变频器应用论文
变频器应用研究
网络高等教育本科生毕业论文(设计)需要完整版请联系右上“文档贡献者”题目:变频器应用研究内容摘要变频器在交流拖动系统应用中呈现优良的控制性,可以实现软起动和无级调速,进行加减速控制,使电动机获得高性能,而且具有显著的节能效果。
所以应用变频调速可以提高生产机械的控制精度、生产效率和产品质量,从而利于实现生产过程的自动化。
因此变频器近年来在工业生产各环节得到了广泛的应用。
但变频器在实际应用也暴露出一些问题需要引起重视。
本文就以此为研究目标进行深入的分析和探讨,希望能够给变频器的研究领域带来有价值的参考和帮助。
关键词:变频器;发展前景;存在问题;解决对策目录内容摘要 (I)引言 ............................................. 错误!未定义书签。
1 变频器的发展现状 ................................ 错误!未定义书签。
1.1 国外变频器发展现状 ........................ 错误!未定义书签。
1.2 我国变频器发展现状 ........................ 错误!未定义书签。
2 变频器的基本原理 ................................ 错误!未定义书签。
2.1 变频器的基本结构 .......................... 错误!未定义书签。
2.2 变频器调速原理 ............................ 错误!未定义书签。
2.3 变频器的分类 .............................. 错误!未定义书签。
2.4 变频器的控制方式 .......................... 错误!未定义书签。
2.4.1 U/f=C的正弦脉宽调制控制方式......... 错误!未定义书签。
2.4.2 电压空间矢量控制方式 ................ 错误!未定义书签。
变频器的控制原理与应用论文
变频器的控制原理与应用论文1. 引言变频器,又称为变频调速器,是一种能够通过改变电机供电的频率和电压来实现电机转速调节的设备。
它在工业生产中广泛应用,可以提高电机的能效、实现节能减排,并且在驱动系统的控制中具有重要的作用。
本文将介绍变频器的控制原理和应用,探讨其在工业领域中的重要性和优势。
2. 变频器的基本原理变频器的基本原理是通过将输入的交流电转换为直流电,再通过逆变器将直流电转换为带有不同频率和电压的交流电。
变频器由整流器、逆变器和控制单元三大部分组成,其中控制单元是通过控制逆变器的输出来实现对电机转速的调节。
3. 变频器的工作方式变频器的工作方式主要分为开环控制和闭环控制两种方式。
开环控制是根据设定的频率和电压信号直接控制逆变器的输出;闭环控制则是通过对电机转速进行反馈,使控制系统能够自动调节输出频率和电压,实现更精确的转速控制。
4. 变频器的应用领域4.1 工业生产 - 变频器广泛应用于风机、水泵、压缩机等设备中,可以根据实际使用需求来调节电机的转速,实现能效优化和节能减排。
- 变频器在生产线上的应用可以实现对机器设备的精确控制,提高生产效率和产品质量。
4.2 交通运输 - 变频器在交通运输中的应用具有重要意义。
例如,在高铁、地铁等交通设施中,变频器可以控制电动马达的转速,实现列车的精确控制和运行安全。
4.3 HVAC系统 - 变频器在暖通、通风和空调系统中的应用可以根据实际需求调节风机的转速,实现室内环境的舒适和节能。
4.4 新能源应用 - 变频器在新能源领域的应用日益增多,例如,在太阳能发电系统中,变频器可以将太阳能电池板产生的直流电转换为交流电,供给电网或电动车使用。
5. 变频器的控制策略5.1 PWM控制 - PWM(脉宽调制)是一种常用的变频器控制策略,通过调节逆变器输出电压的脉冲宽度比来实现对电机转速的控制。
5.2 V/F控制 - V/F(电压/频率)控制是一种基本的变频器控制策略,通过调节输出电压和频率的比值来实现对电机转速的控制。
变频器应用技术研究论文参考范文
变频器应用技术研究论文参考范文随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。
这是店铺为大家整理的变频器应用技术论文参考范文,仅供参考!变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》【摘要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。
【关键词】变频器;节能;水泵;风机0 引言锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。
但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。
锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。
把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。
变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。
变频调速范围宽、精度高,是电动机最理想的调速方式。
如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。
1 变频器应用在水泵、风机的节能原理图1为水泵(风机)的H-Q关系曲线。
图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。
采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。
变频技术原理及应用论文
