异方差性检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金融122班 23号钟萌
异方差性检验
引入滞后变量X-1、X-2、Y-1 。可建立如下中国居民消费函数: Y=β0+β1X+β2X(-1)+β3X(-2)+β4Y(-1)
用OLS法进行估计,结果如下:
对应的表达式为
Y=429、3512+0、143X-0、104X(-1)+0、063X(-2)+0、838Y(-1)
2、18 2、09 -0、73 0、63 7、66
R2=0、9988 F=4503、94
估计结果显示,在5%的显著性水平下,自由度为25的临界值为2、060,若存在异方差性,则可能就是由X、Y(-1)引起的。
做OLS回归得到的残差平方项分别与X、Y(-1)的散点图
从散点图可以瞧出,两者存在异方差性。下面进行统计检验。
采用White异方差检验:
所以辅助回归结果为:
e2=-194156、4-249、491X+0、003X2+265、306X(-1)-0、004X(-1)2+4、187X(-2)-0、001X(-2)2 +51、377Y(-1)+0、001Y(-1)2
-1、566 -4、604 2、863 2、648 -1、604 0、055 -0、301 0、579 0、410
X与X的平方项的参数的t检验就是显著的,且White统计量为16、999>5%显著性水平下,自由度为8的卡方分布值15、51,(从nR2
统计量的对应值的伴随概率值容易瞧出)所以在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。
用加权最小二乘法对异方差性进行修正,重新进行回归估计,
得到加权后消除异方差性的估计结果:
回归表达式为:
Y=275、0278-0、0192X+0、1617X(-1)-0、0732X(-2)+0、9165Y(-1)
3、5753 -0、3139 1、3190 -1、0469 16、5504
R2=0、999950 F=36016、15
序列相关性检验
由上,得到表达式
Y=275、0278-0、0192X+0、1617X(-1)-0、0732X(-2)+0、9165Y(-1)
3、5753 -0、3139 1、3190 -1、0469 16、5504
R2=0、999950 F=36016、15
D、W、=1、6913 进行序列相关性检验,作残差项e与t,e与e(-1)关系图如下
从上图可以瞧出,随即干扰项呈现正序列相关性。DW检验结果表明,在5%的显著性水平下,n=26,k=2,查表得d L=1、30,d U=1、46,由于
d U 下面进行拉格朗日乘数检验。含1阶滞后残差项的辅助回归过程如 下: 得到 LM=8、5128,从伴随概率值可以瞧出,在显著性为5%的水平下,模型存在1阶序列相关性。但就是e(-1)的参数不显著,说明不存在1阶序列相关性。 作2阶滞后残差项的辅助回归结果如下: LM=9、2756,从伴随概率值可以瞧出,在显著性为5%的水平下,模型存在2阶序列相关性。但就是e(-2)的参数不显著,说明不存在2阶序列相关性。 多重共线性检验 由上述的异方差修正结果显示 Y=275、0278-0、0192X+0、1617X(-1)-0、0732X(-2)+0、9165Y(-1) 3、5753 -0、3139 1、3190 -1、0469 16、5504 R2=0、999950 D、W、=1、6913 可得到R2较大且接近于1, F=36016、15>F0、05(4,21)=2、84,故认 为支出与上述解释变量间总体线性关系显著。但由于X、X(-1)、X(-2)未能通过t检验,且符号的经济意义也不合理,故认为解释变量间存在多重共线性。 进行简单的相关系数检验 从上面的结果可以瞧出,相比较而言,X与X(-1),X(-1)与X(-2)与之间存在高度相关性。 接下来找出最简单的回归形式。分别作出Y与X、X(-1)、X(-2)、Y(-1)间的回归如下: (1) 则 Y=1738、686+0、454X 5、951 51、147 R2=0、9902 D、W、=0、3909 (2) Y=1544,、798+0、5081X(-1) 6、7475 6 7、2007 R2=0、9945 D、W、=0、6221 (3) Y=1510、031+0、5580X(-2) 6、2674 65、15998 R2=0、9943 D、W、=0、7584 (4) Y=36、8247+1、0788Y(-1) 0、2598 117、6831 R2=0、9982 D、W、=1、5181 从上面4个模型的结果与检验值可以瞧出,选择模型4为初始的回归模型。 采用逐步回归寻找最佳回归方程。 (1)在初始模型中引入X, 从上面的结果可以瞧出,模型拟合度提高,且参数符号合理,变量也通过了t检验。 (2)在初始模型中引入X(-1), 从上面的结果可以瞧出,模型拟合度提高,且参数符号合理,变量未能通过t检验。 (3)去掉X(-1),引入X(-2)、 从上面的结果可以瞧出,模型拟合度提高,且参数符号合理,但变量未能通过了t检验。 所以最终的函数应以Y=f{X,Y(-1)}为最优,拟合结果如下: Y=394、148+0、098X+0、846Y(-1) 当X=85623、1,Y(-1)=33214、4,Y=36884、6