油管标准
油管性能基本要求
螺纹单项参数测量仪使用时注意事项
1.石油用螺纹单项参数测量仪均为精密仪器,操作时应
十分谨慎,以保持进行检验所要求的高准确度和精度。任
何仪器若不慎被摔或受剧烈震动,应进行重新校准或与已 知精度的计量基准对比,重新确定其精度,否则不能用于检
验。
2.检验时,慢慢放松测量杆,使测头与被测螺纹表面相 接触。不允许提起测量杆然后突然松手,靠弹簧力把测头
油管性能基本要求
提纲
油管基础知识介绍 管体性能与检验 螺纹要求与检验 适用性评价 使用与维护 失效案例分析
油管 Tubing
用途:
连接下入井中,用作流体注采的管柱通道; 油管管柱在油井管柱的最里面;
油管与套管之间环空填充保护液,封隔器密封;
油气流体从地下油层经油管柱通道到达地面。
螺距量规的使用方法
a) 使 用 前 , 安 装 和 调 整 固 定 测 头 , 使 测 头 间 距 等 于 待 测 螺 纹的间距;
b)使用标准样板将量规指示表调整到零位,并检查仪表的灵活性 和测头是否松动; c)量规的球形测头置于相应的螺纹槽内; d)以固定测头为轴心,可动测头在测量线的两侧旋转一小圆弧; e)最小的正读数(+)或最大的负读数(-)就是螺距误差。
规格: 外径:1.050~4.5英寸(26.67~114.30mm) 壁厚:0.113~0.63英寸(2.87~16.00mm) 针对规格、钢级和相应端部加工的规定:
例如:
尺寸公差要求:
(对于外加厚油管,外径测量位置做了规定)
1、外径:D±0.79mm
2、壁厚:-12.5%
3、通径要求:每根管子应用规定尺寸的通 径棒进行全长通径检验。
P11W02油管等管材检验、验收标准
井下作业分公司起草:牟小清编号:JX/QHSE/P11/W02QHSE管理体系作业指导书审核:曹学军版本:A/0批准:谭明文发布日期:2009/02/20 油管、套管及其短节、接箍、接头检验/验收标准1. 本标准适用于公司所有套管、油管及其短节、接头、接箍的进货检验和使用中的检定。
由壬、卡箍、弯管、油咀套及油咀等的检验也可参照本标准。
2.本规定引用API—67标准。
如顾客有特定要求时,应在合同中明确检定标准,按顾客要求的标准进行检验。
3. 对公司所购进油管、套管及接头、接箍、短节等器材,一般我方仅作对本体无损伤的项目的检验;对本体有损伤或可能造成损伤项目的检验由供方完成,或由供方提供的试验参数为使用、设计计算的依据。
该类原材料在作供方评价时,应评价其检验能力和质量体系。
4.检定项目、检定方法和合格品判断标准(仅限于顾客未作特定规定时):项目检定方法标准管体外观检验肉眼观查本体损、伤、蚀痕迹,并用测深、测长器具对损、伤、蚀查、测、量1、单个损伤深度超过管子壁厚12.5%为不合格.2、线形缺陷超过管子壁厚12.5%为不合格。
3、总损伤表面大于10%为不合格。
4.管子加厚部分存在尖锐菱角和急剧变化或带900钩工具通过被挂住为不和格反之为合格。
管体直线度抽查肉眼感觉不直的管子。
1、用锲子挡住管子,使管子弓处朝向水平面。
2、测量并记录管子全长。
3、从管子两端拉一条绷紧的细绳穿过弓。
1、小于41/2"的管子有弯度不合格。
2、不小于41/2"的管子超过3.1mm/1500mm为不合格,反之合格。
颜色/印记检定按API-67标准在表示材质(钢级)的部位,观查有颜色标记或钢印标记没有颜色标记/钢印标记为不合格品。
通径检验通径规通过本体。
通径规标准按测试规程、规定进行通过为合格(进货)壁厚测定游标长尺测量管壁进货时:最小壁厚小于规定壁厚90%为不合格。
使用中:最小壁厚小于规定壁厚87.5%为不合格。
表-常用油管尺寸与性能知识
石油油管基本知识一、石油管有关基本知识1、石油管有关专用名词解说API:它是英文American Petroleum Institute的缩写,中文意思为美国石油学会。
OCTG:它是英文 Oil Country Tubular Goods的缩写,中文意思为石油专用管材,包含成品油套管、钻杆、钻铤、接箍、短接等。
油管:在油井顶用于采油、采气、灌水和酸化压裂的管子。
套管:从地表面下入已钻井眼作衬壁,以防备井壁坍塌的管子。
钻杆:用于钻井眼的管子。
管线管:用于输送油、气的管子。
接箍:用于连结两根带螺纹管子并拥有内螺纹的圆筒体。
接箍料:用于制造接箍的管子。
API 螺纹: API 5B 标准规定的管螺纹,包含油管圆螺纹、套管短圆螺纹、套管长圆螺纹、套管偏梯形螺纹、管线管螺纹等。
特别扣:拥有特别密封性能、连结性能以及其余性能的非API 螺纹扣型。
无效:在特定的服役条件下发生变形、断裂、表面损害而失掉原有功能的现象。
油套管无效的主要形式有:挤毁、滑脱、破碎、泄露、腐化、粘结、磨损等。
2、石油有关标准API 5CT :套管和油管规范(当前最新版为第8 版)API 5D :钻杆规范(当前最新版为第 5 版)API 5L :管线钢管规范(当前最新版为第43 版)API 5B :套管、油管和管线管螺纹的加工、丈量和查验规范GB/T :石油天然气工业输送钢管交货技术条件第1部分:A级钢管GB/:石油天然气工业输送钢管交货技术条件第2部分:B级钢管GB/:石油天然气工业输送钢管交货技术条件第3部分:C级钢管3、英制与米制换算值1 英寸 (in)=毫米(mm)1 英尺 (ft)=12英寸(in)=米(m)1 平方英寸 =平方毫米 (mm2)1 磅 (lb)=千克(kg)1 磅每英尺 (lb/ft)=千克每米(kg/m)1 磅每平方英寸(psi)=千帕斯卡(kPa)= 兆帕 (Mpa)1 英尺磅 (ft-lb)=焦耳(J)4、油套管管柱构造油套管管柱典型构造示建议图1。
油管标准大纲
油管标准:(1)API SPEC5CT(2)SY/T6194-1996油管用途:①、抽取油汽:油气井打完并固井之后,在油层套管中放置油管,以抽取油气至地面。
②、注水:当井下压力不够,通过油管往井里注水。
③、注蒸汽:在稠油热采过程中,要用隔热油管向井下输入蒸汽。
④、酸化和压裂:在打井后期或为了提高油气井的产量,需要对油气层输入酸化和压裂的介质或固化物,介质和固化物都是通过油管输送的。
油管分类:油管分为平式油管(NU)、加厚油管(EU)和整体接头油管。
平式油管是指管端不经过加厚而直接车螺纹并带上接箍。
加厚油管是指两管端经过外加厚以后,再车螺纹并带上接箍。
整体接头油管是指一端经过内加厚车外螺纹,另一端经过外加厚车内螺纹,直接连接不带接箍。
油套管管柱结构油套管管柱典型结构示意见图1。
油管钢级:油管钢级有:H40、J55、N80、L80、C90、T95、P110。
N80分为N80-1和N80Q,二者的相同点是拉伸性能一致,二者的不同点是交货状态和冲击性能区别,N80-1按正火状态交货或当终轧温度大于临界温度Ar3且张力减径后经过空冷时,又可用热轧代替正火,冲击功和无损检验均不作要求;N80Q必须经过调质(淬火加回火)热处理,冲击功应符合API5CT规定,且应进行无损检验。
L80分为L80-1、L80-9Cr和L80-13Cr。
它们的力学性能和交货状态均相同。
不同之处表现在用途、生产难度和价格上,L80-1为普通型,L80-9Cr和L80-13Cr均为高抗腐蚀性油管,生产难度大,价格昂贵,通常用于重腐蚀油井。
C90和T95均分为1型和2型,即C90-1、C90-2和T95-1、T95-2。
油管化学成分:API5CT标准对油管化学成分要求见下表,这是一个范围很宽的指导性要求,其中J55、N80、P110等钢级油管只规定了硫、磷含量要求,其它主要元素均由生产厂家根据性能和使用要求而自行规定。
因此,各制造厂均有自已的油管牌号。
液压油管弯曲半径标准
液压油管弯曲半径标准液压油管在工程机械、汽车等领域中起着至关重要的作用,而其弯曲半径的标准更是直接关系到其在使用过程中的稳定性和安全性。
因此,正确的液压油管弯曲半径标准对于设备的正常运行和使用寿命具有重要意义。
1. 弯曲半径标准的重要性。
液压油管在使用过程中经常需要进行弯曲,而弯曲半径的大小直接影响到油管内部的液压油流动情况。
如果弯曲半径过小,会导致油管内部产生过大的压力,从而影响到液压系统的正常工作;而如果弯曲半径过大,则会使得油管在弯曲处产生过大的应力,从而影响到油管的使用寿命。
因此,制定合理的弯曲半径标准对于保证液压系统的正常运行和延长油管的使用寿命具有重要意义。
2. 弯曲半径标准的制定。
液压油管的弯曲半径标准是由国家标准或行业标准来规定的,不同的液压系统和设备会有相应的标准来规定油管的弯曲半径。
一般来说,液压油管的弯曲半径标准包括最小弯曲半径和最大弯曲半径两个方面。
最小弯曲半径是指在油管弯曲时,油管内侧的最小半径。
在设计和使用液压系统时,需要保证油管的弯曲半径不小于规定的最小弯曲半径,以避免因弯曲半径过小而导致的液压系统故障。
最大弯曲半径是指在油管弯曲时,油管外侧的最大半径。
保证油管的弯曲半径不大于规定的最大弯曲半径,可以有效地减小油管在弯曲处产生的应力,从而延长油管的使用寿命。
3. 合理选用液压油管。
在实际的工程应用中,需要根据具体的液压系统和设备要求来选用合适的液压油管。
在选用液压油管时,需要严格按照国家标准或行业标准来选择,并且在使用过程中要严格按照标准来进行安装和使用,以确保液压系统的正常运行和油管的使用寿命。
总之,液压油管弯曲半径标准的制定和遵守对于保证液压系统的正常运行和延长油管的使用寿命具有重要意义。
在实际应用中,需要严格按照标准来选用和使用液压油管,以确保液压系统的安全稳定运行。
SAE_J2044-2002标准_油管、油泵、燃油滤清器、油轨等管接头的执行标准