变频技术原理及应用论文变频技术是指通过改变电源频率来调节电机的转速或转矩的一种技术。
它利用功率电子器件将交流电源转化为直流电源,再经过逆变器将直流电源转化为可变频的交流电源。
变频器通过改变电源频率来调节电机的转速,从而实现对电机的精确调控。
变频技术具有很多应用领域,主要包括工业设备、家用电器、交通运输以及可再生能源。
在工业设备领域,变频技术可以应用于各种类型的电机控制,如交流电机、直流电机、步进电机等。
其中最常见的应用就是交流异步电机的调速,通过变频器可以实现对电机转速的连续调节,从而满足不同负载要求。
另外,变频技术还可以应用于变压器、空压机、泵等设备的节能调速控制,实现能耗的降低和效率的提高。
在家用电器领域,变频技术广泛应用于空调、冰箱、洗衣机等家电产品中。
通过变频器的控制,可以实现对家电产品的运行状态和功率的调节,从而提高产品的效能和使用体验。
比如,空调中的变频技术可以根据室内温度的变化来调节制冷或制热功率,提高空调的能效比和舒适性。
在交通运输领域,变频技术可以应用于电动汽车、高铁、电梯等设备的控制系统中。
电动汽车的电驱动系统,通过变频器对电动机的控制,可以实现对汽车的动力输出的平顺和高效控制。
高铁列车中的变频技术可以实现对电机转速和制动力的精确控制,从而提高列车的运行效率和安全性。
以及电梯中的变频技术可以平稳启动和停止电梯,减少人员和设备的振动和损坏。
在可再生能源领域,变频技术可以应用于风力发电、光伏发电等系统中。
通过变频器对发电机的控制,可以实现对风力和光伏发电系统的功率输出的调节。
尤其是在风力发电系统中,变频技术可以根据风速的变化,对风力发电机组的转速和功率进行精确调控,提高发电系统的稳定性和可靠性。
总结起来,变频技术是一种通过改变电源频率来调节电机转速或转矩的技术。
它广泛应用于工业设备、家用电器、交通运输以及可再生能源等领域,主要用于节能调速、提高设备效能和提高能源利用效率等方面。
随着技术的进一步发展,变频技术在各个领域的应用将会更加广泛和深入。
变频器的毕业论文
变频器的毕业论文本文主要探讨变频器在电力系统中的应用和发展。
首先,我们介绍了变频器的概念和发展历程。
接着,我们阐述了变频器在电力系统中的应用,包括电动机驱动、节能与效益、发电调节与控制。
最后,我们分析了变频器的发展趋势和未来的发展前景。
1. 变频器的概念和发展历程变频器是一种能够控制电机转速的电子设备。
它能够通过改变电源频率来控制电机的转速,从而实现对电动机的调速控制。
变频器的出现解决了传统电机调速控制难以实现的问题,使得电机的效率、控制精度和稳定性等性能指标得到了提升。
变频器的发展历程可以分为以下几个阶段。
20世纪80年代初,欧美国家开始研制变频器,并逐渐推广应用。
90年代初,国内开始涌现出一批变频器生产厂家,开始从事变频器的设计与生产。
21世纪初,随着数字化技术和微电子技术的不断发展,变频器的性能指标得到了进一步提升,应用范围也得到了拓展。
2. 变频器在电力系统中的应用2.1 电动机驱动变频器在电机驱动中的应用是其主要领域之一。
变频器能够通过改变电源频率来控制电机的转速,从而实现对电机的调速控制。
电机的速度可以随时调整,适应不同的工况要求,从而实现了电机驱动的灵活性和效率性。
2.2 节能与效益变频器的应用还可以实现节能和效益的目的。
传统的电机启动和停止时都需要较大的电流,容易造成电网的电压波动和系统的负荷过重。
而变频器可以实现电机的平稳启动和停止,从而使得能源的利用率得到了提高。
2.3 发电调节与控制在发电领域中,变频器也起到了重要的作用。
发电控制系统中需要实现对风力发电机、水轮发电机等各类发电设备的调节和控制。
而变频器能够实现对发电机转速的精确控制,从而保证发电机的工作效率和发电量的稳定性。
3. 变频器的发展趋势和未来发展前景随着数字化技术和微电子技术的不断发展,变频器的性能指标和应用领域得到了进一步提升,其发展前景也越来越广阔。
未来,变频器的趋势和发展方向主要包括以下几个方面:3.1 集成化与智能化未来的变频器需要更加智能化和集成化。
变频器技术及应用论文
变频器技术及应用论文论文题目:变频器在中央空调系统的节能应用专业:班级:学号:学生姓名:二0一0年六月日目录1.中央空调冷水机组系统的组成以及工作原理 (1)1.1水泵的变频节能原理 (3)1.2水泵节能改造的必要性 (3)2.水泵节能改造的方案 (4)2.1 冷冻(媒)水泵系统的闭环控制…………………………………………★ 4 2.2 冷却水系统的闭环控制……………………………………………………★★5 2.3水泵节能改造的方案的优点………………………………………………★★★5参考文献……………………………………………………………………………★★6中央空调冷水机组系统的组成以及工作原理变频器在中央空调系统的节能应用摘要:针对社会发展中出现的热点和难点问题选题研究,现如今的社会,讲究环保、节能、可持续发展,如何在给人类提供方便舒适的生活环境下而尽量的节约能源成为了社会的热点话题,空调是现代化楼宇中不可缺少的一部分,随着我国经济的不断发展和城市化进程的不断推进,中央空调的应用会越来越广泛。
但是中央空调的能耗非常大,约占整个建筑总用电量的60%-70%。
对中央空调系统的节能研究、节能改造显得尤为重要。
由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大。
[1]其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。
水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。
再因水泵采用的是Y-△起动方式,电机的起动电流均为其额定电流的3~4倍,一台90KW的电动机其起动电流将达到500A,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。
