液压与气压传动-01 PPT课件
合集下载
液压与气压传动技术 第一章:液压概述PPT
如果将换向阀手柄转换成图1-1(b)所示状态,则压 力油将经过开停阀、节流阀和换向阀进入液压缸右腔、 推动活塞使工作台向左移动,并使 液压缸左腔的油经 换向阀和回油管6排回油箱。
1.1 液压传动的工作原理与系统 的组成
工作台的移动速度是通过节流阀来调节的。为了克 服移动工作台时所受到的各种阻力,液压缸必须产生一 个足够大的推力,这个推力是由液压缸中的油液压力所 产生的。要克服的阻力越大,缸中的油液压力越高;反 之压力就越低。这种现象正说明了液压传动的一个基本 原理——液压系统的压力取决于负载。
液压与气压传 动技术
授课人:汪美桃
目 录
液压传动概述 液压传动基础 液压泵 液压缸与马达 液压控制阀 液压辅助元件 液压基本回路 典型液压系统分析 现代液压技术 液压系统的使用、维护与故障诊断 气压传动
液压传动的工作原理与系统的组成 液压传动的优缺点 液压传动的应用及发展概况
本 章 重 点
第一章:液压传动概述
行调节和控制,并能很容易地与电气、电子控制或气压传动控制结合起 来,实现复杂的运动和操作 5.液压传动易实现过载保护,液压元件能够自行润滑,故使用寿命较长 6.液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用
1.2 液压传动的优缺点
➢ 液压传动的缺点
1.液体的泄漏和可压缩性使液压传动难以保证严格的传动比 2.液压传动在工作过程中能量损失较大,因此传动效率相对低,不宜作
1.1.4 液压传动的应用及发 展概况
目前,液压技术正向高压、高速、大功率、高效率、低能耗、 低噪声和高度集成化等方向发展;同时,减小元件的重量和体积, 提高元件寿命,研制新的传动介质以及液压传动系统的计算机辅助 设计、计算机仿真和优化设计、微机控制等工作,也日益取得了显 著成果。
1.1 液压传动的工作原理与系统 的组成
工作台的移动速度是通过节流阀来调节的。为了克 服移动工作台时所受到的各种阻力,液压缸必须产生一 个足够大的推力,这个推力是由液压缸中的油液压力所 产生的。要克服的阻力越大,缸中的油液压力越高;反 之压力就越低。这种现象正说明了液压传动的一个基本 原理——液压系统的压力取决于负载。
液压与气压传 动技术
授课人:汪美桃
目 录
液压传动概述 液压传动基础 液压泵 液压缸与马达 液压控制阀 液压辅助元件 液压基本回路 典型液压系统分析 现代液压技术 液压系统的使用、维护与故障诊断 气压传动
液压传动的工作原理与系统的组成 液压传动的优缺点 液压传动的应用及发展概况
本 章 重 点
第一章:液压传动概述
行调节和控制,并能很容易地与电气、电子控制或气压传动控制结合起 来,实现复杂的运动和操作 5.液压传动易实现过载保护,液压元件能够自行润滑,故使用寿命较长 6.液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用
1.2 液压传动的优缺点
➢ 液压传动的缺点
1.液体的泄漏和可压缩性使液压传动难以保证严格的传动比 2.液压传动在工作过程中能量损失较大,因此传动效率相对低,不宜作
1.1.4 液压传动的应用及发 展概况
目前,液压技术正向高压、高速、大功率、高效率、低能耗、 低噪声和高度集成化等方向发展;同时,减小元件的重量和体积, 提高元件寿命,研制新的传动介质以及液压传动系统的计算机辅助 设计、计算机仿真和优化设计、微机控制等工作,也日益取得了显 著成果。
液压与气压传动课件第一章(共26张PPT)
μ = (Ff /A)( dy/ du)
单位:帕·秒 Pa ·S 1Pa ·S=10P(泊)
(2) 运动粘度
定义:动力粘度与其密度的比值 υ= μ/ρ
单位:m2/s =104cm2/s 1cm2/s =1St (斯) 1m2/s =104 St (斯)
