物质结构改变而只发生在转录、翻译水平上的表型变化。

其特点是整个群体中的几乎每一个体都发生同样变化;性状变化的幅度小;因其遗传物质不变,故饰变是不遗传的。

例如,Serratia marcescens(粘质沙雷氏菌)在25℃下培养时,会产生深红色的灵杆菌素,它把菌落染成鲜血似的。

可是,当培养在37℃下时,群体中的一切个体都不产色素。

如果重新降温至25℃,所有个体又可恢复产色素能力。

所以,饰变是与变异有着本质差别的另一种现象。

上述的S.marcescens产色素能力也会因发生突变而消失,但其概率仅10-4,且这种消失是不可恢复的。

从遗传学研究的角度来看,微生物有着许多重要的生物学特性:微生物结构简单,个体易于变异;营养体一般都是单倍体;易于在成分简单的合成培养基上大量生长繁殖;繁殖速度快;易于累积不同的最终代谢产物及中间代谢物;菌落形态特征的可见性与多样性;环境条件对微生物群体中各个体作用的直接性和均一性;易于形成营养缺陷型;各种微生物一般都有相应的病毒;以及存在多种处于进化过程中的原始有性生殖方式等。

微生物的遗传变异和育种PPT课件

微生物的遗传变异和育种PPT课件
实验设计者
1952年,美国的莱德伯格夫妇
实验材料
E.coli K12
实验过程
Lederberg 的平板培养法
(四)突变的特点
不对应性 自发性 稀有性 独立性 诱变性 稳定性 可逆性
核基因组
真核生物的 有核膜包裹的真核
(DNA+组蛋白)
原核生物的 无核膜包裹的核区
(环状双链DNA)
线粒体
真核生物的
细胞质基因 共生生物
叶绿体等
核外染色体
2um质粒等 F因子(F质粒)
R因子(R质粒)
原核生物的
Col质粒
Ti质粒 巨大质粒
降解性质粒等
原核生物的质粒
1. 质粒的定义
•指游离于原核生物核基因组以外,具有独立复制 能力的小型共价闭合环状的dsDNA分子,即 cccDNA(circular covalently closed DNA)。
4)Ti质粒 (tumor inducing plasmid)
Agrobacterium tumefaciens(根
癌土壤杆菌)从一些双子叶植物的受 伤根部侵入,最后在其中溶解,释放 出Ti质粒,其上的T-DNA片段与植物 细胞中的核染色体组发生整合,合成 正常菌株所没有的冠瘿碱类,破坏控 制细胞分裂的激素调节系统,从而使 它转变成癌细胞。
自发突变几率 一般在10-6~10-9范围内;
突变率为10-9的含义
抗性突变是最常见的突变类型;
细菌产生抗药性的途径 基因突变 抗药性质粒的转移 生理适应
由基因突变引起的抗药性的原因?
两种观点:
突变的性状与引起突变的原因间呈对应 性 — 抗性突变株的产生是由环境因素 诱发出来的,属定向变异;

微生物遗传变异和育种

微生物遗传变异和育种
明显有别于原始菌株的突变株。
★按是否比较容易、迅速地分离到发生突变的细胞 来分:
选择性突变株(selective mutant):具有选择标 记(如营养缺陷型、抗性突变型、条件致死突变 型),只要选择适当的环境条件,如培养基、温度、 pH值等,就比较容易检出和分离到。
非选择性突变株(non-selective mutant):无选 择标记(如产量突变型、抗原突变型、形态突变 型),能鉴别这种突变体的惟一方法是检查大量菌 落并找出差异。
免疫蛋白,从而对大肠杆菌素有免疫作用,不 受其伤害。
4.4 Ti质粒(tumor inducing plasmid)
• 即诱癌质粒。 • 存在于根癌土壤杆菌(Agrobacterium
tumefaciens)中,可引起许多双子叶植物的根癌。
• 当细菌侵入植物细胞中后,在其细胞中溶解,把细
菌的DNA释放到植物细胞中。这时,含有复制基 因的Ti质粒的T-DNA小片段与植物细胞中的核染 色体发生整合,合成正常植株所没有的冠瘿碱类, 破坏控制细胞分裂的激素调节系统,从而使它转变 成癌细胞。
子进行转化的生理状态。
,交换重组
感受态:促进 自溶素的表达, 使细胞表面的 DNA结合蛋白 和核酸酶裸露 出来,从而使 其能与外源 DNA结合并对 DNA进行切割, 只有一条链能 与特异蛋白结 合进入细胞。 另一条链被核 酸酶降解,产 生的能量用于 核酸链的进入。
鉴定:电镜观察、电泳、密度梯度离心、限制性酶 切图谱等方法
3 质粒的种类:
1、大肠杆菌的F因子 2、细菌抗药质粒(R因子) 3、大肠杆菌素质粒(Col因子) 4、Ti质粒 5、降解质粒 6、毒性质粒
4.1 F–因子(fertility factor):又称致

