燃料电池论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:本文概述了燃料电池的工作特点和原理,介绍了燃料电池在军事和国民的应用,它的发展前景以及发电系统的特点,我国政府对燃料电池的态度

关键字:燃料电池、发展、发电、能源、军事、应用、

燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等学科的有关理论。燃料电池是能源、电力行业不得不正视的课题。了解燃料电池的原理是研究其应用的基础,所以下面以氢氧燃料电池为例阐述其原理。燃料电池是一种把储存在燃料和氧化剂中的化学能,等温地按电化学原理转化为电能的能量转换装置。燃料电池是由含催化剂的阳极、阴极和离子导电的电解质构成。燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电能而驱动负载工作。燃料电池与常规电池不同在于,它工作时需要连续不断地向电池内输入燃料和氧化剂通过电化学反应生成水,并释放出电能;只要保持燃料供应,电池就会不断工作提供电能。

随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。1839年英国的Grove 发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon 用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。

我国研究燃料电池有过起落。在20世纪60年代曾开展过多种燃料电池的实验室研究,70年代投入大量人力物力开展用于空间技术的燃料电池研究,其后研究工作长期停顿。最近几年,我国才开始重新重视燃料电池技术的研究开发,并取得很大进展。特别在PEMFC方面,达到或接近了世界水平。但是,在总体上,我国燃料电池的研究开发刚刚起步,仍处于科研阶段,与国外相比,我国的燃料电池研究水平还较低,我国对燃料电池的组织开发力度还远远不够。作为世界上最大的煤炭生产国和消费国,开发以煤作为一次能源的高温型MCFC和SOFC具有特别重要的意义。但是我国在MCFC、SOFC研究方面与国外的差距很大,要实现实用化、商业化应用还有很长的路要走。迄今为止,我国还没有燃料电池发电站的应用实例。这和我国这样一个大国的地位很不相称。尽管国家也将燃料电池技术列为"九五"攻关项目,国家和企业投入的资金却极为有限,年度

经费仅为千万元量级人民币,与发达国家数亿美元的投入相比显得微不足道;承担研究任务的也只是中科院等少数科研院所,且研究力量分散,缺少企业的介入,难以取得突破性进展,尤其是难以将取得的研究成果进行实际应用试验,以形成产业化趋势。从表1所列国外燃料电池的研究和开发情况看,欧、美国家和日本等大多是以公司企业为主在从事燃料电池的研究开发和制造生产,而且规模很大,例如,仅加拿大的Ballard一家公司的资产就达10亿美元。

从理论上讲,任何能发生电化学氧化还原反应的气体均可作为燃料电池的燃料或氧化剂。氢气是燃料电池常用的燃料气。氧是燃料电池中常用的氧化剂,它能很方便地从空气中获取。在地球周围单质氢是极少的,在地壳中的某些特定条件下虽然也有氢气存在,但都难于开采与回收。然而,氢具有高的电化学反应活性,可以从石油,天然气,甲醇,烃类或煤等通用燃料中转化而得.生物质能也是氢的重要来源,如:细菌制氢,发酵制氢及沼气回收等。工业副产氢也是燃料电池获得燃料的有效途径。据统计我国在合成氨工业中氢的年回收量可达标14´;108m3;在氯碱工业中有87´;106m3的氢可供回收利用。此外,在冶金工业,发酵制酒厂及丁淳溶剂厂等生产过程中都有大量氢可回收。上述各类工业副产氢的可回收总量,估计可达标15亿立方米以上,除氢气之外,还有一些气体如CO也可作为MCFC与SOFC的燃料。这样,天然气,管道煤气均是大型燃料电池发电站可资利用的丰富燃料资源。从长远发展看,高温型MCFC和SOFC系统是利用煤炭资源进行高效,清洁发电的有效途径,因此,我国丰富的煤炭资源也是燃料电池所需燃料的巨大来源。未来大规模推广使用燃料电池仍需要解决氢源问题。从石油,天然气和煤等化石燃料中制取氢气,从长远考虑仍存在着资源枯竭问题。众所周知,水是由氢和氧组成,因此大量的氢可从水中提取,特别是海水,真是取之不尽,用之不竭,我们将这一美好理想,寄希望于太阳光能制氢的实现。能源是人类进行物质活动的基础。在某种意义上讲,人类社会的发展离不开优质能源的出现和先进能源技术的使用。电能是最清洁的能源,因此对电能的发展与应用很关键。燃料电池的高效率、少污染、范围广使其变得越来越重要。我国政府十分注重燃料电池的研究开发,陆续开发出百瓦级-30kW级氢氧燃料电极、燃料电池电动汽车等。

然而,我们的日常生活中,燃料电池的应用还很少,我认为原因在于成本过高。请关注上表中的粗体字。假设发电厂所使用的反应物仅仅是像我们做实验那样的不是很纯的氢气、氧气,再加上不使用催化剂,效率会变得很低,这不符合生产的要求;但是反过来说,如果按照上述5种燃料电池的要求进行发电,成本又会变得很高。例如高纯气体、铂和贵重合金作催化剂、不能大量生产的质子交换膜、极高的温度,都会增加发电的成本。反应中的副产物CO会使催化剂——铂失效,进一步增加了成本。这样一来,只有大功率的发电厂或尖端技术研究才会用到燃料电池。这是一种很可惜的做法。上亿人在用着火力、核能这几种效率相对较低、污染较大的方式发出的电,而具有良好前景的燃料电池却不被使用。

大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池

相关文档
最新文档