液压油的牌号就是以这种油液在40°C时运动粘度的平均值来命名 的
° ° ° h①ξ=流ξ 线•v2:某/2g一瞬时液流△别P中=各用ξρ处v2质E/点220运、动状态E的50和一条条E曲10线0标记。
μ = (Ff /A)( dy/ du)
定义:受压液体在变化单位压力时引起的液体体积的相对变化量
2010年3-6月 2008机械类专业
1)压力不要过低 2)正确设计结构参数
2010年3-6月 2008机械类专业
13
控制体积从AB运动到A’B’时,机械能的变化量为:
ΔE=E2-E1
= EA’B + EBB’ - EAA’ - EA’B
= EBB’- EAA’
EBB’=1/2m2v22+m2gh2 EAA’= 1/2m1v12+m1gh1
ΔE=1/2m2v22+m2gh2 -1/2m1v12-m1gh1
3、危害:
1)产生振动和噪声
2)液压元件产生误动作,损坏设备。
4、防止措施:
1)减少油液动能 2)采取缓冲措施
3)选择动作灵敏响应较快的元件
2010年3-6月 2008机械类专业
24
思考题
直径为d, 质量为m的活塞浸在充
满密闭容器的液体中,并在力F的作
x
用下,处于静止状态,若液体密度为
ρ,活塞浸入深度为h,试确定液体在
单位:帕·秒 Pa ·S 1Pa ·S=10P(泊)
(2) 运动粘度
定义:动力粘度与其密度的比值 υ= μ/ρ
单位:m2/s =104cm2/s 1cm2/s =1St (斯) 1m2/s =104 St (斯)
液压油的牌号就是以这种油液在40°C时运动粘度的平均值来命名 的
° ° ° h①ξ=流ξ 线•v2:某/2g一瞬时液流△别P中=各用ξρ处v2质E/点220运、动状态E的50和一条条E曲10线0标记。
μ = (Ff /A)( dy/ du)
定义:受压液体在变化单位压力时引起的液体体积的相对变化量
2010年3-6月 2008机械类专业
1)压力不要过低 2)正确设计结构参数
2010年3-6月 2008机械类专业
13
控制体积从AB运动到A’B’时,机械能的变化量为:
ΔE=E2-E1
= EA’B + EBB’ - EAA’ - EA’B
= EBB’- EAA’
EBB’=1/2m2v22+m2gh2 EAA’= 1/2m1v12+m1gh1
ΔE=1/2m2v22+m2gh2 -1/2m1v12-m1gh1
3、危害:
1)产生振动和噪声
2)液压元件产生误动作,损坏设备。
4、防止措施:
1)减少油液动能 2)采取缓冲措施
3)选择动作灵敏响应较快的元件
2010年3-6月 2008机械类专业
24
思考题
直径为d, 质量为m的活塞浸在充
满密闭容器的液体中,并在力F的作
x
用下,处于静止状态,若液体密度为
ρ,活塞浸入深度为h,试确定液体在
液压与气压传动通用课件(精华版)
气压传动
利用气体作为工作介质,通过气瓶或气瓶组产生压缩空气, 再通过气动元件将压缩空气转化为机械能输出的一种传动方 式。气压传动的基本原理是伯努利定律,即空气流速大的地 方压力小,流速小的地方压力大。
液压与气压传动的应用领域
液压传动
广泛应用于工程机械、农业机械 、汽车工业、船舶工业等领域, 如挖掘机、推土机、起重机、压 路机、液压夹具等。
同时,随着环保意识的不断提高,液压与气压传动技术也将更加注重环保和节能, 推动工业生产的可持续发展。
对我国液压与气压传动技术发展的建议和展望
我国应加大对液压与气 压传动技术研发的投入 力度,鼓励企业自主创 新,推动技术进步。
加强产学研合作,促进 科技成果的转化和应用 ,提高我国液压与气压 传动技术的整体水平。
04 液压与气压传动系统的设计
系统设计的基本原则和步骤
确定设计要求
明确液压或气压传动系统的功能、性能和参 数要求。
计算系统参数
确定系统方案
