2017年安徽省中考数学试卷
2017年中考数学真题试题(含答案)
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年中考数学真题试题与答案(word版)
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年安徽省第一卷中考数学交流试卷
2017年安徽省第一卷中考数学交流试卷(1)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(4分)在﹣2015,﹣2016,﹣2017,﹣2018四个数中,最小的数是()A.﹣2015 B.﹣2016 C.﹣2017 D.﹣20182.(4分)下列计算中,错误的是()A.﹣x2•x3=﹣x5 B.(x﹣1)2=x2﹣1 C.x6÷(﹣x3)=﹣x3D.x2﹣2x2=﹣x2 3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×1044.(4分)在如图所示的四个几何体中,俯视图是圆的几何体共有()A.1个 B.2个 C.3个 D.4个5.(4分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°6.(4分)把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A.p=﹣2,q=5 B.p=﹣2,q=3 C.p=2,q=5 D.p=2,q=37.(4分)2017年某市中考体育考试包括必考和选考两项.必考项目:男生1000米跑;女生800米跑;选考项目(五项中任选两项):A.掷实心球、B.篮球运球、C.足球运球、D.立定跳远、E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是()A.B.C.D.8.(4分)已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或49.(4分)如图,▱ABCD中,点E是边DC的一个三等分点,AE交对角线BD于点F,则S△DEF :S△DAF等于()A.1:2 B.2:3 C.1:4 D.1:310.(4分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x2,0),且1<x2<2,与y轴正半轴的交点在(0,2)下方,在下列结论中:①b<0,②4a﹣2b+c=0,③2a﹣b+1<0,④b<a<c.其中正确结论是()A.①②B.③④C.①②③D.①②④二、填空题:本大题共4小题,每小题5分,共20分).11.(5分)分解因式:x﹣4x3=.12.(5分)函数y=的自变量x的取值范围为.13.(5分)如图,正方形ABCD的对角线AC长为2,若直线满足:①点C到直线l的距离为1;②B、D两点到直线l的距离相等,那么符合题意的直线l有条.14.(5分)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,则:①PD=DQ;②∠Q=30°;③DE=AC;④AE=CQ.其中正确的结论是.(把所有正确结论的序号都写在横线上).三、本大题共2小题,共48分.解答写出文字说明、证明过程或演算过程.15.(8分)计算:﹣2﹣1+(1﹣)0﹣4cos45°.16.(8分)解不等式组:,并写出符合不等式组的整数解.四、本题共2小题,每小题8分,满分16分.17.(8分)如图,平面直角坐标系建立在边长为1个单位长度的小正方形组成的网格中,格点△ABC的顶点在网格线的交点上,将△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1.(1)直接写出旋转中心P的坐标;(2)画出△A2B2C2,使△A2B2C2与△A1B1C1关于x轴对称,并写出C2的坐标.18.(8分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.五、本题共2小题,每小题10分,满分20分.19.(10分)如图,某中学有一块三角形状的花圃ABC,现可直接测量到∠B=45°,∠C=30°,AC=8米.请你求出这块花圃的面积.(结果可保留根号)20.(10分)一款关于儿童成长的图书十分畅销,某书店第一次批发1800元这种图书(批发价是按书定价4折确定),几天内销售一空,又紧急去市场再购1800元这种图书.因为第二次批发正赶上举办图书艺术节,每本批发价比第一次降低了10%,这样所购该图书数量比第一次多20本.(1)书店第二次批发了多少本图书?(2)如果书店两次均按该书定价7折出售,试问该书店这两次售书总共获利多少元?六、本题满分12分.21.(12分)如今,留守儿童的监护问题已成为社会关注的焦点.我省相关部门就某县儿童监护情况进行了调查,将调查出现的情况分四类,即A类:委托他人监护或父母监护能力缺失;B类:隔代监护;C类:父母一方在家监护;D类:父母双方在家监护.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生儿童?(2)这次调查中B类儿童有人;扇形统计图中D类儿童数所占的圆心角是度.(3)根据最新的文件精神,符合A、B两种类型的儿童被定义为留守儿童,请你估计该县50000名儿童中,留守儿童有多少人?七、本题满分12分.22.(12分)某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:x+24②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.八、本题满分14分.23.(14分)如图,△ABC中,∠C=90°,AC=3,BC=4,在线段AB上,动点M 从点A出发向点B做匀速运动,同时动点N从B出发向点A做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做AB的垂线,分别交两直角边于点D、E,连接DE,若运动时间为t秒,在运动过程中四边形DENM总为矩形(点M、N重合除外).(1)图中共有组不同的相似三角形(不包括点M、N相遇后出现的三角形);(2)若点M的运动速度为每秒1个单位长度,求点N的运动速度;(3)当t为多少秒时,矩形DENM为正方形?2017年安徽省第一卷中考数学交流试卷(1)参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(4分)(2017•安徽模拟)在﹣2015,﹣2016,﹣2017,﹣2018四个数中,最小的数是()A.﹣2015 B.﹣2016 C.﹣2017 D.﹣2018【解答】解:﹣2018<﹣2017<﹣2016<﹣2015,故最小的数是﹣2018.故选:D.2.(4分)(2017•安徽模拟)下列计算中,错误的是()A.﹣x2•x3=﹣x5 B.(x﹣1)2=x2﹣1 C.x6÷(﹣x3)=﹣x3D.x2﹣2x2=﹣x2【解答】解:A、﹣x2•x3=﹣x5,不符合题意;B、(x﹣1)2=x2﹣2x+1,符合题意;C、x6÷(﹣x3)=﹣x3,不符合题意;D、x2﹣2x2=﹣x2,不符合题意.故选:B.3.(4分)(2017•安徽模拟)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104【解答】解:将902万用科学记数法表示为:9.02×106.故选:C.4.(4分)(2017•安徽模拟)在如图所示的四个几何体中,俯视图是圆的几何体共有()A.1个 B.2个 C.3个 D.4个【解答】解:从上边看圆柱、球的图形是圆,故B符合题意;故选:B.5.(4分)(2017•安徽模拟)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D 的度数是()A.24°B.26°C.34°D.22°【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°﹣∠CAB=64°,∵∠E=40°,∴∠D=∠ACD﹣∠E=24°.故选:A.6.(4分)(2017•安徽模拟)把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A.p=﹣2,q=5 B.p=﹣2,q=3 C.p=2,q=5 D.p=2,q=3【解答】解:∵x2﹣4x=﹣1,∴x2﹣4x+4=﹣1+4,即(x﹣2)2=3,则p=﹣2,q=3,故选:B.7.(4分)(2017•安徽模拟)2017年某市中考体育考试包括必考和选考两项.必考项目:男生1000米跑;女生800米跑;选考项目(五项中任选两项):A.掷实心球、B.篮球运球、C.足球运球、D.立定跳远、E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是()A.B.C.D.【解答】解:根据题意,画出树状图如图所示.共有20种选择,其中选择立定跳远、一分钟跳绳的有两种.∴小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是=.故选D.8.(4分)(2017•安徽模拟)已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或4【解答】解:∵点C是劣弧的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD==1,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5,故选C.9.(4分)(2017•安徽模拟)如图,▱ABCD中,点E是边DC的一个三等分点,AE交对角线BD于点F,则S△DEF:S△DAF等于()A.1:2 B.2:3 C.1:4 D.1:3【解答】解:设DE=a,EC=2a,则CD=3a,∵四边形ABCD是平行四边形,∴AB=CD=3a,DE∥AB,∴△DEF∽△BAF,∴===,∴==,故选D.10.(4分)(2017•安徽模拟)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x2,0),且1<x2<2,与y轴正半轴的交点在(0,2)下方,在下列结论中:①b<0,②4a﹣2b+c=0,③2a﹣b+1<0,④b<a<c.其中正确结论是()A.①②B.③④C.①②③D.①②④【解答】解:画出图象如图,∵开口向下,∴a<0,∵x=<0,∴b<0,∴①正确;根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x2,0),且1<x2<2,与y轴的正半轴的交点在(0,2)的下方,把x=﹣2代入得:4a﹣2b+c=0,∴②正确;由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴③错误;∵图象与x轴两交点为(﹣2,0),(x2,0),且1<x2<2,对称轴x==﹣,则对称轴﹣<﹣<0,且a<0,∴﹣a>﹣b∴a<b<0,由抛物线与y轴的正半轴的交点在(0,2)的下方,得c>0,即a<b<c,∴④错误;所以正确的选项为①②.故选A.二、填空题:本大题共4小题,每小题5分,共20分).11.(5分)(2017•安徽模拟)分解因式:x﹣4x3=x(1+2x)(1﹣2x).【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故答案为:x(1+2x)(1﹣2x)12.(5分)(2008•兰州)函数y=的自变量x的取值范围为x≥﹣1且x≠1.