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ©2002 Society of Automotive Engineers, Inc.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Fax: 724-776-0790Email: custsvc@6.4.3Test Requirement (Side Load Fracture Test) (9)6.4.4Acceptance Criteria (9)6.5Resistance to Evaporative Emissions (10)6.5.1Test Procedure (10)6.5.2Acceptance Criteria (10)6.6Electrical Resistance (10)6.6.1Test Procedure (10)6.6.2Acceptance Criteria (10)7.Design Verification/Validation Testing (11)7.1Corrosion (11)7.1.1Test Procedure (11)7.1.2Acceptance Criteria (11)7.2Zinc Chloride Resistance (11)7.2.1Test Procedure (11)7.2.2Acceptance Criteria (11)7.3External Chemical and Environmental Resistance (11)7.3.1Test Procedure (11)7.3.2Fluid or Medium (12)7.3.3Acceptance Criteria (12)7.4Fuel Compatibility (12)7.4.1Test Procedure (12)7.4.2Test Fuels (12)7.4.3Test Requirement (12)7.4.4Acceptance Criteria (12)7.5Life Cycle (13)7.5.1Test Procedure (13)7.5.2Vibration Frequency (13)7.5.3Acceleration (13)7.5.4Vibration Duration (13)7.5.5Fluid Pressure (13)7.5.6Fluid Flow (Liquid Fuel Quick Connectors Only) (13)7.5.7Test Duration (13)7.5.8Test Cycle (14)7.5.9Acceptance Criteria (15)7.6Flow Restriction (16)7.7Elevated Temperature Burst (16)7.7.1Test Procedure (16)7.7.2Acceptance Criteria (17)8.Design Verification/Validation and In-Process Testing Matrix (17)9.Notes (17)9.1Marginal Indicia (17)Appendix A Mating Tube End Template Examples (18)1.Scope—This SAE Recommended Practice defines standard tube end form dimensions so as to guaranteeinterchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions:a.Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission controlsystems.b.Operating pressure up to 500 kPa, 5 bar, (72 psig).c.Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi).d.Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F).Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated. For service operations, the mating tube should be lubricated with SAE 30-weight oil before re-connecting.NOTE—New connector designs using the same materials as previously tested connectors may use the original results as surrogate data for 7.1, 7.2, 7.3, and 7.4.Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.2.References2.1Applicable Publications—The following publications form a part of this specification to the extent specifiedherein. Unless otherwise specified, the latest issue of SAE publications shall apply.2.1.1SAE P UBLICATIO NS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.SAE J1645—Fuel System—Electrostatic ChargeSAE J1681—Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials TestingSAEJ1737—Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by RecirculationSAE J2045—Performance Requirements for Fuel System Tubing Assemblies2.1.2ASTM P UBLICATION—Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.ASTM B 117—Method of Salt Spray (Fog) Testing2.2Related Publication—The following publication is provided for information purposes only and is not a requiredpart of this specification.2.2.1SAE P UBLICATIO N—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.SAE J30—Fuel and Oil Hoses3.Definitions3.1Unexposed coupling—One that has not been used or deteriorated since manufacture.3.2Lot—A group of couplings that can be traced to a single assembly set-up or material lot. No more than oneweek production in a lot.4.Size Designation—The following system of size designations apply to the tube end and connector portions ofquick connect couplings. The connector size designation consists of two numbers. The first number designates the OD of the mating tube end. The second number designates the tubing size suited for the stem.EXAMPLE—9.5 mm x 8 mm connector fits a 9.5 mm male and 8 mm flexible tubing or hose. The mating tube end size designations refers to the nominal OD of the sealing surface. Refer to Figure 1 for anillustration of this Coupling Nomenclature.FIGURE 1—CONNECTOR NOMENCLATUREDetails for standard coupling sizes and dimensions for standard tube end forms are shown on Figure 2.NOTE—On metal or nonmetallic tubing, the OD is used to designate size and on flexible hose and tubing, the ID is used to designate size.5.Test Temperatures—Unless otherwise specified, all tests will be performed at room temperature 23 °C ± 2 °C(73.4 °F ± 4 °F).6.Functional Requirements—This section defines the minimum functional requirements for quick connectorcouplings used in flexible tubing fuel systems.6.1Leak Test—In order to provide a production compatible process, all leak testing should be performed usingcompressed air in a manner that insures the connectors will not leak liquid fuel or vapor.6.1.1T EST P ROCEDURE (L OW P RESSURE)a.Insert leak test pin, shown in Figure 3, into the connector.b.Pressurize between the seals with suitable air leak test equipment to 69 kPa ± 7 kPa, 0.69 bar ±0.07bar (10 psig ± 1 psig).NOTE—For single seal connectors, the stem must be capped or sealed.6.1.2A CCEP TANCE C RITERIA (L OW P RESS URE)—Maximum leak rate 2 cc/min at stabilization.6.1.3T EST P ROCEDURE (H IGH P RE SSURE)a.Insert leak test pin, shown in Figure 3, into the connector.b.For liquid fuel quick connector couplings, pressurize between the seals with suitable air leak testequipment to 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar (150 psig ± 5 psig).c.For