根据设计要求,选择合适的液压或气压传动 方案,包括元件选择、回路设计等。
根据பைடு நூலகம்统方案,计算液压或气压传动系统的 参数,如流量、压力、功率等。
02
01
绘制系统图和装配图
液压与气压传动通用 课件(精华版)
目录
• 液压与气压传动基础知识 • 液压系统 • 气压系统 • 液压与气压传动系统的设计 • 液压与气压传动系统的故障诊断与
排除 • 液压与气压传动技术的发展趋势和
未来展望
01 液压与气压传动基础知识
液压与气压传动的定义和原理
液压传动
利用液体作为工作介质,通过密封容器的压力传递动力和运 动的一种传动方式。液压传动的基本原理是帕斯卡原理,即 在小面积上施加压力,将产生较大的力;在大面积上施加压 力,将产生较小的力。
利用气体作为工作介质,通过气瓶或气瓶组产生压缩空气, 再通过气动元件将压缩空气转化为机械能输出的一种传动方 式。气压传动的基本原理是伯努利定律,即空气流速大的地 方压力小,流速小的地方压力大。
液压与气压传动的应用领域
液压传动
广泛应用于工程机械、农业机械 、汽车工业、船舶工业等领域, 如挖掘机、推土机、起重机、压 路机、液压夹具等。
同时,随着环保意识的不断提高,液压与气压传动技术也将更加注重环保和节能, 推动工业生产的可持续发展。
对我国液压与气压传动技术发展的建议和展望
我国应加大对液压与气 压传动技术研发的投入 力度,鼓励企业自主创 新,推动技术进步。
加强产学研合作,促进 科技成果的转化和应用 ,提高我国液压与气压 传动技术的整体水平。
04 液压与气压传动系统的设计
系统设计的基本原则和步骤
确定设计要求
明确液压或气压传动系统的功能、性能和参 数要求。
计算系统参数
确定系统方案
根据设计要求,选择合适的液压或气压传动 方案,包括元件选择、回路设计等。
根据பைடு நூலகம்统方案,计算液压或气压传动系统的 参数,如流量、压力、功率等。
02
01
绘制系统图和装配图
液压与气压传动通用 课件(精华版)
目录
• 液压与气压传动基础知识 • 液压系统 • 气压系统 • 液压与气压传动系统的设计 • 液压与气压传动系统的故障诊断与
排除 • 液压与气压传动技术的发展趋势和
未来展望
01 液压与气压传动基础知识
液压与气压传动的定义和原理
液压传动
利用液体作为工作介质,通过密封容器的压力传递动力和运 动的一种传动方式。液压传动的基本原理是帕斯卡原理,即 在小面积上施加压力,将产生较大的力;在大面积上施加压 力,将产生较小的力。
液压与气压传动工作原理PPT课件
液压与气压传动工作原理ppt 课件
汇报人:文小库
2024-01-16
CONTENTS
• 液压与气压传动概述 • 液压传动工作原理 • 气压传动工作原理 • 液压与气压传动系统设计与应
用 • 液压与气压传动系统维护与故
障排除 • 液压与气压传动技术发展趋势
01
液压与气压传动概述
液压传动定义及特点
谢谢您的聆听
THANKS
逻辑元件
实现气动系统中的逻辑控制功能,如 与、或、非等逻辑运算。
04
液压与气压传动系统设计与应用
系统设计原则与方法
01
02
03
设计原则
确保系统安全、可靠、高 效,满足特定应用需求。
设计方法
采用系统工程方法,综合 考虑系统功能、性能、成 本等因素,进行优化设计 。
设计流程
明确设计目标、进行系统 分析、确定设计方案、进 行详细设计、进行系统仿 真与试验验证。
环保、节能要求带来的挑战
环保要求
随着全球环保意识的提高,液压与气压传动系统需要满足更严格的环保要求,如减少泄漏、降低噪音 、使用环保型液压油等。
节能要求
节能是液压与气压传动技术发展的重要方向之一。通过优化系统设计、提高系统效率、采用高效节能 元件等措施,可以降低系统的能耗,提高能源利用效率。同时,新能源技术的发展也为液压与气压传 动系统的节能提供了新的解决方案。
典型应用案例分析
工程机械液压传动系统