变频器的原理与应用论文
变频器的原理与应用引言变频器是一种将电源频率进行调节,以控制电动机转速的电力调节装置。
它通过改变电源的频率和电压,实现了对电动机的速度控制,广泛应用于工业生产和机械设备中。
本文将介绍变频器的原理和应用,并简要探讨其在电机控制中的作用。
变频器的原理变频器通过将电源的交流电转换为直流电,并再次转换为调节后的电源输出,从而改变电动机的转速。
其原理主要包括以下几个环节:1.输入电路:将交流电源输入变频器,经过整流电路将交流电转换为直流电;2.母线电路:通过充电电容器对直流电进行滤波,降低噪声和脉动,保证稳定的直流电源供给;3.逆变电路:在控制电路的作用下,采用PWM技术将直流电转换为可调节的交流电源输出;4.输出电路:将调节后的交流电输出给电动机,通过调节电源的频率和电压,实现对电动机转速的控制。
变频器的应用变频器广泛应用于各个行业的电机控制中,主要有以下几个方面的应用:1.工业生产:在工厂的生产线上,变频器可以用于控制各种机械设备的转速,如风机、水泵、压缩机等。
通过调节电源的频率和电压,可以实现对设备工作的控制和调节,提高生产效率;2.制造业:在各种制造设备中,变频器可以用于控制机器的运行速度。
如注塑机、搅拌机、切割机等,可以根据需要调节转速,提高产品的质量和生产效率;3.交通运输:在交通运输工具中,变频器可以用于电动机的控制,如电梯、地铁、电动车等。
通过调节电机的转速,可以实现运输工具的平稳运行和节能减排;4.家用电器:变频器也广泛应用于家用电器中,如洗衣机、空调、电冰箱等。
通过调节电机的转速,可以提高家电的工作效率,降低能耗和噪音。
通过以上应用,可以看出变频器在各个领域的重要性。
它不仅可以提高设备的工作效率和质量,还可以实现能源的节约和环境的保护。
总结本文简要介绍了变频器的原理和应用。
变频器通过改变电源的频率和电压,实现了对电动机转速的控制。
它广泛应用于工业生产和机械设备中,包括工业生产、制造业、交通运输和家用电器等多个领域。
ABB变频器应用论文
ABB变频器在西沟矿B4下行胶带运输系统中的应用摘要:本文介绍了变频调速系统在长距离下运胶带控制系统中的实际应用,并提供了相关的系统单线图、远程控制方案。
利用了ABB IGBT供电单元+逆变单元的解决方案,实现了长距离下运胶带长时间的稳定运行,解决了胶带机调速的实际应用问题。
关键词:IGBT供电模块,LCL滤波器,DTC控制一、简介胶带机是我国工矿企业中应用十分广泛的运输设备,运量大,维护简单。
但作为长距离的下运胶带其工况比较复杂,在空载不带料运行时电机处于驱动状态而到满载运行时则需要系统提供制动力控制速度防止超速飞车。
所以如何实现集中自动控制和胶带调速是目前需要解决的主要问题。
酒钢西沟矿胶带运输系统在这方面是一个比较典型的例子。
胶带所处位置从海拔3067米至1942米,运输距离11.7公里,属长距离下运式胶带机,运送物料为石灰石。
由于是半封闭露天运输,环境粉尘含量高,年降雨量少,温差大(最高气温+30℃,最低气温-35℃),属高寒干旱地区。
系统中共有胶带六条,胶带采用单台电动机驱动,下行倾角大且胶带较长。
其中B1长122.5米,电动机功率37KW,水平运行;B2长1546米,电动机功率为315KW,胶带机设计倾角为9-12度;B3长574米,电动机功率55KW,胶带机倾角3-4度;B4长2194米,电动机功率132KW,胶带机倾角3-4度;B5长3690米,电动机功率250KW,胶带机倾角5-6度;B6长3953米,电动机功率250KW,胶带机倾角5-6度;除B1外,其它均为下行胶带,尤以B2胶带倾角最大。
六条胶带的驱动电机均设在胶带尾部通过减速机与胶带驱动滚筒连接,电机附近设有控制分站,电气设备安装在控制分站内。
各个分站通过光纤连接通讯,实现数据交换和联锁控制。
在现有整个项目中使用了西门子公司的6SE70系列变频器1套(用于B1胶带机)和整流/回馈+逆变器单元5套(用于B2~B6胶带机)。
自动化控制系统采用了6套西门子S7-300系列PLC,HMI上位机采用了研华工控机安装西门子监控软件WinCC5.0。
变频技术与应用论文
目录一、交流变频调速的发展概况 ……………………………P1二、变频器的构成与功能 ……………………………P11.变频器的结构。
……………………………P12.变频器的功能: ……………………………P2三、变频器主要研究内容及关键技术 ………………………P3四、变频调速的应用 ……………………………P31. 变频调速的原理 ……………………………P32.变频器的控制方式 ……………………………P43.变频器调速方式 ……………………………P5五、总结 ……………………………P5参考文献 ……………………………P6变频技术与应用随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流调速取代直流调速已成为现代电气传动的主要发展方向,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。
另外,由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。
变频器以及可编程控制器以其优越的调速和起保停性能、高效率、高功率因数和显著的节电效果而广泛应用于大、中型交流电机等,被公认为最有发展前途的调速控制。
一、交流变频调速的发展概况变频器自1965年问世以来,已经历40多年的发展过程。
20世纪80时代在北美、西欧和亚东等地区的发达工业国家已经被广泛使用。
20世纪90年代,随着中国国内各行业节能环保意识的加强,变频器已被广泛应用于国民经济的各个领域,在空调、电梯、冶金、机械、电子、石化、造纸、纺织等行业有十分广阔的应用空间,极大地提高了我国工业电气传动水平。