【解答】解:根据题意得:,解得:x≥﹣1且x≠1.13.(5分)(2017•安徽模拟)如图,正方形ABCD的对角线AC长为2,若直线满足:①点C到直线l的距离为1;②B、D两点到直线l的距离相等,那么符合题意的直线l有4条.【解答】解:如图所示,∵四边形ABCD是正方形,AC=2,∴AB=BC=CD=AD=2,连接BD,有两条直线与BD平行分别在点C的两侧,且点C 到它的距离为1;另外两条是过正方形对边中点的直线,如图所示,共有4条,故答案为4.14.(5分)(2017•安徽模拟)如图,等边△ABC的边AB上一点P,作PE⊥AC 于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,则:①PD=DQ;②∠Q=30°;③DE=AC;④AE=CQ.其中正确的结论是①③④.(把所有正确结论的序号都写在横线上).【解答】解:①过P作PF∥BQ,交AC于F,∵△ABC是等边三角形,∴∠ACB=∠A=60°,∵PF∥BQ,∴∠AFP=∠ACB=60°,∠PFD=∠QCD,∴△AEP是等边三角形,∴PF=PA,∵PA=CQ,∴PF=CQ,在△PFD和△QCD中,∵,∴△PFD≌△QCD(AAS),∴PD=DQ;所以①结论正确;②由①得:△PFD≌△QCD,∴∠DPF=∠Q,∵△APF等边三角形,∴∠APF=60°,∵QP与AB不一定垂直,∴∠Q不一定为30°,所以②结论不正确;③∵△APF是等边三角形,PE⊥AC,∴EF=AF,∵△PFD≌△QCD,∴DF=DC,∴DF=FC,∴DE=EF+DF=AF+FC=AC,所以③结论正确;④在Rt△AEP中,∠A=60°,∴∠APE=30°,∴AE=AP,∴AE=CQ,所以④结论正确;所以本题结论正确的有:①③④;故答案为:①③④.三、本大题共2小题,共48分.解答写出文字说明、证明过程或演算过程.15.(8分)(2017•安徽模拟)计算:﹣2﹣1+(1﹣)0﹣4cos45°.【解答】解:原式=2﹣+1﹣2=.16.(8分)(2017•安徽模拟)解不等式组:,并写出符合不等式组的整数解.【解答】解:解不等式3﹣2(x﹣1)>0,得:x<,解不等式﹣1≤x,得:x≥1,∴不等式组的解集为1≤x<,则整数解为1、2.四、本题共2小题,每小题8分,满分16分.17.(8分)(2017•安徽模拟)如图,平面直角坐标系建立在边长为1个单位长度的小正方形组成的网格中,格点△ABC的顶点在网格线的交点上,将△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1.(1)直接写出旋转中心P的坐标;(2)画出△A2B2C2,使△A2B2C2与△A1B1C1关于x轴对称,并写出C2的坐标.【解答】解:(1)旋转中心P的位置如图所示,P的坐标(3,1).(2)△A2B2C2如图所示,C2(1,﹣2).18.(8分)(2017•安徽模拟)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.【解答】解:(1)把P(1,2)代入y=x+n﹣2得1+n﹣2=2,解得n=3;把P(1,2)代入y=mx+3得m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为x<1.五、本题共2小题,每小题10分,满分20分.19.(10分)(2017•安徽模拟)如图,某中学有一块三角形状的花圃ABC,现可直接测量到∠B=45°,∠C=30°,AC=8米.请你求出这块花圃的面积.(结果可保留根号)【解答】解:如图过A作AD⊥BC于D.在△ABD中,∵∠B=45°,∴AD=BD.在△ACD中,∵∠C=30°,AC=8,∴AD=AC=4=BD,∴,∴.=BC•AD=8+8.∴S△ABC答:花圃的面积为(8+8)平方米.20.(10分)(2017•安徽模拟)一款关于儿童成长的图书十分畅销,某书店第一次批发1800元这种图书(批发价是按书定价4折确定),几天内销售一空,又紧急去市场再购1800元这种图书.因为第二次批发正赶上举办图书艺术节,每本批发价比第一次降低了10%,这样所购该图书数量比第一次多20本.(1)书店第二次批发了多少本图书?(2)如果书店两次均按该书定价7折出售,试问该书店这两次售书总共获利多少元?【解答】解:(1)设第一次购书的进价为x元,可得:,解得:x=10,经检验x=10是原方程的解,所以,第二次购书的进价为10×(1﹣10%)=9元,第一次购书:本,第二次购书:180+20=200本;(2)每本书定价是:10=25元,两次获利:元,答:该书店这两次售书总共获利3050元.六、本题满分12分.21.(12分)(2017•安徽模拟)如今,留守儿童的监护问题已成为社会关注的焦点.我省相关部门就某县儿童监护情况进行了调查,将调查出现的情况分四类,即A类:委托他人监护或父母监护能力缺失;B类:隔代监护;C类:父母一方在家监护;D类:父母双方在家监护.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生儿童?(2)这次调查中B类儿童有30人;扇形统计图中D类儿童数所占的圆心角是72度.(3)根据最新的文件精神,符合A、B两种类型的儿童被定义为留守儿童,请你估计该县50000名儿童中,留守儿童有多少人?【解答】解:(1)在这次随机抽样调查中,共抽查学生10÷10%=100人;(2)这次调查中B类儿童有100×30%=30人,则D类儿童有100﹣10﹣30﹣40=20人,∴D类儿童数所占的圆心角是×360°=72°,故答案为:30,72;(3)∵50000×(10%+30%)=20000(名),∴估计该县50000名儿童中,留守儿童有20000人.七、本题满分12分.22.(12分)(2017•安徽模拟)某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:x+24②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.【解答】解:(1)设销售量p与销售天数x关系式为p=kx+b,由图象可得,解得:,∴每天的销售量p与销售天数x之间函数关系式为p=﹣2x+24;(2)当1≤x≤5时,s=(y﹣20)p=(x+24﹣20)(﹣2x+24)=﹣(x﹣2)2+100,当x=2时,s取得最大值100;当6≤x≤10时,s=(y﹣20)p=(30﹣20)(﹣2x+24)=﹣20x+240,当x=6时,s取得最大值120;综上,试营销期间一天的最大利润为120元.八、本题满分14分.23.(14分)(2017•安徽模拟)如图,△ABC中,∠C=90°,AC=3,BC=4,在线段AB上,动点M从点A出发向点B做匀速运动,同时动点N从B出发向点A 做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做AB的垂线,分别交两直角边于点D、E,连接DE,若运动时间为t秒,在运动过程中四边形DENM总为矩形(点M、N重合除外).(1)图中共有6组不同的相似三角形(不包括点M、N相遇后出现的三角形);(2)若点M的运动速度为每秒1个单位长度,求点N的运动速度;(3)当t为多少秒时,矩形DENM为正方形?【解答】解:(1)∵四边形DENM为矩形,∴DE∥AB,∠AMD=∠ENB=90°,∵∠C=90°,∴∠AMD=∠ENB=∠C=90°,∴△ABC∽△ADM∽△DEC∽△EBN,∴共有6组不同的相似三角形,故答案为:6;(2)在△ABC中,∠C=90°,AC=3,BC=4,∴AB=5,∵在运动过程中四边形DENM总为矩形,∴∠AMD=∠BNE=90°,∴△ADM∽△ABC,由题得:AM=t,∴=,即=,∴DM=t,∴EN=DM=t,同理可得,△BEN∽△BAC,∴=,即=,∴NB=t,∴点N 的运动速度:t÷t=,∴点N 的运动速度为每秒个单位长度;(3)当点N、M 相遇时,有t+t=5,解得t=,当点N、M相遇后继续运动,点N先到达A点,此时点M停止运动,则有t=5,解得t=,若矩形DENM为正方形,则DM=MN,分两种情况:①相遇前:当0<t <时,DM=t,MN=5﹣t ﹣t=5﹣t,∴t=5﹣t,解得t=;②相遇后:当<t ≤时,DM=(5﹣t),MN=t ﹣(5﹣t),∴(5﹣t)=t ﹣(5﹣t),解得t=>(舍去),综上所述,当t=时,矩形DENM为正方形.第21页(共21页)。
安徽省2017年中考数学真题试题(含扫描答案)
2017年安徽省初中学业水平考试数学试题卷一、选择题(本题共10个小题,每小题4分,满分40分) 每小题都给出A、B、C、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A.12- B.12- C.2D.-22.计算22()a -的结果是( ) A.6aB.6a -C.5a -D.5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D.4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B.101.610⨯ C.111.610⨯ D.120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A. B. C. D. 6.直角三角板和直尺如图放置.若201︒∠=,则2∠的度数为( )A.60︒ B.50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A.16(12)25x += B.25(12)16x -= C.216(1)25x += D.225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B. C. D.110.如图,在矩形ABCD 中,AB =5,AD =3动点P 满足S =S 则点P 到A ,B 两点距.∆PAB 矩形ABCD .3离之和PA +PB 的最小值为()二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)115.计算:|-2|⨯cos 60︒-()-1.316.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin 750.97︒≈,cos 750.26︒≈1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l.(1)将∆ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出∆DEF 关于直线l 对称的三角形;(3)填空:∠C +∠E =︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】n (n +1)2222我们知道,1+2+3+ +n =,那么1+2+3+ +n 结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为2+2,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++ .【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++ = .【解决问题】根据以上发现,计算222220171231232017++++++++ 的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;∠.(2)连接CO,求证:CO平分BCE六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数 中位数 方差甲 8 8乙 8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90︒,延长AG,BG分别与边BC,CD交于点E,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.。