vapor/emission quick connector couplings, pressurize between the seals with suitable air leak testequipment to 138 kPa ± 10 kPa, 1.38 bar ± 0.10 bar (20 psig ± 2 psig).FIGURE 2—MATING TUBE FORM6.1.4A CCEP TANCE C RITERIA (H IGH P RESSURE)—Maximum leak rate 5 cc/min at stabilization.NOTE 1—For single seal connectors, the stem must be capped or sealed.NOTE 2—Appropriate safety precautions should be taken when testing with high-pressure air.6.1.5T EST P ROCEDURE (V ACUUM)a.Insert leak test pin shown in Figure 3 into connector.b.Apply a vacuum of 7 kPa with suitable vacuum leak test equipment.6.1.6A CCEP TANCE C RITERIA (V ACUUM)—Maximum leak rate 2 cc/min at stabilization.FIGURE 3—LEAK TEST PIN6.2Assembly Effort—Quick connect coupling assembly effort is the peak force required to fully assemble (latchor retain) the mating tube end into the connector. Use a suitable tensile/compression tester to verify conformance to this document.6.2.1T EST P ROCEDURE (N EW P ARTS)a.Test a minimum of 10 couplings.b.Test the quick connect coupling as supplied. Do not add additional lubrication to the quick connectcoupling or test pin.c.Attach quick connect coupling to a suitable test fixture.d.Wipe the test pins, before each test, with a clean lint-free cloth to prevent an accumulation oflubrication.e.Insert assembly test pin, shown in Figure 4, into the quick connect coupling at a rate of 51 mm/min ± 5mm/min (2 in/min ± 0.2 in/min) and measure assembly effort. (Simulated maximum tube end form)6.2.2T EST P ROCEDURE—Connectors after Section 7 exposure.a.Allow samples to dry 48 h before insertion testing.b.Lubricate test pin with SAE 30-weight oil by dipping the end in oil up to the retaining bead.c.Insert assembly test pin, shown in Figure 4, into the quick connector at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min) and measure assembly effort.6.2.3A CCEP TANCE C RITERIAa.Maximum first time assembly effort must not exceed 67 N (15 lb) for sizes <11 mm male tubes, and111 N (25 lb) for sizes ≥11 mm male tubes.b.Maximum assembly effort after Section 7 exposures must not exceed 111 N (25 lb) for <11 mm maletubes and 156 N (35 lb) for ≥11 mm male tubes.FIGURE 4—ASSEMBLY TEST PIN6.3Pull-Apart Effort—Quick connect coupling pull-apart effort is the peak force required to pull the mating tubeend out of the quick connect coupling. Use a suitable tensile tester to verify conformance to this document.For hose pull-off, see SAE J2045.6.3.1T EST P ROCEDUREa.Attach the quick connector body stem to a fixture suitable for pulling axially through the centerline ofthe quick connector.e the pull-apart test pin shown in Figure 5. (Simulated minimum mating end form)c.Apply a tensile load, at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min), until completeseparation occurs.6.3.2A CCEP TANCE C RITERIAa.Minimum Force P required to separate the test pin from the fuel quick connector should be, P = 56d upto a maximum of 600 N (135 lb) or for unexposed connectors and P = 37d up to a maximum of 400 N(90 lb) after Section 7 exposure where P = Force in Newtons and d = Nominal Tube Diameter inmillimeters.b.Minimum Force P required to separate the test pin from the vapor/emissions quick connector shouldbe P = 16d up to a maximum of 400 N (90 lb) for unexposed connectors, P = 12d up to a maximum of300 N (67 lb) after Section 7 exposure.FIGURE 5—PULL APART PIN6.4Side Load Capability—Quick connect couplings must be able to withstand side loads typical of what might beimposed by hose routing in a vehicle application as well as from having the hose pushed aside to reach other objects on the vehicle during service procedures. The connector side load capability is measured using a side load leak test and a side load fracture test. All connector designs and all tube end forms on metal or plastic molded parts must meet the requirements of this procedure.6.4.1T EST P ROCEDUREa.Insert quick connector into a length of design intent flexible tubing or hose with the opposite endsealed.b.Attach the quick connector to a suitable side load leak fixture or the plastic molded part, shown inFigure 6. (Simulated minimum end form)c.For liquid fuel quick connect couplings, pressurize the assembly with 1034 kPa ± 35 kPa, 10.34 bar ±0.35 bar (150 psig ± 5 psig) air pressure.d.For vapor/emission quick connect couplings, pressurize the assembly with 69 kPa ± 14 kPa, 0.69 bar± 0.14 bar (10 psig ± 2 psig) air pressure.e.Side load the hose or tube center point with the required load specified and perform the leak test.f.Mount a sample in the fracture fixture or plastic molded part, side load quick connector, at a rate of12.7 mm/min ± 5 mm/min (0.5 in/min ± 0.2 in/min), until the specified