航空航天液压传动系统
分析工程机械液压传动系统的工作原 理、结构特点、性能要求及设计要点 。
介绍航空航天领域液压传动系统的特 殊需求、设计挑战及解决方案。
工业机器人气压传动系统
探讨工业机器人气压传动系统的组成 、工作原理、控制策略及设计优化方 法。
汇报人:文小库
2024-01-16
CONTENTS
• 液压与气压传动概述 • 液压传动工作原理 • 气压传动工作原理 • 液压与气压传动系统设计与应
用 • 液压与气压传动系统维护与故
障排除 • 液压与气压传动技术发展趋势
01
液压与气压传动概述
液压传动定义及特点
谢谢您的聆听
THANKS
逻辑元件
实现气动系统中的逻辑控制功能,如 与、或、非等逻辑运算。
04
液压与气压传动系统设计与应用
系统设计原则与方法
01
02
03
设计原则
确保系统安全、可靠、高 效,满足特定应用需求。
设计方法
采用系统工程方法,综合 考虑系统功能、性能、成 本等因素,进行优化设计 。
设计流程
明确设计目标、进行系统 分析、确定设计方案、进 行详细设计、进行系统仿 真与试验验证。
环保、节能要求带来的挑战
环保要求
随着全球环保意识的提高,液压与气压传动系统需要满足更严格的环保要求,如减少泄漏、降低噪音 、使用环保型液压油等。
节能要求
节能是液压与气压传动技术发展的重要方向之一。通过优化系统设计、提高系统效率、采用高效节能 元件等措施,可以降低系统的能耗,提高能源利用效率。同时,新能源技术的发展也为液压与气压传 动系统的节能提供了新的解决方案。
典型应用案例分析
工程机械液压传动系统
航空航天液压传动系统
分析工程机械液压传动系统的工作原 理、结构特点、性能要求及设计要点 。
介绍航空航天领域液压传动系统的特 殊需求、设计挑战及解决方案。
工业机器人气压传动系统
探讨工业机器人气压传动系统的组成 、工作原理、控制策略及设计优化方 法。
最新液压与气压传动-PPT演示文稿
下面以剪切机的工作过程来说明其工作原理。下图1.2所示是剪切机剪切前的工况。 当工料11由上料装置(图中未画)送入剪切机的规定位置时,将行程阀8顶开,换向阀 9的下腔通过行程阀8与大气相通,使换向阀9的阀芯在弹簧力的作用下向下移动。由空 气压缩机1产生的压缩空气,经过初次净化处理后储藏在储气罐4中,经过分水滤气器5 、减压阀6和油雾器7和换向阀9,进入汽缸10的下腔。汽缸10上腔的压缩空气通过换向 阀9排入大气。此时,汽缸活塞在气压力的作用下向上运动,带动剪刀将工料11剪断。 工料剪下后,马上与行程阀8脱开,行程阀复位,阀芯将排气通道堵死,换向阀9下腔 的气压升高,迫使换向阀9的阀芯上移,气路换向。压缩空气进入汽缸10的上腔,汽缸 10的下腔排气,汽缸活塞下移,带动剪刀复位,准备第二次下料。
执行元件——将流体的压力能转换为机械能的元件。 液压 缸或气缸、液压马达或气马达。
控制元件——控制系统压力、流量、方 向的元件以 及进行 信号转换、逻辑运算和放大等功能的信号 控 制元件。如溢流阀、节流阀、方向阀等。
辅助元件——保证系统正常工作除上述三种元件外的 装置。如油箱、过滤器、蓄能器、油雾器、消声 器、 管件等。
三、压力的传递
在密闭容器内,施加于静止液体的压力可以等值地传递到液体各点, 这就是帕斯卡原理。也称为静压传递原理。
图2.4所示是应用帕斯卡原理的实例 作用在大活塞上的负载F1形成液体压力
p= F1/A1
为防止大活塞下降,在小活塞上应施
加的力 F2= pA2= F1A2/A1
由此可得:液压传动可使力放大,可使力缩 小,也可以改变力的方向。(千斤顶放大力)
图1.3 机床工作台液压传动系统
1-油箱;2-过滤器;3-液压泵;4-溢流阀; 5-节流阀;6-换向阀;7-液压缸;8-工作台
执行元件——将流体的压力能转换为机械能的元件。 液压 缸或气缸、液压马达或气马达。