微生物第七章总结

微生物第七章总结
(三)植物病毒重建实验:将TMV(烟草花叶病毒)放在一定浓度的苯酚溶液中振荡,就能将它的蛋白质外壳与RNA核心相分离。结果发现裸露的RNA也能感染烟草,并使其患典型症状,而且在病斑中还能分离到完整的TMV粒子。
二,遗传物质在微生物细胞内存在的部位和方式
(一)7个水平
1.细胞水平:真核和原核微生物的大部分DNA都集中在细胞核或核区中。
1.光复活作用:把经UV照射后的微生物立即暴露于可见光下时,就可以出现明显降低其死亡率的现象,即光复活作用。经了解,经UV照射后带有嘧啶二聚体的DNA分子,在黑暗下会被一种光激活酶——光解酶结合,这种复合物在300-500nm可见光下时,此酶会因获得光能而激活,并使二聚体重新分解成单体。
2.切除修复:是活细胞内一种用于被UV等诱变剂损伤后DNA的修复方式之一,又称暗修复。,这是一种不依赖可见光,只通过酶切作用去除嘧啶二聚体,随后重新合成一段正常DNA链的核酸修复方式。
1.Luria等的变量试验2.Newcombe的涂布试验3.Lederberg等的影印平板培养法。实验过程详见书P204-206
(五)基因突变及其机制:基因突变的机制是多样的,可以是自发的或诱发的,诱发的又可分仅影响一对碱基对的点突变和影响一段染色体的畸变。
1. 诱发突变:简称诱变,是指通过人为的方法,利用物理,化学或生物因素显著提高基因自发突变频率的手段。凡具有诱变效应的任何因素,都称为诱变剂。
1.诱变育种的基本环节:见书P214
2.诱变育种中的几个原则:
(1)选择简单有效的诱变剂 艾姆氏实验:是一种利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌剂的方法。
(2)挑选优良的出发菌株 出发菌株:就是用于育种的原始菌株。