随着微电子学、电力电子、计算机和自动控制理论等的发展,变频调速技术已经进入一个崭新的时代,在以工频交流电为主的用电场合具有越来越广阔的应用前景。
因此,变频器控制技术是从事变频调速设计和应用工程技术人员必须掌握的工程技术之一。
二、变频器的构成与功能1.变频器的结构。
变频器实际上就是一个逆变器.它首先是将交流电变为直流电.然后用电子元件对直流电进行开关.变为交流电.一般功率较大的变频器用可控硅.并设一个可调频率的装置.使频率在一定范围内可调.用来控制电机的转数.使转数在一定的范围内可调.变频器广泛用于交流电机的调速中.变频调速技术是现代电力传动技术重要发展的方向,随着电力电子技术的发展,交流变频技术从理论到实际逐渐走向成熟。
变频器的毕业论文
变频器的毕业论文变频器的毕业论文引言:在现代工业中,电机作为一种广泛应用的能源转换设备,其运行效率和控制精度对于整个生产过程的稳定性和效益至关重要。
而变频器作为电机控制的核心设备,通过调节电机输入的电压和频率,实现对电机转速的精确控制。
因此,对变频器的研究和应用具有重要的意义。
一、变频器的基本原理变频器是一种能够将交流电源转换为可调节的交流电源的电力电子设备。
其基本原理是通过将输入的交流电转换为直流电,再通过逆变器将直流电转换为可调节的交流电。
变频器通过调节逆变器输出的电压和频率,实现对电机转速的控制。
其核心部件是功率电子器件和控制电路。
二、变频器的工作原理1. 变频器的输入电路变频器的输入电路主要由整流电路和滤波电路组成。
整流电路将交流电转换为直流电,滤波电路对直流电进行滤波,使其更加稳定。
2. 变频器的逆变器逆变器是变频器的核心部件,其将直流电转换为可调节的交流电。
逆变器一般采用PWM技术,通过调节开关管的开关频率和占空比,控制输出的电压和频率。
同时,逆变器还具有过流、过压、过温等保护功能,确保电机的安全运行。
3. 变频器的控制电路变频器的控制电路主要负责对逆变器进行控制,实现对电机转速的精确控制。
控制电路通过采集电机的转速、电流等参数,并通过PID控制算法进行计算和调节,实现闭环控制。
同时,控制电路还具有故障保护、启动和停止控制等功能。
三、变频器的应用领域1. 工业自动化在工业自动化领域,电机的精确控制对于生产过程的稳定性和效率至关重要。
变频器通过对电机的转速进行精确控制,可以实现生产过程的自动化和优化,提高生产效率和产品质量。
2. 新能源领域随着新能源的快速发展,风力发电、太阳能发电等清洁能源逐渐得到广泛应用。
而这些清洁能源的发电设备往往需要通过变频器对输出电压和频率进行调节,以适应不同的电网条件和负载需求。
3. 智能家居随着智能家居的兴起,人们对于家电设备的控制需求越来越高。
变频器可以实现对家电设备的精确控制,提高能源利用效率,降低能源消耗。
有关变频器特点及其应用论文
变频器特点及其应用论文有关变频器特点及其应用论文摘要:综合本公司实际生产情况和本人多年工作经验知,生产中使用变频器具有绝对重要性,希望业内人士广泛使用之。
关键词:变频器供水行业应用引言一般城市管网的水压无法完全满足所有用水居民的用水需求,绝大部分用户须通过提升水压才能满足用水要求。
以前大多采用传统的水塔,高位水箱等等增压设备,它们都必须由水泵以高出实际用水高度的压力提升水量,其结果大大增加了能量损耗。
一、新、旧泵的测试例如,我公司对6sh-655kw成套机电设备做如下测试:75KW三垦变频器直拖旧泵测试数据表:75KW三垦变频器直拖新泵测试数据表由上述测试结果可得老式供水方式被全新变频供水方式取代具有多项优点:1.1变频供水能灵活控制供水压力。
1.2采用变频供水节电效果明显。
1.3当异步电机在全压启动时从静止状态加速到额定转速所需时间小于0.5秒,这意味着在不足0.5秒的时间里,水的流量从零猛增到额定流量,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,压力过高会爆管而过低导致管子的`瘪塌。
直接停机同样会引起压力冲击。
从上表测试结果可见使用变频器调速后,可通过对加减速时间的合理预置来延长启动和停止过程,合理控制供水压力减少管道冲击,最大限度保护管网,管件,同时也提高电机水泵的使用寿命。
从上述测试还可以看出泵老化时严重影响出水量供水压力,维护维修不及时泵效率会大幅降低。
二、变频器的节能效果变频器节能效果实际工作中更可观。
例如,我公司有一水厂,水厂原供水方案为280KW机电系统一工一变两套系统向市区管网以0.18Mpa压力供水,工频供水系统为控制供水压力要采用勒阀门的方法。
去年经技术改造改为两套供水系统均用变频器供水,严禁勒阀门通过变频器调频来控制供水压力。
改变供水方法后该水厂当月电费较前月少近五万元,当年公司电费较上年减少近六十万元,可见使用变频器供水节能效果很明显,长期使用变频器经济效益可观。
变频器在节能领域的应用毕业设计(论文)
第1章绪论随着生产技术的不断发展,直流拖动的薄弱环节逐步显露出来。
由于换向器的存,直流电机的维护量加大,单机容量、最高转速以及使用环境都受到限制。
人们开始转向结构简单、运行可靠、维护方便、价格低廉的异步电动机。
但异步电动机的调速性能难以满足生产的需要。
于是,从20世纪30年代开始,人们致力于交流调速技术的研究,然而进展缓慢。
在相当长的时期内,直流调速一直以其优异的性能统治着电气传动领域。
20世纪60年代以后,特别是70年代以来,电力电子技术、控制技术和微电子技术的飞速发展,使得交流调速性能可以与直流调速相媲美。
目前,交流调速已进入逐步代替直流调速的时代。
1.1变频器的应用变频器主要用于交流电动机(异步电机或同步电机)转速的调节,是公认的交流电动机最理想、最有前途的调速方案,除了具有卓越的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。
自上世纪80年代被引进中国以来,变频器作为节能应用与速度工艺控制中越来越重要的自动化设备,得到了快速发展和广泛的应用。