2018年安徽省中考数学试题含答案解析(Word版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为亿斤,其中亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=63520000000,63520000000小数点向左移10位得到所以亿用科学记数法表示为:8,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【解析】【分析】根据题意可知2017年我省有效发明专利数为(万件,2018年我省有效发明专利数为(,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(万件,2018年我省有效发明专利数为(万件,即2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________. 【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为或3,故答案为:或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为平面镜E的俯角为米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠,∴,∴答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段所占的百分比;(2)观察可知这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),这一组人数占百分比为:(8+4)÷50×100%=24%,所以这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,和两组占参赛选手60%,而,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
合肥市2017年中考数学试题及答案(Word版)
合肥市2017年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分) 1.12的相反数是 A .12 B .12- C .2 D .-22.计算()23a-的结果是A .6a B .6a - C .5a - D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .2608. 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足A .()161225x +=B .()251216x -=C .()216125x += D .()225116x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为 1,则一次函数y bx ac =+的图像可能是10.如图,在矩形ABCD 中,AB =5,AD =3,动点P满足13PAB ABCDS S =V 矩形,则点P 到A ,B 两点距 离之和PA +PB 的最小值为【 】AC .二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 ___________.14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1), 剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图 形中有一个是平行四边形,则所得平行四边形的周长为 ___________cm 。
最新-2017年安徽中考数学压轴题集
精品文档2008-2017年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1 .则点P到A=3.动点P满足,B两点距离之和1.如图,在矩形ABCD中,AB=5,AD S S PAB矩形ABCD3)A+PB的最小值为(P3429 A. D.B. C.4125,则∠PBCPAB=,2.如图,Rt△ABC,AB⊥BC,AB=6BC=4,P是△ABC内部的一个动点,且满足∠)CP线段长的最小值为(12131383A. D. B.2 C. 13132题图第2 第1题图22xy?c1)x??ax?(b?yc?bx?ax+y两点,则函数Q和二次函数图象相交于3.如图,一次函数P,12)的图象可能是(D.C. B. A.第3题图l满足:的对角线BD长为,若直线4.如图,正方形ABCD223的距离为;到直线①点Dl.两点到直线l距离相等A②,C )l则符合题意的直线的条数是(D.4C.3 A.1 B.2)ABC.5如图,点P是等边三角形外接圆⊙O上点,在以下判断中,不正确的是(APC当弦A.PB最长时,△是等腰三角形⊥POAC 是等腰三角形时,△B.当APC POC.当⊥=30°ACPAC时,∠精品文档.精品文档D.当∠ACP=30°时,△BPC是直角三角形题图第5 第4题图分别沿斜边中点与这两点的连线6.在一张直角三角形纸片的两直角边上各取一点,,、4、3剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2 )则原直角三角形纸片的斜边长是(1725454或 B. C.10 或D.10A.106题图第、的边于M上一点,过P垂直于AC的直线交菱形ABCD7.如图所示,P是菱形ABCD的对角线ACx的函数图象的大致形状是的面积为y,则y关于=2,BD=1,AP=x,△AMNN两点,设ACB.A.第7题图D. C.,6m/s甲、乙跑步的速度分别为4m/s和米的笔直公路上进行跑步,8.甲、乙两个准备在一段长为1200则两人从起跑至其中一人先到达终点的过程中,若同时起跑,起跑前乙在起点,甲在乙前面100米处,)m甲、乙两之间的距离y()与时间t(s)的函数图象是(D. C. A. B.的度数AIBACD的内切圆圆心,则∠为中,9.△ABCAB=AC,∠A为锐角,CDAB 边上的高,I为△是 C.135° D.150° B.125° A.120°于点N,则MN等于MNM,AB如图,在10.△ABC中,=AC=5BC=6,点为BC中点,⊥AC691212 B. A. C. D.5555精品文档.精品文档第10题图第11题图二、填空题11.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列3的正确FG.其中;③;④AG+DF=∠结论:①EBG=45°;②△DEF∽△ABG S=S FGH△△ABG2(把所有正确结论的序号都选上).是14题图第第12题图11ca?b?ab?;=9b+c则有下列结论:①若c≠0,满足13.已知实数a、b、c;②若a=3,则,1??ba把.(其中正确的是bb=c,则abc=0;④若a、、c中只有两个数相等,则a+b+c=8.③若a=所有正确结论的序号都选上)、EFAD的中点,作CE⊥AB,垂足E在线段AB上,连接如图,在14.?ABCD中,AD=2AB,F是.(把所有正确结论的序号都填在横线上)CF,则下列结论中一定成立的是1S=2S.∠AEF;④∠=①;②EFCF;③DFE=3BCD??DCF?CEFBEC△△2,A不经过点(E15.已知矩形纸片ABCD中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF为正方形时,给出以下判断:A'CDF①当四边形F是该矩形边界上的点),折叠后点A落在点A'处,为等腰梯形;④当四边BA'CD=5时,四边EF=2;②当EF=2时,四边形A'CDF为正方形;③当EF (把所有正确结论的序号都填在横线上)EF=5. 其中正确的是.形BA'CD为等腰梯形时,,AB、△PBC、△PDAPCD、△△、如图,16.P是矩形ABCD内的任意一点,连接PAPB、PC、PD,得到P,;③若SS=2S+S,给出如下结论:①、设它们的面积分别是SS、S、SS+S=+S;②SS= S+14142333412132(把所有正确.点在矩形的对角线上其中正确的结论的序号是.,则SS则S=2 ④若=SP2214结论的序号都填在横线上)16 15第题图第题图题图第18精品文档.精品文档a?b?b?a;定义运算,下面给出了关于这种运算的几个结论:①;②17.62?(??b)2)?a?b?a(1a?b?0a?b?0,则a=0.其中正确结论的序号是③若,则;④若.(填ab2)?b(a?a)?(?b上你认为所有正确结论的序号)18.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________ _.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.11,则该x轴的另一交点到原点的距离为1,且图象与19.已知二次函数的图象经过原点及点),?(?42.二次函数的解析式为2c?ax?bx?y的根是a;②方程c20.如图为二次函数<0的图象,在下列说法中:①20?cax??bx x??1x?3a?b?c>0;④当x>1时,y随x,的增大而增大.;③正确的说法有__________.(把正12确的答案的序号都填在横线上)20题图第三、解答题经市场调查,.元,规定每千克不低于成本,且不高于80元21.某超市销售一种商品,成本每千克40(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:每天的(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?精品文档.精品文档22.已知正方形ABCD,点M为AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:. 2CE?BCBE?(2)如图2,在边BC上取一点E,满足,连接AE交CM 于点G,连接BG并延长2CEBE??BC交CD于点F,求tan∠CBF的值.2 22 题图第 1 第22题图2bxy ax+ 23.如图,二次函数的图象经过点与.(6,0)A(2,4)B的值;1()求a,bOACB,写出四边形<(两点之间的一动点,横坐标为x2<x6)BAC)(2点是该二次函数图象上,.S的最大值的函数表达式,并求的横坐标关于点的面积SCx精品文档.精品文档24.如图,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;AB②如图3,若△ARB∽△PEQ,求∠MON大小和的值.PQ第24题图 1第题第24 2 图3 24题图精品文档.精品文档25.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,2.的面积为ym矩形区域ABCD(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?题图第25作F作AB的垂线,过点AB、CD的中点,过点E,在四边形26.如图1ABCD 中,点E、F分别是BGC.、DG,且∠AGD=∠CD的垂线,两垂线交于点G,连接AG、BG、CG BC;1)求证:AD=(EGF;AGD)求证:△∽△(2AD.