控制元件——控制系统压力、流量、方 向的元件以 及进行 信号转换、逻辑运算和放大等功能的信号 控 制元件。如溢流阀、节流阀、方向阀等。
辅助元件——保证系统正常工作除上述三种元件外的 装置。如油箱、过滤器、蓄能器、油雾器、消声 器、 管件等。
三、压力的传递
在密闭容器内,施加于静止液体的压力可以等值地传递到液体各点, 这就是帕斯卡原理。也称为静压传递原理。
图2.4所示是应用帕斯卡原理的实例 作用在大活塞上的负载F1形成液体压力
p= F1/A1
为防止大活塞下降,在小活塞上应施
加的力 F2= pA2= F1A2/A1
由此可得:液压传动可使力放大,可使力缩 小,也可以改变力的方向。(千斤顶放大力)
图1.3 机床工作台液压传动系统
1-油箱;2-过滤器;3-液压泵;4-溢流阀; 5-节流阀;6-换向阀;7-液压缸;8-工作台
液压与气压传动绪论 第1章PPT课件
一、基本概念
一、液体的压力
1)静止液体中任何一质点所受到的各个方向的压力相等。 2)液体压力垂直于承受压力的表面,其方向与该表面的内法线方向 相同。
二、 液体压力的表示方法及单位
图1-2 绝对压力、相对压力和真空度的相互关系
二、 液体压力的表示方法及单位
表1-4 各种压力单位的换算关系
三、液体静压力基本方程
小孔和缝隙的流量 液压冲击和气穴现象 液压元件 液压动力元件 液压执行元件
绪论
一、液压与气压传动的工作原理和基本特征 1)所谓的压力,是指液体中单位面积上的力,即应力,与中学物 理所学的压强相似。 2)所谓的密闭容器是指容器中的液体与外界大气完全隔绝。 3)所谓的任一点的压力变化将以等值传递到液体的各点,强调的 是压力的变化量。 4)所谓的静止液体是指液体在压力变化前后均为静止状态,这是 帕斯卡原理成立的一个重要条件。
图1-3 重力作用下的静止液体
1)静止液体内任意一点的压力p由两部分组成:一部分由液面上受
三、液体静压力基本方程
到外负载作用的压力p0组成,另一部分由液体重力引起的压力ρghΔA 组成。 2)静止液体内的压力随深度增加呈线性规律递增。 3)离液面深度相等处的各点压力都相等。
第三节 液体动力学
一、基本概念 二、 液体流动的连续性原理
二、液压与气压传动系统的组成 (5)工作介质 传递能量的流体,即液压油和压缩气体。
(1)动力元件 将原动机输出的机械能转换成工作流体的压力能的 装置,一般为液压泵或空气压缩机。
(2)执行元件 将工作流体的压力能重新转变为机械能,推动负载 往复直线运动或回转运动的装置,一般为液(气)压缸、液(气)压马
四、液压油的污染及控制
②现场鉴定换油法 用试管装入新油和旧油,然后进行外观对比检 查,通过感官进行判断其污染程度。例如,若发现旧油色暗、有恶 臭时,说明油已变质,需要更换;若油的色相虽属正常,但已呈现 浑浊,表明已含有水分,需要排除水分,并应掺入新液压油,以调 整其粘度;取一滴油滴于250℃的钢板上,若出现“泼泼”的溅出声 时,证明油中含有水分,若没有溅出声,只出现燃烧状,则表明不 含水分。在现场也可用pH试纸进行硝酸浸蚀试验,即把一滴油滴在 滤纸上,放置30min到1h,观察油液的浸润情况,以此判定液压油的 污染程度,如在油浸润的中心部分出现透明的浓圆点即灰尘的磨耗 粉末,表明油已变质。
液压与气压传动PPT
工作原理
液压传动
利用密闭工作容积内液体的压力能来传递动力和进行控制。液压系统由液压泵、 液压缸、控制阀等组成,通过改变液体的压力和流量来实现运动方向和速度的 控制。
气压传动
利用密闭工作容积内气体的压力能来传递动力和进行控制。气压系统由空气压 缩机、气瓶、气动执行元件、控制阀等组成,通过改变气体的压力和流量来实 现运动方向和速度的控制。
气压传动系统
以压缩气体为工作介质,通过气体的压力和体积变化来传 递能量,实现运动和力的传递。
工作介质特性