force is applied or fracture of thequick connector occurs. Kinking of design intent hose is permitted.6.4.2A CCEP TANCE C RITERIA (S IDE L OAD L EAK T ES T)a.No leaks, fracture, or rupture of the quick connector or its components or the plastic molded tube endpermitted below the minimum F = 19d up to maximum of 225 N (50 lb), where F = Side Load inNewtons and d = nominal tube diameter in millimeters.b.Maximum leak rate is 8 cc/min at stabilization with 10.34 bar ± 0.34 bar (150 psig ± 5 psig) appliedpressure for liquid connectors or 69 kPa ± 14 kPa, 0.69 bar ± 0.14 bar (10 psig ± 2 psig) appliedpressure for vapor connectors.6.4.3T EST R EQ UIREMENT (S IDE L OA D F RACTURE T EST)—Push above the end of the stem.6.4.4A CCEP TANCE C RITERIA—No fracture, rupture, or yield of the quick connector or its components or the plasticmolded tube end permitted, below the minimum of F = 28d up to a maximum of 400 N (90 lb), where F = Side Load in Newtons and d = nominal tube diameter in millimetersFIGURE 6—SIDE LOAD TEST FIXTURE6.5Resistance to Evaporative Emissions—Fuel line couplings are an integral part of the fuel system barrier toevaporative emissions. They are viewed as potential leak sites in the system. This method is to be used to determine hydrocarbon losses from permeation or micro leaks that are characteristic of each connector design.6.5.1T EST P ROCEDUREa.Because the losses from a single coupling are normally too small to measure accurately, it isrecommended that a test specimen be created consisting of 10 couplings. The value measured isthen divided by the number of connectors in the test specimen to arrive at the per connector value.b.Connector stem is to be inserted into the design intent flexible tubing or hose and a design intent tubeend inserted into the connector. The flexible tubing or hose should have its permeation propertiesmeasured independently using the same test fluid, preconditioning time and temperature, testtemperature and measurement technique. The value measure in this test is then corrected bysubtracting the permeation contribution from the flexible tubing.c.For the purpose of making the correction described in b. (previously) measure the length of flexibletubing in the test specimen that will be exposed to fuel during the test. For each section of flexibletubing this should be measured from a point half way up the stem on one connector to the same pointon the next connector in line.d.Precondition the test specimen per SAE J1737 until steady state permeation/leak measurements areobtained. Use Test Fluid C per SAE J1681. Precondition at 40 °C and 60 °C for separate tests ateach of those temperatures.e.Measure the hydrocarbon losses using a suitable SAE test method (i.e., SAE J1737, Mini-SHED,weight loss, etc) providing it is sufficiently accurate and the flexible tubing has been permeation testedusing the same method. Test at steady state temperatures of 40 °C and 60 °C.f.Correct the measured value for the multi-coupling test specimen by first subtracting the permeationvalue attributed to the flexible tubing then dividing that value by the number of couplings in the testspecimen.6.5.2A CCEP TANCE C RITERIA—None. Report value for each size and material combination only.6.6Electrical Resistance—If required by the OEM, all connectors used in fuel system applications involvingflowing liquid fuel must be sufficiently conductive and capable of creating an electrical connection with the flexible tubing into which they are inserted and with the tube end form that is inserted into them in order to prevent the buildup of harmful electrostatic charges.6.6.1T EST P ROCEDUREa.Test specimen is to consist of a coupling representative of the design as it will be installed in a vehicleapplication. The coupling is to be in the middle of the specimen. The length of both the flexible tubingor hose and rigid tubing must be 250 mm.b.Expose the specimens in accordance with 7.4 of this document then dry the exterior thoroughly.c.Measure electrical resistance per SAE J1645 between the inner surfaces at each end of the specimen.CAUTION—Measurement device may produce hazardous electrical charge, handle components with insulated means.d.With the measurement system in place and recording, using insulated tongs or grasping device, movethe connector both axially and tangentially with respect to the installed tube end.6.6.2A CCEP TANCE C RITERIAa.Measured resistance must be less than 106Ω (at 500 V).b.Electrical continuity must be maintained in all orientations of the connector relative to the tube end.c.Maintain material certification log to show in-process capability.7.Design Verification/Validation Testing7.1Corrosion—The