的值、BC所在直线互相垂直,求(3)如图2,若AD EF2 26题图第题图第261精品文档.精品文档27.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;222y1?2m?y?2x?4mx5ax?bx?y?,已知关于x的二次函数其中的图象经过点,和2()(1,1)A112y?yyyy的最大值. ≤3时,”,求函数0若的表达式,并求出当≤与x 为“同簇二次函数2121228.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.3第28题图 2 28 1 28第题图第题图精品文档.精品文档29.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD即为“准等腰梯形”;其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可)(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB ∥DE,AE∥DC,求证:ABBE;?DCEC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图3精品文档.精品文档31.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.2 题图第31 第31题图1处发出,把球看成点,其运2m的A.如图,排球运动员站在点O处练习发球,将球从O点正上方322h?(x?6)y?a点的水平距离为)满足关系式(m.已知球网与O)与运行的水平距离行的高度y(mx O点的水平距离为18m. 2.43m9m,高度为,球场的边界距(不要求写出自变量与x的关系式;x的取值范围)y)当(1h=2.6时,求h)当=2.6时,球能否越过球网?球会不会出界?请说明理由;(2. )若球一定能越过球网,又不出边界,求h的取值范围(3题图第32精品文档.精品文档33.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为. △A'B'C',得到?? )180(0?<?<.3 第33题图第33题图2 第33题图1CD相交于点D,证明:△CDA是等边三角形;时,设(1)如图(1),当AB∥BCBA与SS求证:.ACA'和△BCB'的面积分别为和)如图((22),连接A'A、B'B,设△'BCB'ACA1:3S?S: . ''BCBACA长P °时,E θ= a'3(3)如图(),设AC中点为E,BA'中点为P,AC=,连接EP,当. 度最大,最大值为上,这四条直线中相邻两条之间l、l如图,正方形ABCD的四个顶点分别在四条平行线l、l、.344312. )0,h>0>(的距离依次为h、h、hh>0,h313122 h)求证h=;(13122h??(hh)?S(2)设正方形ABCD求证;的面积为S.1233. 随S)若(3h的变化情况的面积变化时,说明正方形h,当ABCD1hh??11212精品文档.精品文档第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20x?5 /kg)单位捕捞成本(元5950?x kg)捕捞量((1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入(y元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?36.如图,已知△ABC∽△ABC,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),111△ABC的三边长分别为a、b、c. 111111(1)若c=a,求证:a=kc1(2)若c=a,试给出符合条件的一对△ABC和△ABC,使得a、b、c和a、b、c都是正整数,1111111并加以说明;(3)若b=a,c=b,是否存在△ABC和△ABC,使得k=2?请说明理由. 11111精品文档.精品文档第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.24题图37 第)所示.138.已知某种水果的批发单价与批发量的函数关系如图(1)请说明图中①、②两段函数图象的实际意义.(函数关系式;在下图的坐)之间的kg (元)与批发量(2)写出批发该种水果的资金金额wm(么范围内,以同样的资金可以批发到较多数量的该种水果.标系中画出该函数图象;指出金额在什)所示,该2 3()经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(精品文档.精品文档经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.2 第38题图第38题图1OC. OB的两边AB、AC所在直线的距离相等,且=到39.已知:点O△ABC ;AC在BC上,求证:AB=1(1)如图,若点O ;的内部,求证:AB=ACO(2)如图2,若点在△ABC. =AC成立吗?请画图表示ABC(3)若点O在△的外部,AB21 39 第题图题图第39精品文档.精品文档40.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义.d)( c b )( a ()()第40题图精品文档.。
安徽省六安市中考数学试卷
安徽省六安市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列说法错误的是()A . 任何有理数都有倒数B . 互为倒数的两数的积等于1C . 互为倒数的两数符号相同D . 1和其本身互为倒数2. (2分) (2020八上·柳州期末) 科学家发现一种病毒的直径为微米,则用科学记数法表示为()A .B .C .D .3. (2分)如图,矩形ABCD绕着点A顺时针旋转60°得到矩形AEFG,若BC=3,且E恰好落在CD上,则的长为()A .B . πC . πD . π4. (2分) (2018九上·防城港期中) 设x1 , x2是一元二次方程x2-2x-3=0的两根,则x1+x2=()A . -2B . 2C . 3D . -35. (2分)(2017·广东模拟) 如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A .B .C .D .6. (2分)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A . 7B . 6C . 5D . 47. (2分) (2020八上·息县期末) 如图,以的顶点为圆心,适当长为半径画弧,分别交于点,交于点;再分别以,为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接,则下列说法不一定成立的是()A . 射线是的平分线B . 是等腰三角形C . ,两点关于所在直线对称D . ,两点关于所在直线对称8. (2分) (2018九上·南昌期中) 如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A 的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤二、填空题 (共8题;共8分)9. (1分) (2019九下·武威月考) 分解因式: ________.10. (1分) (2017七下·岳池期末) 如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.11. (1分) (2016八上·县月考) 将抛物线向左平移2个单位,向上平移1个单位后,得以新的抛物线,那么新的抛物线的表达式是________.12. (1分) (2019八上·朝阳期末) 如图,Rt△ABC中,∠C=90°,D、E分别是边AB、AC的点,将△ABC 沿DE折叠,使点A的对称点A′恰好落在BC的中点处.若AB=10,BC=6,则AE的长为________.13. (1分)某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是________.14. (1分) (2019七下·宜宾期中) 对任意有理数x ,用表示不大于x的最大整数.例如:① ;② ;③ ;④ 若,则x的取值范围是≤ <;以上结论正确是________.(把你认为符合题意结论的序号都填上)15. (1分)如图,在菱形ABCD中,AB=BD,点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G,若BG=2,DG=4,则CD长为________.16. (1分) (2017八下·射阳期末) 如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F .设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.三、解答题 (共8题;共80分)17. (10分)(2020·如皋模拟) 计算或化简:(1)(2)18. (5分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.19. (15分) (2018九上·临渭期末) 为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20. (5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?21. (5分)(2017·马龙模拟) 如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).22. (10分)(2017·苏州模拟) 如图,函数y= x与函数y= (x>0)的图象相交于点A(n,4).点B在函数y= (x>0)的图象上,过点B作BC∥x轴,BC与y轴相交于点C,且AB=AC.(1)求m、n的值;(2)求直线AB的函数表达式.23. (15分) (2019九上·泰州月考) 如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(2,1).直线OM是一次函数y=-x的图象.将直线OM沿x轴正方向平行移动.(1)填空:直线OM与x轴所夹的锐角度数为________°;(2)求出运动过程中⊙A与直线OM相切时的直线OM的函数关系式;(可直接用(1)中的结论)(3)运动过程中,当⊙A与直线OM相交所得的弦对的圆心角为90°时,直线OM的函数关系式.24. (15分)(2017·滦县模拟) 如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l 与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
近3年安徽省中考数学试题及答案