液压油具有较好的润滑性能和稳定性,适用于重载和高精 度传动;压缩气体易于获取且成本低,但易受温度和压力 变化影响。
工作原理特点
液压系统通过密封容积变化产生力,具有较大的力矩和扭 矩输出;气压系统通过气体压力和体积变化驱动执行元件 ,具有快速响应和简单的结构。
度影响,需定期检查气瓶压力和元件密封性。
维护与可靠 性
液压系统具有较高的位置精度和刚度,适用于高精度 定位和重载传动;气压系统定位精度和刚度相对较低, 适用于轻载和快速运动场合。
应用场合的比较与选择
重载高精度传动
液压系统适用于需要大 功率和高精度传动的场 合,如数控机床、重型
机械等。
轻载快速运动
气压系统适用于对精度 要求不高的轻载快速运 动场合,如气动夹具、
应用领域
01
02
03
04
工业领域
用于各种机床、生产线、起重 机械等的运动控制和动力传递
。
车辆领域
用于各种车辆的悬挂系统、转 向系统、刹车系统等。
航空航天领域
用于飞行器的起落架系统、飞 行控制等。
农业领域
用于拖拉机、收割机等的悬挂 系统和控制系统。
《液压与气压传动》课件
01
除了以上主要元件外,液压系统 中还需要一些辅助元件,如油箱 、过滤器、冷却器等。
02
这些辅助元件的作用是保证液压 系统的正常工作和延长元件的使 用寿命。
03
气压系统元件
气瓶
压缩空气储存设备
01
气瓶是用于储存压缩空气的设备,通常由金属制成,如钢或铝
。
分合有多种分类和规格,常见的
气动辅助元件
过滤器
过滤器用于清除压缩空气中的杂质和水分,保证 气动系统的正常运行。
油雾器
油雾器用于向气动系统中添加润滑油,减少摩擦 和磨损,提高系统的使用寿命。
消声器
消声器用于降低气动系统运行时的噪音,保护人 员和环境免受噪音污染。
04
液压与气压传动系统设计
系统设计流程
确定设计目标
明确液压或气压传动系统的功 能和性能要求,确定系统的基
液压缸的设计和制造需要考虑到负载、速度、压力等参数,以确保其正常工作和寿 命。
液压马达
液压马达是液压系统中的动力输 出元件,用于将液压能转换为机
械能,驱动机械设备转动。
液压马达的种类很多,包括齿轮 马达、叶片马达、柱塞马达等。
液压马达的选择需要考虑转速、 扭矩、效率等参数,以确保其满
足实际需求。
液压辅助元件
确定系统流量和压力
根据负载需求和系统的工作循环,计 算液压或气压传动系统的流量和压力 。
元件选择与校核
根据元件的工作参数和性能要求,选 择合适的液压或气压元件,并进行必 要的校核计算。
系统效率计算
根据系统的功率输入和输出,计算液 压或气压传动系统的效率,评估系统 的能源利用效果。
控制性能分析
对液压或气压传动系统的控制性能进 行分析,包括响应速度、稳定性和精 度等。
液压与气压传动课件ppt
至关重要的影响。
在使用液压缸时,同样需要 注意其维护和保养,定期检 查其工作状态和性能参数, 以保证其正常运转和延长使
用寿命。
液压阀
液压阀是液压传动系统中的控制元件,它的作用 是控制液压系统中液体的流动方向、压力和流量 等参数,以满足工作机构对运动状态和力的控制 要求。
液压阀的性能参数包括通径、额定压力、流量等 ,这些参数的选择和使用对于整个液压系统的性 能和稳定性也有着至关重要的影响。
液压缸
01
02
03
04
液压缸是液压传动系统中的 执行元件,它的作用是将液 体的压力能转换成机械能, 驱动工作机构实现往复运动
或转矩输出。
液压缸的种类也很多,常见 的有活塞缸、柱塞缸、摆动 缸等,它们的工作原理和结 构也有所不同,但都能实现 将液体的压力能转换成机械
能的目的。
液压缸的性能参数包括推力 、速度、行程等,这些参数 的选择和使用对于整个液压 系统的性能和稳定性也有着
液压油的种类也很多,常见 的有矿物油型、乳化型、合 成型等,它们的工作原理和 结构也有所不同,但都能实 现传递能量、润滑、冷却和 防锈的目的。