corrosion test is performed to assure that the quick connector components will meet thefunctional requirements of the fuel system after exposure to the corrosion test.7.1.1T EST P ROCEDUREa.Insert design intent mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap the mating tube ends and the stem ends of the quick connect couplings, so internal surfacesremain free of water and corrosion.c.Perform salt spray test per ASTM B 117.7.1.2A CCEP TANCE C RITERIA—The quick connect couplings shall be capable of meeting the functionalrequirements of 6.1, 6.2, and 6.3 after 500 h salt spray. Appearance is not a functional requirement.7.2Zinc Chloride Resistance—Zinc chloride is an environmental stress-cracking agent to which somehygroscopic polymers are sensitive. This test is performed to assure that the quick connect couplings meets their functional requirements after exposure to zinc chloride.7.2.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap the mating tube ends and stem ends of the quick connect couplings, so internal surfaces remainfree of water and corrosion.c.Immerse the couplings in a 50% aqueous solution (by weight) of zinc chloride for 200 h at 23°C (roomtemperature). Cover or cap the container to prevent the solution from changing concentrationsignificantly during the exposure. When in doubt, measure the concentration of ZnCl at the completionof the test.d.When the exposure is complete, remove the quick connect couplings from the zinc chloride solution,do not rinse or clean.e.The quick connect couplings must then be held at room temperature for 24 h.f.Quick connect couplings are to be inspected after each exposure sequence for any evidence ofcracking.7.2.2A CCEP TANCE C RITERIAa.No cracks or fractures of the quick connector or its components permitted.b.The quick connect couplings shall be capable of meeting the functional requirements of 6.1, 6.2, and6.3 after exposure to zinc chloride.7.3External Chemical and Environmental Resistance—Quick connect couplings may be exposed to a range ofchemicals typical of the automotive environment. This chemical resistance test is performed to assure that the quick connect couplings will meet their functional after exposure to typical automotive fluids.7.3.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap mating tube ends and stem ends of the quick connect couplings.c.Submerge the quick connect coupling assemblies completely.d.At the end of 60 days, dry connectors at room temperature for 48 h.7.3.2F LUID OR M EDIUM—See Table 1.7.3.3A CCEP TANCE C RITERIA—The quick connect couplings shall be capable of meeting the functionalrequirements of 6.1, 6.2, and 6.3 upon completion of the external chemical and environmental testing.NOTE—New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.TABLE 1—FLUID OR MEDIUM(1)Fluid or Medium Exposure Time ProcedureAutomatic Transmission Fluid60 Days Soak @ room tempMotor Oil60 Days Soak @ room tempBrake Fluid (Dot 3)60 Days Soak @ room tempEthylene Glycol (50% Water)60 Days Soak @ room tempPropylene Glycol (50% Water)60 Days Soak @ room tempDiesel Fuel60 Days Soak @ room tempEngine Degreaser60 Days Soak @ room temp1.The fluids in Table 2 shall be considered generic or those that are common to the industry.7.4Fuel Compatibility—The fuel compatibility test is performed to assure that the quick connector will meet thefunctional requirements of the fuel system after exposure to specific fuel blends.NOTE—The intention of the document is that all couplings be fully interchangeable. As such couplings must be qualified to operate with all available fuels. Connectors made of materials that are not suitable foruse in some fuels must be clearly labeled to identify their limitations.7.4.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the connectors.b.The samples shall have fuel contact surfaces exposed to the fuels specified in 7.4.2, see Table 2.c.Replace the fuel every 7 days.d.New samples must be used for each test.7.4.2T EST F UE LS—Reference SAE J1681 and Table 2.7.4.3T EST R EQ UIREMENT—One-half the samples shall be tested immediately after removal from the test fuel andthe remaining samples shall be tested after a 48-h dry-out period.7.4.4A CCEP TANCE C RITERIA—The quick connect coupling shall meet the functional requirements of 6.1, 6.2, and6.3 after the completion of the fuel compatibility test.NOTE—New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.TABLE 2—TEST FLUIDSTest Fluid (Per SAE J1681)Exposure Time ProcedureASTM Reference Fuel C60 Days Soak @ 40 °CSAE CE10 (Fuel C Plus 10% Ethyl Alcohol)60 Days Soak @ 40 °CSAE CM30 (Fuel C Plus 30% Methyl Alcohol)60 Days Soak @ 40 °CSAE CME15 (Fuel C Plus 15% MTBE)60 Days Soak @ 40 °CSAE CP (Auto-Oxidized Fuel)60 Days Soak @ 40 °C7.5Life Cycle—The life cycle test is performed to assure that the quick connector will meet the functionalrequirements of the fuel system when exposed to pressure, vibration, and temperature cycles typical of severe duty in automotive applications.7.5.1T EST P ROCEDUREa.Insert a connector in each end of a 500 mm (19.69 in) length of suitable flexible tubing.b.Leak test the assembly per 6.1, except use mating tube end shown in Figure 2.c.Connect the assembly to a test fixture, shown in Figure 7 using production intent tubes.d.Test fluid (liquid fuel quick connect couplings)—Mobil Arctic 155 refrigerant oil or equivalent.e.Test fluid (vapor/emission quick connect couplings)—Air.NOTE—Use of flammable materials is not recommended. However, tests in fuel or fuel surrogates can produce better results at low temperatures.7.5.2V IBRATIO N F REQUENCY—Continuously sweep the frequency from 7 Hz to 200 Hz, with 3 sweeps per hour. 7.5.3A CCELERATION—See Table 3.TABLE 3—ACCELERATION(1)Maintain Acceleration Load From To18 m/s2 (2 G)7 Hz25 Hz90 (10 G)2550182 (20 G) 5075163 (18 G) 75100145 (16 G)100125127 (14 G)125150109 (12 G)15017590 (10 G)1752001.This test may be interrupted or shut down for weekends at the end of anysection.7.5.4V IBRATIO N D URATION—Maintain vibration as specified in 7.5.8 (Test Cycles).7.5.5F LUID P RESSUREa.For liquid fuel quick connect couplings during pressure portions of the test, alternate pressure between0 and 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar (150 psig ± 5 psig). Alternate pressure one time perminute (i.e., 1 min at each pressure).b.For vapor/emission quick connect couplings during pressure portions of the test, alternate pressurebetween 0 and 69 kPa ± 2 kPa, 0.69 bar ± 0.02 bar (10 psig ± 0.3 psig). Alternate pressure one timeminute (i.e., 1 min at each pressure).NOTE—Pressure transition rate is to be as close to a square wave as practical but not so abrupt that pressure overshoot occurs. This may require up to 3 s.7.5.6F LUID F LOW (L IQUID F UEL Q UICK C ONNECT C OUP LINGS O NLY)—Flow rate during the specified test cycle is1.33 Lpm ± 0.2 Lpm (0.46 gpm ± 0.07 gpm) through each quick connect coupling.7.5.7T EST D URATION—336 h (14 test cycles) (14 days)7.5.8T EST C YCLES—The test cycle consists of five sections to simulate hot operation, hot soak, hot operation afterhot soak, cold soak, and cold operation. See Table 4.NOTE—Included at the beginning of the hot and cold test sections are temperature transitions times of 1h maximum.7.5.8.1Hot Operation Testa.Length of Time—7 hb.Chamber Temperature—125 °C ± 5 °C (257 °F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—66 °C ± 5 °C (151 °F ± 9 °F)d.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.8.2Hot Soaka.Length of Time—2 hb.Chamber Temperature—125 °C ± 5 °C (257 °F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Heat to chamber temperatured.Fluid Pressure—yese.Fluid Flow—nof.Vibration—no7.5.8.3Hot Operation after Hot Soaka.Length of Time—7 hb.Chamber Temperature—125 °C ± 5 °C (25 7°F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—66 °C ± 5 °C (151 °F ± 9 °F)d.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.8.4Cold Soaka.Length of Time—7 hb.Chamber Temperature— –40 °C (-40 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperatured.Fluid Pressure—yese.Fluid Flow—nof.Vibration—no7.5.8.5Cold Operationa.Length of Time—1 hb.Chamber Temperature— –40 °C (–40 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperatured.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.9A CCEP TANCE C RITERIAa.No fluid leaks permitted during or at completion of test, for Vapor connector couplings, air leak test per6.1.b.The connector shall meet the functional requirements of 6.1, 6.2, and 6.3 after the completion of thelife cycle test.c.Perform visual inspection of connector and its components. No fractures, cracks, or unusual wearpermitted.FIGURE 7—LIFE CYCLE TEST SET UP7.6Flow Restriction—Quick connect couplings shall be designed to provide minimal flow restriction. 