2017年安徽省初中学业水平考试数 学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.12的相反数是A .21B .12- C .2 D .2-【答案】B【考查目的】考查实数概念——相反数.简单题.2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题.6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D . 第3题图 A . B . C . D . 第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数b y x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( )ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .第7题图 A . B . C . D . 第10题图 第14题图第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的»DE的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-. 【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2018年安徽省中考数学试卷及答案解析
2018年安徽省中考数学试卷一、选择题(共10小题,每小题4分,共40分).1.(2018•安徽)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣2.(2018•安徽)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108 3.(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 4.(2018•安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(2018•安徽)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)6.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b 万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7.(2018•安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为()A.﹣1B.1C.﹣2或2D.﹣3或1 8.(2018•安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(2018•安徽)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 10.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l 向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共4小题,每小题5分,共20分).11.(2018•安徽)不等式>1的解集是.12.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.13.(2018•安徽)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(2018•安徽)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)(2018•安徽)计算:50﹣(﹣2)+×.16.(8分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8分)(2018•安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10分)(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12分)(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12分)(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14分)(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE ⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.参考答案一、选择题(共10小题,每小题4分,共40分).1.(2018•安徽)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:∵﹣8<0,∴|﹣8|=8.故选:B.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2018•安徽)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=695 2000 0000=6.952×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(2018•安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看上边是一个三角形,下边是一个矩形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(2018•安徽)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)【考点】55:提公因式法与公式法的综合运用.【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.6.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b 万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a【考点】32:列代数式.【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.7.(2018•安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为()A.﹣1B.1C.﹣2或2D.﹣3或1【考点】AA:根的判别式.【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(2018•安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.【点评】此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.9.(2018•安徽)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.10.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l 向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.【点评】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,共20分)11.(2018•安徽)不等式>1的解集是x>10.【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式得基本步骤依次计算可得.解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.12.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=60°.【考点】L8:菱形的性质;MC:切线的性质.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.【点评】本题考查的是切线的性质、等边三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键13.(2018•安徽)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【考点】G8:反比例函数与一次函数的交点问题.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出A,B点坐标是解题关键.14.(2018•安徽)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【考点】KH:等腰三角形的性质;KQ:勾股定理;LB:矩形的性质;S7:相似三角形的性质.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.【点评】本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)(2018•安徽)计算:50﹣(﹣2)+×.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算零次幂和乘法,然后再计算加减即可.解:原式=1+2+4=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.(8分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【考点】8A:一元一次方程的应用.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【考点】R8:作图﹣旋转变换;SD:作图﹣位似变换.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.【点评】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.18.(8分)(2018•安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【考点】37:规律型:数字的变化类.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE=米.证明∠AEF=90°.解直角△AEF,求出AE=EF•tan∠AFE ≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,平行线的性质,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.20.(10分)(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【考点】MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.六、解答题(本大题满分12分)21.(12分)(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【考点】V8:频数(率)分布直方图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、解答题(本题满分12分)22.(12分)(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.八、解答题(本题满分14分)23.(14分)(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE ⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2017年安徽省中考数学试卷(含答案详解)