1.2变频器与节能变频器产生的最初用途是速度控制,但目前在国内应用较多的是节能。
中国是能耗大国,能源利用率很低,而能源储备不足。
在2003年的中国电力消耗中,60—70%为动力电,而在总容量为5.8亿千瓦的电动机总容量中,只有不到2000万千瓦的电动机是带变频控制的。
据分析,在中国,带变动负载、具有节能潜力的电机至少有1.8亿千瓦。
因此国家大力提倡节能措施,并着重推荐了变频调速技术。
应用变频调速,可以大大提高电机转速的控制精度,使电机在最节能的转速下运行。
以风机水泵为例,根据流体力学原理,轴功率与转速的三次方成正比。
当所需风量减少,风机转速降低时,其功率按转速的三次方下降。
因此,精确调速的节电效果非常可观。
与此类似,许多变动负载电机一般按最大需求来生产电动机的容量,故设计裕量偏大。
而在实际运行中,轻载运行的时间所占比例却非常高。
变频器毕业论文
摘要近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
众所周知,变频器是由整流电路、滤波电路、逆变电路组成。
其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。
这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。
所以,深入了解交流传动与控制技术的走向,对我们的学习工作具有十分积极的意义。
关键词:变频器;工作原理;发展前景;故障处理目录绪论 (1)一、变频器的发展、组成及原理 (3)(一)变频器的概述 (3)(二)直流电动机与交流电动机的比较 (3)(三)通用变频器的发展 (4)(四)变频器的组成与分类 (5)(五)变频器的基本分类 (7)(六)变频器的基本原理 (11)(七)变频器的前景展望 (14)(八)本章小结 (20)二、变频器工程中的选用 (21)(一)变频器的选择 (21)(二)变频器的安装 (22)(三)工作环境的要求 (22)(四)本章小结 (23)三、变频器的维护 (24)(一)变频器外部引起的故障 (24)(二)变频器内部引起的故障 (25)(三) 本章小结 (26)四、变频器过电压故障原因分析及对策 (27)(一)变频器过电压的危害 (27)(二)产生变频器过电压的原因 (27)(三)过电压故障处理对策 (29)五、变频器常见干扰故障分析及对策 (33)(一)外界对变频器的干扰 (33)(二)变频器对周边设备的干扰及对策 (34)结论 (38)参考文献 (39)致谢 (40)绪论1.变频器的发展起步变频技术是应交流电机无级调速的需要而诞生的。
毕业设计(论文)-变频器在风机中的应用
变频器在风机中的应用摘要在工矿企业中,风机设备应用广泛,诸如锅炉燃烧系统、通风系统、和烘干系统等。
传统的风机控制是全速运转,既不论生产工艺的需求大小,风机都是提供固定数值的风量,而生产工艺往往需要对炉膛的压力、风速、风量及温度等指标进行控制和调节,最常用的方法是调节风门或挡板开度的大小来调整受控对象。
这样,就是得能量以风门、挡板的节流损失消耗掉了,找成了大量的能源浪费和设备损耗,而且控制精度收到限制,影响产品质量和生产效率。
使用变频器驱动的方案取代了风门、挡板控制方案,降低了电动机功耗,达到了高效节能和高效运行的目的,关键字:风机、变频调速、节能引言目前风机在运行中存在的问题:(1) 设计院或用户在选择风机设备时,通常留有10%~15%的设计余量,实际上系统多数工作负荷低于额定负荷运行,设备容量不能充分利用,运行效率低; (2)启动时对电动机的冲击大,降低了电动机使用寿命;(3) 挡板功耗大,浪费能源;(4)工作系统很难投入自动运行,降低了系统自动化水平。
随着电力电子技术、微电子技术、信息技术和现代控制理论在调速系统中的应用,并且由于近年电力紧张,变频调速技术已经成为现代电力传动的一个发展方向,卓越的调速性能,使得变频器在工业生产中的节能效果越发显著。
因此,将风机改为变频器控制,将传统的电机调速技术、现代电力电子技术以及计算机控制技术结合在一起,当系统工艺需要风量发生变化时,自动调速,使电机在经济的转速下运行,从而达到节电的效果。
变频调速节能控制装置的特点:(1)调速效率高;(2)调速范围大;(3)调速精度高;(4)启动电流小,而且容易实现闭环控制。
由于可以利用原普通交流异步电动机,所以特别适合对原有旧设备的技术改造,它既保持了原电动机结构简单,可靠耐用,维修方便的优点,又能达到节电的显著效果,是风机交流调速节能的理想方法。
目录一、变频器技术概述1、变频器技术的发展2、变频器的分类3、变频器的主要组成元件二、风机变频调速驱动原理1、风机的机械特性2、风机的功率特性三、风机调速节能原理1、风机风量和转速及风压与转速的关系2、风机节能的计算3、电机的机械特性四、风机变频调速系统设计1、二次方律负载2、风量调节方法3、风机的容量选择4、变频器的容量选择5、变频器的运行方式选择6、变频器的参数设置7、风机变变频调速系统的电路原理图五、变频改造后的效益计算六、结束语七、参考文献一、变频器技术的发展1、电力电子器件是变频器发展的基础变频器的主电路不论是交-直-交还是交-交变频的形式。
变频器论文(优秀5篇)
变频器论文(优秀5篇)变频器论文篇一动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。
因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。
变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。
变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。
当前竞争的焦点在于高压变频器的研究开发生产方面。
随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。
辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。
这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。
在变频器主电路的拓扑结构方面。
变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。
负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。
对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。
脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。
交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。
微处理器的进步使数字控制成为现代控制器的发展方向。
变频器论文
《变频器及应用》论文题目:变频器在起重机中的应用学院(系):电气工程系年级专业:电机电器091班学号: 200901360133 学生姓名:夏晓峰指导教师:严俊目录一变频器在起重机控制系统中的应用二正文1.一般交流变频器的优点2.起重机运行的特点3.起重机变频器主要功能及特点4.变频器的选用5 再生能量的处理三结论及展望变频器在起重机控制系统中的应用随着工业生产对起重机调速性能要求的不断提高,常用传统的起重机调速方法如:绕线转子异步电动机转子串电阻调速、晶闸管定子调压调速和串级调速等共同的缺点是绕线转子异步电动机有集电环和电刷,它们要求定期维护,由集电环和电刷引起的故障较为常见,再加上大量继电器、接触器的使用,致使现场维护量较大,调速系统的故障率较高,而且调速系统的综合技术指标较差,已不能满足工业生产的特殊要求。
本文则主要介绍现代交流变频器应用于现代起重机的若干知识与问题。
(如图起重机在工业上的应用)关键词:起重机;变频器;变频调速:制动整流正文现代交流变频调速技术已在工业界中得到广泛应用,它为交流异步电动机驱动的起重机大范围、高质量地调速提供了全新的方案。
它具有高性能的调速指标,可以使用结构简单、工作可靠、维护方便的鼠笼异步电动机,并且高效、节能,其外围控制线路简单,维护工作量小,保护监测功能完善,运行可靠性较传统的交流调速系统有较大的提高。
所以,采用交流变频调速是起重机交流调速技术发展的主流。
1.一般交流变频器的优点变频调速技术应用于起重机后,与市场上大量使用的传统的绕线异步电动机转子串电阻调速系统相比,可带来以下显著经济效益和安全可靠性:(1)机械制动器在电动机低速时动作,主钩以及大、小车的制动由电气制动完成,所以机械制动器的制动片寿命大为延长,维护保养费用下降。
(2)采用交流变频调速技术的起重机由于变频器驱动的电动机机械特性硬,具有精确定位的优点,不会出现传统起重机负载变化时电动机转速也随之变化的现象,可以提高装卸作业的生产率。
变频器的基本原理与应用论文范文
变频器的基本原理与应用论文范文引言变频器是一种广泛应用的电力设备,用于控制交流电动机的转速和运行方向。
它通过改变电源频率和电压,实现对电动机的精确控制,提高电动机的效率和运行稳定性。
本文将介绍变频器的基本原理和主要应用领域,帮助读者更好地理解和应用变频器技术。
变频器的基本原理1.变频器的结构:变频器由整流器、滤波器、逆变器和控制电路组成。
整流器将交流电转换为直流电,滤波器用于平滑输出的直流电,逆变器将直流电转换为需要的交流电信号,控制电路实现对逆变器的控制。
2.变频器的工作原理:变频器通过调整逆变器的输出频率和电压来控制电动机的转速。
通过控制逆变器的开关管状态,可以改变输出波形的形状,从而控制电机的转速和转矩。
3.变频器的控制方式:常见的变频器控制方式包括恒转矩控制、矢量控制和感应电机驱动控制等。
不同的控制方式适用于不同的应用场景,可以实现不同的控制要求。
变频器的应用领域1.工业领域:变频器广泛应用于工业生产中,用于控制各种电动机的转速和转矩。
例如,变频器可用于控制风机、泵等设备的运行,实现能耗的降低和运行效率的提高。
2.家用电器领域:变频器也被应用于家用电器中,如空调、洗衣机、冰箱等。
通过使用变频器,家用电器能够根据实际需求调整工作状态,节约能源,提高使用效率。
3.交通运输领域:变频器在交通运输领域也有重要应用。
例如,电动车辆中的变频器可以调整电动机的转速和转矩,实现车辆的动力控制和能量回收。
4.农业领域:在现代农业中,变频器被广泛应用于农用设备的控制,例如灌溉系统、养殖设备等。
通过使用变频器,可以实现对设备的精确控制,提高农业生产效率和节约能源。
变频器的优点1.节能效果显著:变频器通过调整电动机的转速和转矩,实现了对电机功率的精确控制。
相比传统的调速方式,变频器能够根据实际需求调整供电频率和电压,以实现节能效果。
2.运行稳定性高:变频器能够提供精确的转速和转矩控制,使得电机运行更加平稳,减少设备的振动和噪音。
变频器应用技术论文
变频器应用技术论文随着经济的快速腾飞,变频器技术在工业企业的作用更是不容忽视的。
这是店铺为大家整理的变频器应用技术论文,仅供参考!变频器应用技术论文篇一浅议变频调速技术的应用摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。
随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。
近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。
关键词:变频器,控制技术,应用电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其有益的调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。