7.6.1T EST P ROCEDURE a.Insert connector into its intended flexible tubing.b.Connect the flexible tubing to a source for controlled flow of water.c.Measure the pressure required to create 120 L/h flow through each connector design.7.6.2A CCEP TANCE C RITERIA —None. Measure and report value.7.7Elevated Temperature Burst—The elevated temperature burst test is performed to assure that the quick connect coupling will withstand the pressure requirements of the fuel system at the maximum operating temperature. This test can be performed as part of the tube and hose assembly requirements of SAE J2045 or as follows.7.7.1T EST P ROCEDURE a.Insert a quick connector in each end of a 500 mm (19.69 in) length of tubing or reinforced fuel hose.Secure each end with a hose clamp if required, to prevent failure of the stem to hose interface.b.Insert male tube ends, shown in Figure 2, into the quick connect couplings.c.Attach assembly to a suitable, air or hydraulic, burst pressure source.d.Place the assembly in a suitable environmental chamber and soak at 115 °C (239 °F) for 1 h.e.Perform burst by pressurizing the hose assembly at a rate of 3450 kPa/min (500 psig/min) until burst or rupture occurs.TABLE 4—LIFE CYCLE TEST SCHEDULESection Hour Chamber TemperatureFluid TemperatureFluid PressureFluid FlowVibration 7.5.8.11 125 °C (1)1.Temperature may be in transition.125 °C (1)Yes Yes Yes 2125°66°Yes Yes Yes 3125°66°Yes Yes Yes 4125°66°Yes Yes Yes 5125°66°Yes Yes Yes 6125°66°Yes Yes Yes 7125°66°Yes Yes Yes 7.5.8.28125°125°(1)Yes No No 9 125°125°Yes No No 7.5.8.310125°66°(1)Yes Yes Yes 11125°66°Yes Yes Yes 12125°66°Yes Yes Yes 13125°66°Yes Yes Yes 14125°66°Yes Yes Yes 15125°66°Yes Yes Yes 16125°66°Yes Yes Yes 7.5.8.417–40 °C (1)–40°(1)Yes No No 18–40°–40°Yes No No 19–40°–40°Yes No No 20–40°–40°Yes No No 21–40°–40°Yes No No 22–40°–40°Yes No No 23–40°–40°Yes No No 7.5.8.524–40°–40°YesYesYes。
API油管及接箍参数
API油管及接箍参数API(美国石油标准研究所)油管及接箍是在石油和天然气行业中广泛使用的重要设备。
它们的参数包括尺寸、材料、强度等方面,下面将详细介绍这些参数。
1.尺寸:API油管的尺寸通常由外径(OD)和壁厚(WT)来描述,以英寸为单位。
常见的油管尺寸包括23/8"、27/8"、31/2"、4"、41/2"等。
而接箍的尺寸则根据油管尺寸进行匹配,以确保连接的紧密性和稳定性。
2.材料:API油管和接箍通常由碳钢制成,这种材料具有高强度和耐腐蚀性能,适用于油气井环境下的使用。
此外,根据特殊的需求,还可以使用高强度合金钢或不锈钢等材料制造。
3.强度等级:API油管和接箍根据其强度等级进行分类。
常见的油管强度等级有J55、N80、L80、C90、T95、P110等,而接箍则根据油管的强度等级进行匹配。
4.螺纹类型:API油管和接箍的连接通常采用螺纹连接方式,以确保连接的牢固性和密封性。
常见的螺纹类型有API线螺纹(STC、LTC、BTC)、射线线螺纹(8RD)等。
这些螺纹设计使得油管和接箍可以方便地进行安装和拆卸。
5.API规范:API油管和接箍的设计和制造通常遵循API规范。
API规范包括API5CT(油管技术规范)、API5L(管线钢管技术规范)等。
这些规范规定了油管和接箍的尺寸、材料、化学成分、机械性能等要求,以确保其可以在严酷的工作环境下进行可靠的使用。
总结起来,API油管及接箍的参数包括尺寸、材料、强度等方面。
这些参数的选择要根据具体的工作条件和需求来确定,以确保油管和接箍在油气领域的使用具有可靠性和安全性。
此外,API规范对油管及接箍的设计和制造也提供了指导和标准,使其更加符合相关行业的要求。
船用油管标准
船用油管是指在船舶工业领域中使用的输送液体燃料、润滑油和其他化学品的管道系统。
为了确保船用油管的安全性和可靠性,国际上制定了一系列标准和规范,以保证其质量和性能达到要求。
下面将介绍一些常见的船用油管标准。
一、国际海事组织(IMO)标准国际海事组织是联合国下属的专门机构,负责制定和推广国际航海安全、环境保护等方面的标准。
IMO通过国际海事危险货物规则(IMDG Code)对船用油管进行了规范。
IMDG Code包括了油管的设计、材料、安装、使用和维护等方面的要求,确保了油管在船舶运输过程中的安全性。
二、国际标准化组织(ISO)标准ISO是一个全球性的标准化组织,致力于制定国际标准。
ISO 对船用油管的标准主要包括以下几个方面:1. ISO 9001:质量管理体系标准,要求油管生产商建立和实施质量管理体系,确保产品符合质量要求。
2. ISO 4427:聚乙烯(PE)管道系统的标准,包括了PE材料的要求、管道尺寸、连接方式等内容。
3. ISO 4437:燃气管道系统的标准,主要适用于船舶燃气管道系统,规定了管道材料、设计、安装和测试等方面的要求。
三、国际船级社(船级社)规范船级社是对船舶和海洋设施进行认证和检验的机构,其规范对船用油管进行了详细的技术要求。
常见的船级社规范包括以下几种:1. DNV规范:由挪威船级社制定的规范,涵盖了油管的材料、制造工艺、性能要求等内容。
2. ABS规范:由美国船级社制定的规范,对油管的设计、制造、安装和检验等方面进行了规定。
3. BV规范:由法国船级社制定的规范,对油管的材料、生产、控制和检验等方面进行了详细规定。
四、中国船级社(CCS)标准中国船级社是中国船舶工业中权威的认证机构,制定了一系列适用于中国船舶工业的标准和规范。
其中,CCS对船用油管的标准主要包括以下几个方面:1. GB/T 3091:焊接钢管标准,适用于直缝焊接的普通碳素结构钢管,包括了材料、尺寸、质量要求等内容。
ct110管标准
CT110管是一种连续管,主要用于解决深井、超深井及大位移水平井的增产和稳产问题。
这种管材在石油和天然气工业中具有重要作用。
CT110连续管的标准是由API(美国石油学会)制定的,其标准名为API5ST 《连续油管规范》。
根据此标准,CT110连续管应满足一定的组织、力学性能、耐蚀性和疲劳寿命等要求。
组织上,CT110连续管应由铁素体和贝氏体组成,这种组织结构可以保证管材具有良好的力学性能。
在力学性能方面,CT110连续管的屈服强度应不小于790MPa,抗拉强度应不小于820MPa。
此外,管材的硬度也有一定的要求,通常硬度应小于301HV0.5(HRC30)。
耐蚀性方面,CT110连续管应具有良好的抗内外压性能,挤毁强度应不小于146.9MPa,爆破压力应高达170.6MPa。
此外,根据NACE0284和NACE0177标准,CT110连续管应具有抗氢致开裂(HIC)和硫化物应力腐蚀(SSC)的性能。
疲劳寿命方面,CT110连续管的疲劳寿命应达到一定水平。
例如,对于50.8×4.44mm的CT110连续管,其疲劳寿命应达到139次,比同规格的CT90连续管的疲劳寿命提高了54.4%。
总的来说,CT110连续管是一种高质量的管材,具有优异的力学性能、耐蚀性和疲劳寿命。
它能够满足深井、超深井及大位移水平井的特殊需求,为石油和天然气工业的发展提供了有力支持。
油管通用工艺标准
油管安装通用标准一、排布工艺通用标准1、为了外观整齐,竖直和水平方向的硬管必需保持竖直和水平,不可有歪斜现象;并排之硬管间距以固定座紧密并排为准;同时能走暗管的尽量不将油管暴露外面;2、油管的排布位置应尽量靠近设备和基础;以短距,少弯为原则;3、为方便各油管的连接和检修,各油管接头在竖直方向和水平方向应有一个接头长度的落差,以方便用扳手拆卸或安装时,转动90度不碰撞接头或油管。
4、为方便各油管的连接和检修,各油管应尽量布局在车架外围,和箱体下面;无特殊要求不走中间,不穿纵横梁;如必需穿过纵横梁,需用固定座将硬管悬空,或在穿孔处增加耐磨橡胶环;5、为了防止油管振动,应将管路安装在固定座上并牢固的固定在设备上,在振动的地方要加阻尼来消振,将硬橡胶的衬垫装在管夹上,使铁板不直接接触管路。
6、油管弯管要求:油管不可有扭曲和急弯现象,弯管半径最少是油管外径的10倍,弯管处不可有变瘪的现象,以免造成流量不足。
7、高压软油管路如果是多路并行,必需在不影响油缸活动的情况下,将油管用胶带缠绕,8、油管因自重下垂离箱体或纵横梁超出80MM者,在相应位置增加固定卡,先装油管外包扎一周橡胶皮后再用固定卡抱紧油管防止下垂。
9、高压软油管在排布时不可与车辆的原燃油管路或气管管路接触,避免因高频振动,磨损燃油管路或气管管路,必需保持20MM以上间距。
10、高压软油管在排布时不可与任何金属的边、角、楞直接接触,避免因高频振动,磨损油管。
如无法避免,必需在接触的地方增加耐磨橡胶;11、油管在排布时必需与排气管或车体发热部位保持50MM以上间距,避免因高温烘烤导致油管耐压下降,和油温升高。
12、在与油缸连接并有移动现象的软管长度应有4%的移动余量,避免有紧拉现象;二、连接工艺通用标准1、硬管安装时,首垫好密封垫圈,2、必需保持管路与管接头同轴,不可有歪斜现象;3、用手将接头螺母必需能顺利旋到底部,用手旋螺母时如遇不顺利现象,且反复多次仍无法顺利旋到底部的,必需更换管接头或油管,切不可硬旋或用扳手强行锁紧。
油管标准尺寸
油管标准尺寸
油管(也称作钻杆)的标准尺寸可以根据不同的需求和国家/地区的标准来确定,下面是一些常见的油管标准尺寸作为参考:
1. 钻杆直径:常见的直径有2 3/8英寸(60.3毫米)、
2 7/8英寸(73.0毫米)、
3 1/2英寸(88.9毫米)等。
2. 钻杆壁厚:常见的壁厚包括4.7毫米、6.45毫米和8.56毫米等。
3. 钻杆长度:常见的长度为9米、10.5米、12米等,具体长度也可能根据需求和使用方式而有所不同。
需要注意的是,油管的标准尺寸可能会因不同的油田、项目或使用环境而有所不同。
因此,在实际使用或购买油管时,最好参考当地或相关行业的标准规范以获取准确的信息。
油管性能基本要求
缺陷:
材料要求—化学成分
材料要求—拉伸性能、硬度
伸长率
材料要求—冲击功