2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣ C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC 分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A .B .C .D .【分析】根据抛物线y=ax 2+bx +c 与反比例函数y=的图象在第一象限有一个公共点,可得b >0,根据交点横坐标为1,可得a +b +c=b ,可得a ,c 互为相反数,依此可得一次函数y=bx +ac 的图象.【解答】解:∵抛物线y=ax 2+bx +c 与反比例函数y=的图象在第一象限有一个公共点,∴b >0,∵交点横坐标为1,∴a +b +c=b ,∴a +c=0,∴ac <0,∴一次函数y=bx +ac 的图象经过第一、三、四象限.故选:B .【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac <0.10.(4分)(2017•安徽)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )A .B .C .5D .【分析】首先由S △PAB =S 矩形ABCD ,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA +PB的最小值.【解答】解:设△ABP 中AB 边上的高是h .∵S △PAB =S 矩形ABCD , ∴AB•h=AB•AD ,∴h=AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.在Rt △ABE 中,∵AB=5,AE=2+2=4,∴BE===, 即PA +PB 的最小值为. 故选D .【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a 2b ﹣4ab +4b= b (a ﹣2)2 .【分析】原式提取b ,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD (如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(本大题共2小题,每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(本大题共2小题,每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲882乙88 2.2丙663(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n ﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。
【中考模拟2017】安徽省合肥市 2017年九年级数学中考模拟试卷 三(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)则这个周共盈利( )A.715元B.630元C.635元D.605元2.下列运算正确的是()A.3a2﹣a2=3B.(a2)3=a5C.a3•a6=a9D.(2a2)2=4a23.地球七大洲的总面积约是149 480 000km2,对这个数据保留3个有效数字可表示为( )A.149km2B.1.5×108km2C.1.49×108km2D.1.50×108km24.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()A.文 B.明 C.城 D.市5.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10n mm(n为负整数),则n的值为()A.﹣5B.﹣6C.﹣7D.﹣86.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx27.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC9.如图,在Rt△AOB中,两直角边OA,OB分别为x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A/O/B,若反比例函数y=kx-1的图象恰好经过斜边A/B的中点,S△ABO=4,tan∠BAO=2.则k的值为 .A.3B.4C.6D.810.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.二、填空题:11.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.12.分解因式:mn2﹣6mn+9m= .13.如图,AB,AC,BD是☉O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .14.如图,正五边形的边长为2,连对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,则MN= ;三、计算题:15.计算:.16.解方程:(3-x)2+x2=5四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.19.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).20.如图,Rt△ABO的顶点A是双曲线y=kx-1与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S=1.5.△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.21.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?22.如图,直线y=-x+b与反比例函数y=-3x-1的图象相交于点A(a,3),且与x轴相交于点B.(1)求a、b的值;(2)若点P在x轴上,且△AOP的面积是△AOB的面积的一半,求点P的坐标.23.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案1.D2.C3.C4.B.5.C6.A7.B8.D9.C10.B12.答案为:m(n﹣3)2.13.答案:214.答案为:3-;15.解:原式=2+3﹣﹣﹣3+1=1.16.解:9-6x+x2+x2=5 x2-3x+2=0 (x-1)(x-2)=0 x1=1 x2=217.【解答】解:如图所示:18.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.19.【解答】解:作AG⊥CD,垂足为G.易得AG=BD,在Rt△AGC中,CG=AG•tan30°=6×=2米,可得CD=CG+GD=(2+1.5)米,在Rt△CED中,CE===(4+)米.答:拉线CE的长为(4+)米.20.略21.解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=0.75;由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=0.5,∵P1=0.75,P2=0.5,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.22.略23.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.。
2010-2019年安徽省中考数学试卷及答案(共10套)
2010-2019年安徽省中考数学试卷及答案(共10套)目录1、2010年安徽省中考数学试卷及答案2、2011年安徽省中考数学试卷及答案3、2012年安徽省中考数学试卷及答案4、2013年安徽省中考数学试卷及答案5、2014年安徽省中考数学试卷及答案6、2015年安徽省中考数学试卷及答案7、2016年安徽省中考数学试卷及答案8、2017年安徽省中考数学试卷及答案9、2018年安徽省中考数学试卷及答案10、2019年安徽省中考数学试卷及答案2010年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是A.-1B.0C.1D.22.计算(2x)3÷x的结果正确的是A.8x2B.6x2C.8x3D.6x33.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为A.50°B.55°C.60°D.65°4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是A.2.89×107B.2.89×106C.28.9×105D.2.89×1045.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是6.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为A.0,5B.0,1C.-4,5D.-4,18.如图,☉O 过点B 、C,圆心O 在等腰直角三角形ABC 的内部,∠BAC=90°,OA=1,BC=6,则☉O 的半径为A.√10B.2√3C.√13D.3√29.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是A.495B.497C.501D.50310.甲、乙两人准备在一段长为1 200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s 和6 m/s,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:√3×√6-√2= .12.不等式组{-x +4<2,3x -4≤8的解集是 . 13.如图,△ABC 内接于☉O,AC 是☉O 的直径,∠ACB=50°,点D 是BAC⏜上一点,则∠D= .14.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(1-1a -1)÷a 2-4a+4a -a ,其中a=-1.16.若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A 处到B 处约需几分钟?(参考数据:√3≈1.7)17.点P(1,a)在反比例函数y=k的图象上,它关于y轴的对称点在一次函数y=2x+4x的图象上,求此反比例函数的解析式.18.在小正方形组成的15×15的网格图中,四边形ABCD和四边形A'B'C'D'的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1;(2)若四边形ABCD平移后,与四边形A'B'C'D'成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m2下降到5月份的12 600元/m2.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:√0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m2?