液压油的性能参数包括粘度 、闪点、凝固点等,这些参 数的选择和使用对于整个液 压系统的性能和稳定性也有 着至关重要的影响。
在使用液压油时,需要注意 其维护和保养,定期检查其 工作状态和性能参数,以保 证其正常运转和延长使用寿 命。同时还需要注意液压油 的清洁度,防止杂质的混入 和污染。
液压与气压传动课件
目 录
• 液压与气压传动概述 • 液压传动系统 • 气压传动系统 • 液压与气压传动系统的设计与维护 • 液压与气压传动系统的应用实例
01
液压与气压传动概述
定义与特点
在使用液压缸时,同样需要 注意其维护和保养,定期检 查其工作状态和性能参数, 以保证其正常运转和延长使
用寿命。
液压阀
液压阀是液压传动系统中的控制元件,它的作用 是控制液压系统中液体的流动方向、压力和流量 等参数,以满足工作机构对运动状态和力的控制 要求。
液压阀的性能参数包括通径、额定压力、流量等 ,这些参数的选择和使用对于整个液压系统的性 能和稳定性也有着至关重要的影响。
液压缸
01
02
03
04
液压缸是液压传动系统中的 执行元件,它的作用是将液 体的压力能转换成机械能, 驱动工作机构实现往复运动
或转矩输出。
液压缸的种类也很多,常见 的有活塞缸、柱塞缸、摆动 缸等,它们的工作原理和结 构也有所不同,但都能实现 将液体的压力能转换成机械
能的目的。
液压缸的性能参数包括推力 、速度、行程等,这些参数 的选择和使用对于整个液压 系统的性能和稳定性也有着
液压油的种类也很多,常见 的有矿物油型、乳化型、合 成型等,它们的工作原理和 结构也有所不同,但都能实 现传递能量、润滑、冷却和 防锈的目的。
液压油的性能参数包括粘度 、闪点、凝固点等,这些参 数的选择和使用对于整个液 压系统的性能和稳定性也有 着至关重要的影响。
在使用液压油时,需要注意 其维护和保养,定期检查其 工作状态和性能参数,以保 证其正常运转和延长使用寿 命。同时还需要注意液压油 的清洁度,防止杂质的混入 和污染。
液压与气压传动课件
目 录
• 液压与气压传动概述 • 液压传动系统 • 气压传动系统 • 液压与气压传动系统的设计与维护 • 液压与气压传动系统的应用实例
01
液压与气压传动概述
定义与特点
液压与气压传动课件-PPT
2、实际流体的伯努利方程:
由于实际流体具有粘性,流动时必然产生内摩擦力且 造成能量的损失,使总能量沿流体的流向逐渐减小, 而不再是一个常数;另一方面由于液体在管道过流截 面上的速度分布并不均匀,在计算中用的是平均流速, 必然会产生误差,为了修正这一误差引入了动能修正
系数α 。
所以,实际的伯努利方程应为
•由此可知动力粘度μ :是指它在单位速度梯 度下流动时单位面积上产生的内摩擦力。
动力粘度μ的单位:
CGS制中常用 P(泊) 1cP(厘泊)=10-2 P (泊)
SI单位: Pa·s(帕·秒) 1 Pa·s =1 N·s/m2
换算关系: 1 Pa·s =10 P =103 cP
(2) 运动粘度ν :
第一节 液压油液
在液压系统中,最常用的工作介质是 液压油,液压油是传递信号和能量的工作 介质。同时,还起到润滑,冷却和防锈等 方面的作用。液压系统能否可靠和有效地 工作,在很大程度上取决于液压油。
一、液压油液的性质
(一)密度和重度: 密度ρ:单位 Kg/m3
对匀质液体:单位体积内所含的质量。 ρ = m/V
1)静止液体内某点处的压力由两部分组成:一部分是液体
表面上的压力p0,另一部分是ρg与该点离液面深度h的
乘积。
2)静止液体内的压力沿液深呈直线规律分布。
3)离液面深度相同处各点的压力都相等,压力相等的点组 成的面叫等压面。
同一种液体于连通器内
空气 水
连通但不是同一种液体
汞
水
(二)压力的表示法及单位:
1bar=105N/m2
例1:已知ρ=900kg/m3 , F=1000N,
A=1 ×10-3 m2 , 求h=0.5m处的静压力p=?