1.变频调速技术的现状电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。
电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。
不调速电动机直接由电网供电。
但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。
以我国为例,60%的发电量是通过电动机消耗的。
因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。
近年来。
变频调速技术已成为交流调速中最活跃、发展最快的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的应用摘要:变频器体现着很多的优胜性,但它干扰电网的谐波和电磁辐射也越来越受到人们的重视,本篇主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。
关键词:谐波、电磁辐射、方法引言变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用thdv表示,变频器产生谐波引起的thdv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是igbt等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常运作。
1电网及其它系统受谐波和电磁辐射的危害(1)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
(2)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
(3)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
(4)谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
(5)谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
通常来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。
但对系统容量小的系统,谐波产生的干扰就不能忽视。
2 有关谐波的国际及国家标准(1)国际标准iec61000-2-2标准适用于公用电网,iec61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率thdv。
iec61000-2-2标准规定了电网公共接入点处的各次谐波电压含有的thdv约为8%。
iec61000-2-4标准分三级。
第一类对谐波敏感场合(如计算机、实验室等)thdv为5%;第二类针对电网公共接入点和一部分厂内接入点thdv为8%;第三类主要针对厂内接入点thdv为10%。
以上两个标准还规定了电器设备所允许产生谐波电流的幅值,前者主要针对16a以下,后者主要针对16a 到64a。
ieee519-1992标准是个建议标准,目标是将单次thdv限制在3%以下,总thdv限制在5%以下。
(2)国内标准gb/t14549-93中规定,公用电网谐波电压(相电压)限值为380v(220v)电网电压总thdv为5%,各次谐波电压含有率奇次为4%,偶次为2%。
综上所述,一般单次电压畸变率在3~6%,总电压畸变率在5~8%的范围内是可以接受的。
3 减少变频器谐波对其它设备影响的方法(1)增加交流/直流电抗器采用交流/直流电抗器后,进线电流的谐波畸变率大约降低30%~50%,是不加电抗器谐波电流的一半左右,使用交流/直流电抗器降低thd。
(2)多相脉冲整流在条件具备,或者要求产生的谐波限制在比较小的情况下,可以采用多相整流的方法。
12相脉冲整流thdv大约为10%~15%,18相脉冲整流的thdv约为3%~8%,满足en61000-3-12和ieee519-1992严格标准的要求。
缺点是需要专用变压器和整流器,不利于设备改造,价格较高。
(3)无源滤波器采用无源滤波器后,满载时进线中的thdv可降至5%~10%,满足en61000-3-12和ieee519-1992的要求,技术成熟,价格适中。
适用于所有负载下的thdv<30%的情况。
缺点是轻载时功率因数会降低。
(4)输出电抗器也可以采用在变频器到电动机之间增加交流电抗器的方法(如图3),主要目的是减少变频器的输出在能量传输过程中,线路产生的电磁辐射。
该电抗器必须安装在距离变频器最近的地方,尽量缩短与变频器的引线距离。
如果使用铠装电缆作为变频器与电动机的连线时,可不使用这方法,但要做到电缆的铠在变频器和电动机端可靠接地,而且接地的铠要原样不动接地,不能扭成绳或辨,不能用其它导线延长,变频器侧要接在变频器的地线端子上,再将变频器接地。
4 减少或削弱变频器谐波及电磁辐射对设备干扰的方法上面介绍的方法是减少变频器工作时对外设备的影响,但并不是消除了变频器的对外干扰,如果想进一步提高其它设备对变频器谐波和电磁辐射的免疫能力,尤其是在变频器(品牌不同,产生的干扰程度可能不一样)干扰较严重的场合中常用的方法通常有以下几种。
(1)使用隔离变压器使用隔离变压器主要是应对来自于电源的传导干扰(如图4)。
使用具有隔离层的隔离变压器,可以将绝大部分的传导干扰阻隔在隔离变压器之前。
同时还可以兼有电源电压变换的作用。
隔离变压器常用于控制系统中的仪表、plc,以及其它低压小功率用电设备的抗传导干扰。
使用滤波模块或组件目前市场中有很多专门用于抗传导干扰的滤波器模块或组件,这些滤波器具有较强的抗干扰能力,同时还具有防止用电器本身的干扰传导给电源,有些还兼有尖峰电压吸收功能,对各类用电设备有很多好处。