请说明理由.20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.上海世博会门票的价格如下表所示:门票价格一览表指定日普通票200元平日优惠票100元…………某旅行社准备了1 300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张.(1)有多少种购票方案?列举所有可能的结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率.22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九年级(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20,且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售价格(元/kg)20单位捕捞成本(元/kg) 5-x 5捕捞量(kg) 950-10x(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省初中毕业学业考试答案1.B 0既不是正数也不是负数,故选B.2.A 本题应先根据积的乘方的法则计算出(2x)3的值,再根据单项式除以单项式法则得出结果为:(2x)3÷x=8x3÷x=8x3-1=8x2.3.C4.B 289万=2 890 000=2.89×106,故选B.5.D 正方体的三个视图都是正方形;球体的三个视图都是圆;选项C直三棱柱的主视图是长方形,左视图是三角形,俯视图虽也是长方形,但由于视角不同,两长方形的形状也不同;选项D圆柱的主视图是长方形,左视图为圆,俯视图为形状大小与主视图相同的长方形,所以只有圆柱符合本题条件,故选D.6.C 由折线统计图可知:1月份到2月份利润增长10万元,2月份到3月份利润增长20万元,故A错;1到4月份利润最高的是3月份为130万元,最低的是1月份为100万元,极差为30万元,1到5月份的最高利润也是130万元,最低利润仍是100万元,极差为30万元,极差相同,故B错;本题的中位数是指把5个月的利润按大小顺序排列,最中间的那个数应为115万元,所以D也错;众数是指在所有数据中出现次数最多的数,130万出现两次,最多,故C正确.7.D y=(x-2)2 +k=x2-4x+4+k,与y=x2+bx+5比较可得:一次项系数b=-4,常数项4+k=5,解得k=1.故选D.8.C 如图,过点A作AM⊥BC于M,连接OB.在Rt△ABC中,∵AB=AC,AM⊥BC于BC=3,∠ABM=45°,∴在Rt△ABM中,BM=AM=3.∵AM垂直平分弦M,BC=6,∴BM=CM=12BC,∴AM经过圆心O.∵AO=1,AM=3,∴OM=2.在Rt△BOM中,OM=2,BM=3,根据勾股定理可知BO=√13.9.A10.C 乙的速度比甲的速度快,甲在乙的前面100 m处,乙追上甲需要50 s,可把A、B排除,乙追上甲时走了300 m,距离终点还有900 m,则乙到终点还需的时间为900÷6=150 s,所以乙跑完全程共需200 s,故选C.11.2√2√3×√6-√2=√18-√2=3√2-√2=2√2.12.2<x≤4 解不等式-x+4<2,得-x<2-4,-x<-2,x>2;解不等式3x-4≤8,得3x≤8+4,3x≤12,x≤4.所以原不等式组的解集为2<x≤4.13.40° ∵△ABC 是☉O 的内接三角形,AC 是☉O 的直径,∴∠ABC=90°.在△ABC 中,∠ACB=50°,∠ABC=90°,∴∠BAC=180°-∠ACB-∠ABC=180°-50°-90°=40°,∴∠D=∠BAC=40°.14.②③④ 由①中∠BAD=∠ACD,∠ADB=∠ADC,不能证明△ABD 和△CAD 全等,从而不能得出△ABC 为等腰三角形,故①错误;②中∠BAD=∠CAD,又∠ADB=∠ADC,AD 为公共边,可推出△ADB ≌△ADC,∴AB=AC,∴△ABC 为等腰三角形;③如图(1),分别在DB 、DC 的延长线上截取BE=AB,CF=AC,连接AE 、AF.∵AB+BD=AC+CD,∴DE=DF.又∵AD ⊥BC,∴△AEF 为等腰三角形,∴∠E=∠F.又∵BE=AB,CF=AC,∴∠EAB=∠E=∠F=∠CAF.∵∠ABC=∠E+∠EAB,∠ACB=∠F+∠CAF,∴∠ABC=∠ACB,∴△ABC 为等腰三角形.④如图(2),在BC 上分别截取BF=AB,CE=AC,连接AE 、AF.∵AB-BD=AC-CD,∴DF=DE.又∵AD ⊥BC,∴△AEF 是等腰三角形,∴∠EAD=∠FAD,∠AEF=∠AFE.又∵BF=AB,CE=AC,∴∠BAF=∠AFD=∠AED=∠CAE,∴∠BAD=∠BAF-∠FAD,∠CAD=∠CAE-∠EAD,∴∠BAD=∠CAD.又∵AD ⊥BC,∴△ABC 是等腰三角形.图(1) 图(2) 15.原式=a -2a -1·a(a -1)(a -2)2(3分) =aa -2.(5分)当a=-1时,原式=aa -2=-1-1-2=13.(8分)16.如图,过点B 作BC 垂直河岸,垂足为C,则在Rt △ACB 中,AB=BCsin ∠BAC =900sin60°=600√3(米).(5分)因而时间t=600√35=120√3(秒), 120√3秒≈3.4分钟,即船从A 处到B 处约需3.4分钟.(8分) 17.点P(1,a)关于y 轴的对称点是(-1,a).(2分) ∵点(-1,a)在一次函数y=2x+4的图象上, ∴a=2×(-1)+4=2.(4分)∴点P为(1,2).∵点P(1,2)在反比例函数y=kx的图象上, ∴k=2.∴反比例函数的解析式为y=2x.(8分)18.(1)旋转后得到的图形A1B1C1D1如图所示.(4分)(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.(8分)(注:本题是开放型题,答案不唯一,只要正确即可给分,如将四边形ABCD先向右平移8个单位,再向下平移2个单位得到四边形A2B2C2D2)19.(1)设4、5两月平均每月降价的百分率为x,根据题意,得14 000·(1-x)2=12 600.(3分)化简,得(1-x)2=0.9.解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(6分)(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x)2=12 600×0.9=11 340>10 000.由此可知,7月份该市的商品房成交均价不会跌破10 000元/m2.(10分)(注:第(2)小题也可通过估算加以判断,只要正确即可给分)20.(1)证明:∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.(2分)∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴平行四边形BCEF是菱形.(5分)(2)证明:∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,∴△ACF≌△BDE.(10分) 21.(1)有6种购票方案:购票方案指定日普通票张数平日优惠票张数1 1 112 2 93 3 74 4 55 5 36 6 1(6分) (2)由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是16.(12分)22.(1)该养殖场每天的捕捞量与前一天相比减少了10 kg.(2分)(2)由题意,得y=20(950-10x)-(5-x5)(950-10x)=-2x2+40x+14 250.(7分)(3)y=-2x2+40x+14 250=-2(x-10)2+14 450,∵-2<0,1≤x≤20且x为整数,(9分)∴当1≤x≤10时,y随x的增大而增大;当10<x≤20时,y随x的增大而减小;∴当x=10时,即在第10天y取得最大值,最大值为14 450元.(12分)23.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,∴a=ka1.又∵c=a1,∴a=kc.(3分)(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.(7分)此时aa1=bb1=cc1=2,∴△ABC∽△A1B1C1,且c=a1.(10分)(注:本题是开放型题,只要给出的△ABC和△A1B1C1符合要求即可给分)(3)不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1.又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c,即a=4c,b=2c.(12分)∴b+c=2c+c<4c=a,而b+c>a,故不存在这样的△ABC和△A1B1C1,使得k=2.(14分)2011年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是A.2B.0C.-2D.-32.安徽省2010年末森林面积为3 804.2千公顷,用科学记数法表示3 804.2千正确的是A.3 804.2×103B.380.42×104C.3.804 2×106D.3.804 2×1073.右图是由五个相同的小正方体搭成的几何体,其左视图是A B C D4.设a=√19-1,a在两个相邻整数之间,则这两个整数是A.1和2B.2和3C.3和4D.4和55.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为15D.事件M发生的概率为256.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是A.7B.10C.9D.117.如图,☉O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是A.π5 B .25π C.35π D.45π8.一元二次方程x(x-2)=2-x 的根是 A.-1B.2C.1和2D.-1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上,若P 到BD 的距离为32,则点P 的个数为A.1个B.2个C.3个D.4个10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x,△AMN 的面积为y,则y 关于x 的函数图象的大致形状是A BC D二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2b+2ab+b= .12.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E=10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,☉O 的两条弦AB 、CD 互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则☉O 的半径是 .14.定义运算:a ⊗b=a(1-b),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6;②a ⊗b=b ⊗a;③若a+b=0,则(a ⊗a)+(b ⊗b)=2ab; ④若a ⊗b=0,则a=0.其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:1x -1-2x 2-1,其中x=-2.16.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量的3倍还多2 000千克,求粗加工的该种山货质量.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B 1 C1和△A2B2C2.(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A 2B2C2.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1 500 m高的C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(参考数据:√3≈1.73)20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完整下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出三条支持乙组学生观点的理由.六、(本题满分12分)。