--材料在冲击载荷作用下抵抗变形和断裂的能力, 其大小反映材料的韧性好坏。 --夏比V型缺口冲击试验 --取样取向、尺寸,试验温度(除了第1组,J55和K55 钢级应在21℃试验外,其它所有组的试验温度应为0℃。 ) --各钢级管体和接箍的规定最小值
牙底两侧都是完整螺纹。
最后一牙完整螺纹:在距外螺纹端面(Lc)处;对于内螺纹,最 后一牙完整螺纹的位置距离接箍中心或整体连接油管内螺纹小
端J+lp。
1、锥度量规 锥度的定义 圆螺纹锥度的定义是螺纹中径的增加量,单位为in/in (mm/mm)。所有螺纹的锥度公差以in/in(mm/mm)表示。 量规测头 量规的测头应为球形。测头尺寸应保证测头与一侧螺纹侧面 的切点在中径锥面上,即保证测量的锥度是螺纹中径的增加量。
3、牙型高度量规
牙型高度的定义是:螺纹牙顶与螺纹牙底之间 垂直于螺纹轴线的距离。 牙型高度量规的测头 圆螺纹高度量规测头应呈锥形,最大锥角50°,
且不得与螺纹牙侧接触。
量规适用于所有外螺纹和规格不小于3内螺纹高度量规;校 对块用来校正高度量规。
图9
详图A
详图B
适用于小于3的典型内螺纹牙型高度量规
急骤弹回,使得产生瞬时冲击力,给检验带来误差,对螺
纹单项参数测量仪也会造成损伤。 3.检验前,所有螺纹都应彻底清洗。
螺纹的综合检验
1、校对量规、工作量规和产品螺纹三者之间的关系 以合格的校对塞规为基准,以合格的校对环规 为传递基准。校对量规的配对紧密距值S是校对塞 规上消失点平面到校对环规端面的距离。校对量 规的配对紧密距值P是尺寸L4与校对塞规消失点平 面至校对环规小端的距离之差。校对环规用以确 定工作塞规的(互换)紧密距值S1,校对塞规用 以确定工作环规的(互换)紧密距值P1。
柴发油管连接验收标准
柴发油管连接验收标准
柴油发动机燃油系统中的柴油发油管连接的验收标准通常包括以下几个方面:
1.密封性能:确保柴油发油管连接处的密封性能良好,以防止燃
油泄漏。
密封性能的验收可以通过目视检查和压力测试来进行。
2.连接的牢固性:确保柴油发油管与其他部件(如燃油滤清器、
高压油泵等)的连接牢固可靠。
这通常包括螺纹连接的正确安
装和紧固。
3.连接处的清洁度:发油管连接处应保持清洁,防止杂质进入燃
油系统。
在安装前,通常需要对连接处进行清洁,并确保连接
时不会引入污染物。
4.连接部位的防腐蚀处理:柴油发油管连接部位通常会暴露在恶
劣的工作环境中,因此需要进行适当的防腐蚀处理,以延长连
接的使用寿命。
5.符合相关标准:确保柴油发油管连接符合相关的国家或行业标
准。
这可能涉及到管道和连接件的材料、尺寸、制造工艺等方
面的要求。
6.符合发动机制造商的要求:柴油发油管连接的验收应符合发动
机制造商的规定和建议。
这可能包括特定的扭矩要求、安装步
骤等。
在进行柴油发油管连接的验收时,最好参考具体的发动机型号和制造商的技术文档,以确保符合其特定的要求。
此外,定期的维护和检查
也是保持柴油发油系统正常运行的关键。
低压油管标准
低压油管标准
低压油管是用于输送液体、气体等低压流体的管道,其标准一般分为国内和国际两个方面。
国内标准:
1. GB/T8162-2008 适用于一般结构和机械结构的无缝钢管。
其适用范围包括低中压锅炉管、机械结构用无缝钢管、液压塔的塔脚管、液压纵梁等。
2. GB/T17396-2009 适用于一般液体输送用的无缝钢管。
其适用范围包括石油、天然气及其流体的输送管道,以及结构用的无缝钢管。
3. GB/T3094-2012 适用于制造结构和机械用的圆形、方形、椭圆形冷轧无缝钢管和焊接钢管。
国际标准:
1. ASTM A53M/A53 适用于一般液体输送用的黑扎钢管。
其适用范围包括燃气、蒸汽、气体和空气等低压流体的输送。
2. ASTM A106M/A106 适用于高温高压的输送管道,如石油、天然气、化工等工业领域。
此外,低压油管的标准也可能存在于各个国家和地区的相关标准中,具体可根据不同需求和使用场景进行选择。
抽油杆、油管规范标准[详]
平端重量kg/m
2 3/8
6.65
外加厚EU
60.32
7.11
46.10
9.33
2 7/8
10.40
外加厚EU
73.03
9.19
54.46
14.47
3 1/2
13.30
外加厚EU
88.90
9.35
70.20
18.34
4 1/2
16.60
外加厚EU
114.30
8.56
97.18
22.32
5
242.5
22
7/8
1.4
1.92
249
286
327.2
25
1
1.6
2.5
324
372
425.3
套管油管数据
外径
mm
N/m
Kg/m
壁厚
mm
径
mm
本体截面积
mm
容积
L/m
排体量
L/m
钢级
最小抗挤强度
MPa
最小抗压
MPa
接箍外径
mm
127(5)
219
7.52
102
9.84
78.6
141.3
263
9.19
12.95
88.90
9.52
69.86
18.64
1.81
3.72
2.00
4
10.70
11.00
101.60
6.65
88.30
15.57
-
4.81
-
4-1/2
12.60
12.75
114.30
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件号:Q/ZZ-2003
版本号/修订次:A/02
黄石市至正橡塑新材料公司
企业标准
油管专用非阻燃热收缩管
2006- 1- 12修订
2004- 3- 18修订
2003-12-25发布2003-12-25实施
油管专用非阻燃热收缩管
1、主题内容与适用范围
本标准规定了热收缩管产品的技术,试验方法、检验规则、包装、标志、运输和储存,本标准适用于以聚稀烃为基材制造的单层热收缩管,产品的使用温度范围是:-55~105°C
2、引用标准
GB1033 塑料密度和相对密度试验方法
GB1034 塑料吸水性试验方法
GB1040 塑料拉伸性能试验方法
GB1044 塑料体积电阻系数和表面电阻系数试验方法
GB1046 塑料工频击穿强度和耐电压试验方法
3、产品型号规格
YRS ----□
产品内径
产品名称的拼音缩写
4、技术要求
4.1、产品规格应符合表1的规定
表1:热收缩管规格(mm)
注:产品的标准颜色为黑色,其它颜色及规格根据客户要求定制。
4.2、产品性能应符合表2的规定
表2:油管专用热收缩管性能指标
注:YRS-12-4.76
5、试验方法
5.1、测试试样应从150mm*150mm*2mm的模压试片上切取,模压试片应与热缩管同一批号并具有相同的交联度。
5.2、外观
在正常光线下目测检查。
5.3、尺寸
用卡尺(精度0.02mm)测量热收缩管收缩前的内径,精确至0.1mm,再测量其在130±2°C恒温烘箱内收缩10min后的的内径及厚度。
5.4、额定收缩率(纵向收缩率,轴向收缩率,轴向收缩率)
热收缩管在收缩前测量其内径(测纵向收缩)和长度(测轴向收缩),精确至0.1mm,在130±2°C下收缩10min后,测量其内径和长度,其纵向收缩率和轴向收缩率按下式计算:
收缩前尺寸-收缩后尺寸
收缩率= 100%-------(1)
收缩前尺寸
5.5、弹性记忆效应(热伸长率,回缩率)
从模压试片上切取五个75mm94mm*2mm长条度样或按GB1040切取Ⅲ型哑铃状试样,在试样中部或狭小平等部分作上25±0.5mm的标记线。
再按5.5.1和5.5.2测定。
5.5.1热伸长率(%)
夹持上述试样,于130±2°C的箱内保持10min后取出,在10S内拉伸试样直到表线之间的距离为100mm时为止,当试样冷却后卸除拉力,在室温下24h,再测量两标线间的距离(延伸长度),热伸长率按下式计算:延伸长度-25
热伸长率= *100%--------------(2)
25
5.5.2回缩率(%)
热伸长率测量后,立即将试样防回130±2°C的烘箱内保持10min,取出冷却后,重新测量两标线间距离(回缩长度),回缩率按下式计算:延伸长度-回缩长度
回缩率= 100%--------------(3)
延伸长度-25
5.6拉伸强度和伸长率
按GB1040进行测量和计算,试样为Ⅲ型哑铃状,测量时拉伸速度为200mm/min
5.7低温柔韧性
从模压试片上取出五个150mm*6.5mm*2mm的试样,直径为28.6mm的芯棒一起置于-55±2°C的低温容器内保持4h,在此温度下10S内将试样绕在芯棒上不少于360°C,目测检查试样是否产生裂纹。
5.8热冲击性能
从模压试片上切取五个75mm*6.5mm*2mm的试样,用一金属将其悬挂在烘箱中,按标准规定的温度保持4h,检查试样是否有流动、或低落物。
5.9热老化性能
从模压试片上取出五个符合GB1040的Ⅲ型哑铃状试样,悬挂于烘箱中,按标准规定的温度保持168h后取出,冷却到23±2°C,并按GB1040测定其拉伸强度和伸长率。
5.10硬度
按GB2411邵氏A方法测定。
5.11击穿强度
按GB1046测定。
5.12体积电阻系数
按GB1044测定
5.13吸水率
按GB1034测定
5.14密度
按GB1033测定
6、检验规则
6.1产品须经公司检验部门检验合格并附有合格证后方许出厂,出厂检验项目为:外观、尺寸、额定收缩率和弹性记忆效应。
6.2以同一配方、一次投料、同一工艺连续加工的热收缩管为一批。
6.3抽样规则;从每批量的三包装单位中抽样进行检验,样品长度为100mm,样品数量为5个。
6.4判定规则:检验结果如有一项不符合标准要求时,应重新从两倍数量的包装单位中取样。
对该项进行复测,复测结果仍不符合本标准要求,则视该批产品为不合格产品。
6.5型式检验包括全部项目。
6.6有下列情况之一的应进行行式检验。
6.6.1生产定型时。
6.6.2原材料、配方、工艺有重大改变时。
6.6.3正常生产每三个月进行一次。
6.7抽样规则:主要技术指标必须一次抽样合格(如:额定收缩率、弹性记忆效应,拉伸强度、伸长率热老化性能、体积电阻系数),其它指标一次抽样检验。
不合格应重新从两倍数量的包装单位中取样,对该项进行复测,复测结果仍不符合本标准要求,则视该批产品为不合格产品。
7.包装、标志、运输和储存。
7.1产品的包装为聚乙稀塑料袋,并附有合格证,外包装为纸箱,并标有:产品名称、数量、生产厂家等、每一批产品应附有性能测试报告单。
7.2热收缩管每批应附有质量合格证,证明产品名称、牌号、规格、数量、批号、生产日期、生产单位、本标准号并有检验人员签章。
7.3产品可以任何有效的运输方式运输,但产品在运输时,应防止日晒、雨淋和划伤等破坏因素。
7.4产品应储存在清洁、干燥、阴凉的仓库内,严防受潮、受热,不得拉力、压力、弯曲、扭绞和其它变形影响,包装不得破损,防止灰尘侵入。
7.5产品的储存期为二年。
-------------------------------------------------------------------------------------------------- 附加说明:
本标准由黄石市至正橡塑新材料有限公司提出
本标准由黄石市至正橡塑新材料有限公司起草
本标准起草人:李学锋。