常用双孔磁芯滤波器还有单孔磁芯的滤波器,其滤波能力较双孔的弱些,但成本较低。
选用具有开关电源的仪表等低压设备一般开关电源的抗电源传导干扰的能力都比较强,因此在选用控制系统的电源设备,或者选用控制用电器的时候,尽量采用具有开关电源类型的。
作好信号线的抗干扰对于信号线上的干扰主要是来自空间的电磁辐射,有常态干扰和共模干扰两种。
常态干扰的抑制常态干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。
抑制常态干扰的方法有:在输入回路接rc滤波器或双t滤波器;尽量采用双积分式a/d转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用;将电压信号转换成电流信号再传输的方式,对于常态的干扰有非常强的抑制作用。
共模干扰的抑制共模干扰是指信号线上共有的干扰信号,一般是由于被测信号的接地端与控制系统的接地端存在一定的电位差所致,这种干扰在两条信号线上的周期、幅值基本相等,所以采用上面的方法无法消除或抑制。
对共模干扰的抑制方法如下:采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比。
把输入线绞合,绞合的双绞线能降低共模干扰,由于改变了导线电磁感应e的方向,从而使其感应互相抵消。
双绞线降低共模干扰采用光电隔离的方法,可以消除共模干扰;使用屏蔽线时,屏蔽层只一端接地。
因为若两端接地,由于接地电位差在屏蔽层内会流过电流而产生干扰,因此只要一端接地即可防止干扰。
(5)应注意的事项无论是为了抑制常态干扰还是抑制共模干扰,都还应该做到以下几点:输入线路要尽量短。
配线时避免和动力线接近,信号线与动力线分开配线,把信号线放在有屏蔽的金属管内,或者动力线和信号线分开距离要在40cm以上。
为了避免信号失真,对于较长距离传输的信号要注意阻抗匹配。
在使用以单片机、dsp等为核心的控制系统中,编制软件的时候,可以适当增加对检测信号和输出控制部分的软件滤波,以增强系统自身的抗干扰能力。
5 抑制谐波的方法目前,国内普遍采用提高变压器质量、增加电缆截面积、特别加大中型线电缆截面以及选用定植较大的断路器、熔断器等保护元件等办法,不但不能从根本上消除谐波,反而降低了保护特性与功能,加大了投资浪费,增加了供电系统的隐患。
为减少供电系统的谐波问题,一般从管理上和技术措施上采取以下几个方法:(1)贯彻执行有关谐波的国家标准,加强谐波管理我国于1998年12月4日发布了国家标准gb17625.1-1998《低压电气及电子设备发出的谐波电流限值(设备每相输入电流小于等于16a)》,等效采用iec6100-3-2:1995,但在技术内容上与该国际标准完全一致。
gb17625.1规定了准备接入公用低压配电系统中的电气、电子设备(每相输入电流秒度小于等于16a)可能产生的谐波的限植。
只有经过试验证实符合该标准限植要求的设备才能接入到配电系统中。
这样就可以对低压电气及电子产品注入供电系统的总体谐波电流水平加以限制。
该标准对以下四类设备确定了谐波电流时发射限植:a类设备平衡的三相设备以及除b、c和d类外的所有其他设备;b类设备便携式电动工具;c类设备包括调光装置的照明设备;d类设备输入电流具有标准定义的“特殊波形”,功率不大于600w的设备。
谐波治理还应注意下面几个标准,该标准还规定了试验电路和对试验电源的要求,对测量设备的要求和试验条件等内容。
抗干扰标准:en50082-1、-2,en61800-3;辐射标准:en50081-1、-2,en61800-3。
特别是iec10003、iec1800-3、iec555(en60555)和ieee519-1992。
普通的抗干扰标准en50081和en50082以及针对变频器的标准en61800(iec1800-3)定义了设备在不同的环境中运行时的辐射及抗干扰的水平。
上述标准定义了在不同环境条件下的可接受辐射等级:1级,无辐射限制。
试用于在不受干扰的环境下使用变频器的用户和自己处理辐射限制的用户。
2级,根据en61800-3确定的限制,第一环境:有限制分布,和第二环境。
作为选件rfi滤波器,配置rfi滤波器可以使变频器达到商业级,通常用于非工业的环境。
认真贯彻执行有关国家标准关于限制谐波的规定,就能从总体上控制供电系统中的谐波水平,保证供电系统中的谐波水平,保证供电系统供给优质的电力质量。
(2)增加换流装置的相数换流装置是供电系统的主要谐波源之一。
理论分析表明,换流装置在其交流侧与直流侧产生的特征谐波次数分别为pk加减1和pk。
当脉动数由p=6增加到p=12时,可以有效的消除幅值较大的低频项,从而大大降低了谐波电流的有效值。
(3)增装动态无功补偿装置,提高供电系统承受谐波的能力在技术经济分析可行的条件下,可以在谐波源处装设动态无功补偿装置,以获得补偿负荷快速变动的无功需求、改善功率因数、滤除系统谐波、减少向系统注入谐波电流、稳定母线电压、降低三相电压不平横度等,提高供电系统承受谐波的能力。
(4)加装滤波装置使用无源滤波器主要是改变在特殊频率下电源的阻抗,适用于稳定、不改变的系统。
使用有源滤波器主要是用于补偿非线性负载。
传统的方式多选用无源滤波器,其结构简单、投资少、运行可靠性较高以及运行费用较低。
在具体的谐波治理方面,出现了无源滤波器与有源滤波器互补混合使用的方式,有源电力滤波器补偿性能好的优点,克服有源电力滤波器容量大、成本高的缺点,两者结合使用,从而使整个系统获得良好的性能。
总之,一方面要严格限制谐波的发射水平,另一方面还要设法提高设备自身的抗谐波干扰能力,改善谐波保护性能,以做到真正意义上的电磁兼容。
(5)减少回路的阻抗及切断传输线路法将线性负载与非线性负载从同一电源接口点(pcc)就开始分别的电路供电,这样可以使由非线性负载产生的畸变电压不会传导到线性负载上去。