微生物育种的方法和特点

微生物育种的方法和特点

微生物育种的方法和特点
微生物育种是通过选择、收集、交配和培养微生物来改良其遗传特性和适应性的生物学过程。

以下是微生物育种的主要方法和特点:
1. 选择法:选择是将不同性状的微生物进行交配,以获得具有特
定性状的后代的方法。

选择法通常使用人工筛选和遗传统计学方法。

2. 遗传变异法:遗传变异是指微生物基因组中的DNA序列发生
了改变,从而导致微生物表现出不同的性状。

遗传变异可以通过基因
重组、基因突变和基因组转移等方式实现。

3. 营养代谢法:营养代谢法是通过对微生物代谢产物进行分析,
寻找新的营养物质和代谢途径,从而改善微生物的适应性和产量。

4. 培养法:培养法是将微生物通过培养基培养来改良其性状的
方法。

培养法可以通过改进培养基成分、培养条件、培养温度等方式来改善微生物的性能和产量。

5. 快速检测法:快速检测法是指通过现代生物技术,如基因测序、DNA测序等,对微生物基因组和代谢产物进行分析,以便快速识别和筛选具有特定性状的微生物。

微生物育种的特点有:
1. 高效性:微生物育种可以快速地选择出具有优异性状的微生物,并进行遗传改良,从而提高微生物的生产力和适应性。

2. 多样性:微生物育种可以通过遗传变异和营养代谢等方式来改善微生物的性能和产量,从而创造出具有多样性的新品种。

3. 可操作性:微生物育种可以采用实验室和工厂化生产等多种方式,从而使其操作更加方便和高效。

4. 可预测性:通过遗传变异和营养代谢等方法,可以预测新的微生物新品种的性状和性能,以便进行生产和改良。

第八章微生物的遗传变异与育种ppt课件

第八章微生物的遗传变异与育种ppt课件

(8) 易于形成营养缺陷型;
(9) 各种微生物一般都有相应的病毒;
(10) 存在多种处于进化过程中的原始有性 其它许多主要的生物学基本理 论问题中最热衷的研究对象。
❖对微生物遗传规律的深入研究,不仅促进了现代分子生物 学和生物工程学的发展,而且为育种工作提供了丰富的理 论基础,促使育种工作从不自觉到自觉、从低效到高效、 从随机到定向、从近缘杂交到远缘杂交的方向发展。
(movable gene)。
转座因子
定义:可在DNA链上改变自身位置的一段DNA序列。
原核生物中的转座子类型 转座的遗传效应
插入(IS)序列
转座子(Tn)
特殊病毒(Mu噬 菌体)
插入序列(IS,insertion sequence)
分子量最小(仅0.7~1.4kb),只有引起转座的转座酶基 因而不含其它基因,具有反向末端重复序列。已在染色体、 F因子等质粒上发现IS序列。E . coli的F因子和核染色体组 上有一些相同的IS,通过这些同源序列间的重组,就可使 F因子插入到E . coli的核染色体组上,形成Hfr菌株。因IS 在染色体组上插入的位置和方向的不同,其引起的突变效 应也不同。IS被切离时引起的突变可以回复,如果因切离 部位有误而带走IS以外的一部分DNA序列,就会在插入部 位造成缺失,从而发生新的突变。
第八章 微生物的遗传变异与育种
➢ 第一节 遗传变异的物质基础 ➢ 第二节 微生物的基因组结构 ➢ 第三节 质粒和转座因子 ➢ 第四节 基因突变及修复 ➢ 第五节 基因重组 ➢ 第六节 微生物育种 ➢ 第七节 菌种的衰退、复壮与保藏
遗传与变异的概念
遗传和变异是生物体的最本质的属性之一。
❖ 遗传:亲代将自身一整套遗传因子传递给下一代的行为和 功能,

微生物遗传和变异

微生物遗传和变异

微生物的遗传变异和育种遗传 (inheritance) :是发生在亲子之间即上下代间的关系,即指上一代生物如何将自身的一套遗传基因稳定地传递给下一代的行为或功能,它具有极其稳定的保守特性。

变异:指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变,亦即遗传型的改变。

注:遗传和变异是生命的最本质特性之一(1)遗传型:又称基因型,指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。

是一种内在的可能性或潜力,其实质是遗传物质上所负载的特定遗传信息。

(2)表现型:具有一定遗传型的个体,在特定环境条件下通过生长发育所表现出来的形态等生物学特征的总和。

注:表型是由遗传型所决定,但也和环境有关。

(3)表型饰变:即外表的修饰性改变,是发生在转录、转译水平上的变化,不涉及遗传物质的结构改变。

特点:暂时性、不可遗传性、表现为全部个体的行为(4)遗传型变异(基因变异、基因突变):遗传物质改变,导致表型改变特点:遗传性、群体中极少数个体的行为微生物是遗传学研究中的明星:(1)微生物细胞结构简单,营养体一般为单倍体,方便建立纯系。

(2)很多常见微生物都易于人工培养,快速、大量生长繁殖。

(3)对环境因素的作用敏感,易于获得各类突变株,操作性强。

第一节遗传变异的物质基础一、核酸为遗传的物质基础生物分子:糖类、脂类、蛋白质、核酸1、肺炎双球菌实验证明了:DNA是转化所必需的转化因子;2、噬菌体感染实验证明了:遗传物质是核酸(RNA)而非蛋白质;3、植物病毒的重建实验证明了:在RNA病毒中,遗传物质基础也是核酸,只不过是RNA罢了。

通过上述三个实验证明了:只有核酸才是负载遗传信息的真正物质基础二、遗传物质在微生物细胞内存在的部位和方式1、细胞水平:在细胞水平上,真核微生物和原核微生物的大部分DNA都集中在细胞核或核区中。

分为原核微生物基因组、真核微生物基因组。

2、细胞核水平:真核生物的细胞核是有核膜包囊,形态固定的真核,核内的DNA与组蛋白结合在一起形成一种在光学显微镜下能见的核染色体;(1)基因组(genome):一个物种的单倍体内的所有染色体及其所包含的遗传信息的总称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档