《液压与气压传动》课件第1章 液压传动基础知识
1.5 液体动力学基础
1.5.1 基本概念 1.理想液体和稳定流动
理想液体是一种假想的无黏性、不可压缩的液体,而把实 际上既有黏性又可压缩的液体称为实际液体。
液体流动时,液体中任意点处的压力、流速和密度都不随 时间而变化,称为稳定流动。反之,称为非稳定流动。
2.通流截面、流量与平均流速
液体在管道中流动时,通常将垂直于液体流动方向的截面 称为通流截面,或称为过流截面。
3.黏度与压力、温度的关系
对液压油来说,压力增大时,其分子间距离减小,内摩擦 力增大,黏度随之增大。但在一般液压系统使用的压力范围内, 黏度增大的数值很小,可以忽略不计。
液压油液的黏度对温度的变化十分敏感。温度升高,黏度 显著下降,这种变化将直接影响液压油液的正常使用和液压系 统的性能。液压油液的这种性质称为液压油液的黏温特性。不 同种类的液压油有着不同的黏温特性。黏温特性好的液压油, 黏度随温度的变化较小。
第1章 液压传动基础知识
本章索引
1.1 液压传动的工作原理及系统组成 1.2 液压传动的优缺点及应用 1.3 液压油 1.4 液体静力学基础 1.5 液体动力学基础 1.6 液体流动时的压力损失 1.7 液体流经小孔及缝隙流量
1.1 液压传动的工作原理及系统组成
一台完整的机械设备由原动机、传动与控制装置、工作机构 三大部分组成。在原动机和工作机构之间设置起着传递能量和控 制作用的传动机构。 传动机构有机械传动、电传动和流体传动 等多种形式,如下图所示为流体传动。
液体流动的连续性方程是质量守恒定律在流体力学中的应 用。如下图所示,理想液体在密封管道内作稳定流动时,由于 液体不可压缩,即密度ρ为常数,则单位时间内流过任意截面1、 截面2的质量应相等,ρA1υ1=ρA2υ2故有
《液压与气压传动教学课件》课件
能有着重要影响。
液压马达
液压马达是液压系统中的执行元件,它的主要作用是将液体的压力能转换成机械能 ,驱动负载运动。
液压马达的种类也很多,常见的有齿轮马达、叶片马达、柱塞马达和螺杆马达等。
液压马达的性能参数包括排量、扭矩、转速和效率等,这些参数的选择和使用同样 对整个液压系统的性能有着重要影响。
液压缸
气压传动
在轻载、短距离、低成本场合有广泛应用,如自动化生产线上的气动夹具、气 动门等。
02
液压系统元件
液压泵
液压泵是液压系统中的重要元件 ,它的主要作用是将原动机的机 械能转换成液体的压力能,为整
个液压系统提供动力。
液压泵的种类繁多,常见的有齿 轮泵、叶片泵、柱塞泵和螺杆泵
等。
液压泵的性能参数包括排量、压 力、功率和效率等,这些参数的 选择和使用对整个液压系统的性
液压与气压传动基本原理
介绍液压与气压传动的定义、工作原理和应用领域。
液压与气压元件
详细介绍各种液压与气压元件,如泵、阀、缸等的工作原理和特点 。
系统设计与应用
通过案例分析,讲解液压与气压系统的设计流程、元件选型及实际 应用。
在线学习平台
课程学习
提供完整的《液压与气压传动教学课件》在线学习资源,方便学 生随时随地学习。
工作原理
液压传动
利用液压油作为工作介质,通过泵、 阀等元件控制液体的压力和流向,实 现动力传递和运动控制。
气压传动
利用压缩空气作为工作介质,通过气 瓶、阀等元件控制气体的压力和流量 ,实现动力传递和运动控制。
应用领域
液压传动
广泛应用于工程机械、农业机械、汽车工业等领域,如挖掘机、推土机、起重 机的升降系统等。
互动交流
液压马达
液压马达是液压系统中的执行元件,它的主要作用是将液体的压力能转换成机械能 ,驱动负载运动。
液压马达的种类也很多,常见的有齿轮马达、叶片马达、柱塞马达和螺杆马达等。
液压马达的性能参数包括排量、扭矩、转速和效率等,这些参数的选择和使用同样 对整个液压系统的性能有着重要影响。
液压缸
气压传动
在轻载、短距离、低成本场合有广泛应用,如自动化生产线上的气动夹具、气 动门等。
02
液压系统元件
液压泵
液压泵是液压系统中的重要元件 ,它的主要作用是将原动机的机 械能转换成液体的压力能,为整
个液压系统提供动力。
液压泵的种类繁多,常见的有齿 轮泵、叶片泵、柱塞泵和螺杆泵
等。
液压泵的性能参数包括排量、压 力、功率和效率等,这些参数的 选择和使用对整个液压系统的性
液压与气压传动基本原理
介绍液压与气压传动的定义、工作原理和应用领域。
液压与气压元件
详细介绍各种液压与气压元件,如泵、阀、缸等的工作原理和特点 。
系统设计与应用
通过案例分析,讲解液压与气压系统的设计流程、元件选型及实际 应用。
在线学习平台
课程学习
提供完整的《液压与气压传动教学课件》在线学习资源,方便学 生随时随地学习。
工作原理
液压传动
利用液压油作为工作介质,通过泵、 阀等元件控制液体的压力和流向,实 现动力传递和运动控制。
气压传动
利用压缩空气作为工作介质,通过气 瓶、阀等元件控制气体的压力和流量 ,实现动力传递和运动控制。
应用领域
液压传动
广泛应用于工程机械、农业机械、汽车工业等领域,如挖掘机、推土机、起重 机的升降系统等。
互动交流