2017年安徽省中考数学试卷及答案
A BCD E FGH A B C OCD 2017年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最大的是【 】A .2B .0C .-2D .-32.我省2017年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是【 】 A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是【 】4.设a =19-1,a 在两个相邻整数之间,则这两个整数是【 】A .1和2B .2和3C .3和4D .4和5 5.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为1 5 D .事件M 发生的概率为2 56.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】A .7B .9C .10D .117.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是【 】A .π51B .π52C .π53D .π548.一元二次方程x (x -2)=2-x 的根是【 】A .-1B .2C .1和2D .-1和2 9.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为【 】A .1B .2C .3D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】A .B .C .D .ACDMNPAB C D E O二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 2b +2ab +b = .12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 . 13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD , CE =1,DE =3,则⊙O 的半径是 .14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论: ①2⊗(-2)=6 ②a ⊗b =b ⊗a ③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是 (填上你认为所有正确结论的序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:12112---x x ,其中x =-2. 【解】16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 【解】四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 1( , )、A 3( , )、A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到点A 101的移动方向. 【解】五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).【解】20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不/分同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x(x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3).(1)求函数y 1的表达式和点B 的坐标; 【解】(2)观察图象,比较当x >0时y 1与y 2的大小. 【解】七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形; 【证】A A C CA 1A 1BB11E P图1图2图3θl 1l 2l 3l 4(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3; 【证】(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当 = °时,EP 的长度最大,最大值为 .八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 2; 【证】(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12; 【证】(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积S 随h 1的变化情况. 【解】2017年安徽省初中毕业学业考试数学参考答案1~10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500,∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。
2008-2017年历届安徽省中考数学试卷(附答案)
2017年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,共40分)1.12的相反数是【 】 A .12; B .12-; C .2; D .-22.计算()23a-的结果是【 】A .6a ;B .6a -;C .5a -;D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【 】4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为【 】A .101610⨯;B .101.610⨯;C .111.610⨯;D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为【 】 6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒;B .50︒;C .40︒;D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是【 】 A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足【 】 A .()161225x +=; B .()251216x -=; C .()216125x +=; D .()225116x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是【 】10.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足为13PAB ABCD S S =V 矩形,则点P 到A ,B 两点距离之和PA +PB 的最小值【 】A ;BC .D 二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________. 13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为___________.14、在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣C.2D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012 5.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280B.240C.300D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1﹣2x)=16C.16(1+x)2=25D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.B.C.5D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB 和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C 作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣C.2D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选:A.【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280B.240C.300D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1﹣2x)=16C.16(1+x)2=25D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac<0.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.B.C.5D.【分析】首先由S△P AB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即P A+PB的最小值.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即P A+PB的最小值为.故选:D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)因式分解:a2b﹣4ab+4b=b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DE=EG=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB 和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C 作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲882乙88 2.2丙663(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。