土力学PPT
合集下载
土质学与土力学:第1章《绪言》PPT教学课件

60年代以后,现代土力学阶段。
本构关系模型、计算方法、计算机技术的应用。
第一章 绪言
Charles- Auguste de Coulomb (1736-1806) 法国科学家
土力学成为一门独立学科的 重要标志Terzaghi是土力学 的奠基人(1883-1963)
1776 1856 1857 1925 1936 1949
岩石风化 的产物
分散性
非连续介质
▽复杂性 ▽易变形 ▽分散性
第一章 绪言
1.3 土力学的发展和展望
1776年,库仑(Coulomb)提出挡土墙理论标志着土力学的开始; 1925年太沙基出版《土力学》,标志着土力学阶段; 研究土作为刚性体,弹性体的性质,代表理论为太沙基原理 、 有效应力原理、渗透固结理论和极限平衡理论
物理—力学性质及它们之间的相互关系
土的形成 与演化
土质学
三大特性的 理论和参数
连续介质力学 的理论与方法
土力学
分散介质力学 的理论与计算
土的变形、强度、稳定 以及与其有关的工程问题
第一章 绪言
1.2 土及其特点
地球表面的整体岩石在大气中经受长期的风化作 用而形成的,覆盖在地表上碎散的、没有胶结或胶结 很弱的颗粒堆积物。
Coulomb 强度定律,土压力理论(1736-1806)) Darcy 定律 Rankine 新的土压力理论 Terzaghi 有效应力原理及渗透固结理论 第一届国际土力学及基础工程会议 中国土力学研究的兴起
第一章 绪言
土力学之父
Karl Von Terzaghi (1883-1963)
1925年,《土力学》 1943年,《理论土力学》
《土质学与土力学》
第一章 绪言 主讲教师: XXX
本构关系模型、计算方法、计算机技术的应用。
第一章 绪言
Charles- Auguste de Coulomb (1736-1806) 法国科学家
土力学成为一门独立学科的 重要标志Terzaghi是土力学 的奠基人(1883-1963)
1776 1856 1857 1925 1936 1949
岩石风化 的产物
分散性
非连续介质
▽复杂性 ▽易变形 ▽分散性
第一章 绪言
1.3 土力学的发展和展望
1776年,库仑(Coulomb)提出挡土墙理论标志着土力学的开始; 1925年太沙基出版《土力学》,标志着土力学阶段; 研究土作为刚性体,弹性体的性质,代表理论为太沙基原理 、 有效应力原理、渗透固结理论和极限平衡理论
物理—力学性质及它们之间的相互关系
土的形成 与演化
土质学
三大特性的 理论和参数
连续介质力学 的理论与方法
土力学
分散介质力学 的理论与计算
土的变形、强度、稳定 以及与其有关的工程问题
第一章 绪言
1.2 土及其特点
地球表面的整体岩石在大气中经受长期的风化作 用而形成的,覆盖在地表上碎散的、没有胶结或胶结 很弱的颗粒堆积物。
Coulomb 强度定律,土压力理论(1736-1806)) Darcy 定律 Rankine 新的土压力理论 Terzaghi 有效应力原理及渗透固结理论 第一届国际土力学及基础工程会议 中国土力学研究的兴起
第一章 绪言
土力学之父
Karl Von Terzaghi (1883-1963)
1925年,《土力学》 1943年,《理论土力学》
《土质学与土力学》
第一章 绪言 主讲教师: XXX
土力学基础工程ppt课件(完整版)精选全文

b d 0[x ()2z2]2
z p [ n (am n r a cr tn m c a 1 ) t n ( n a m ( 1 n ) n 2 1 ) m 2 ] s p 0
2.4 土的压缩性
土的压缩性高低,常用压缩性指标定量 表示。压缩性指标,通常由工程地质勘 察取天然结构的原状土样,进行室内压 缩试验测定。
<0.005
0 4 0
小 于 某 粒 径 的 土 粒 质 量 /%
100
80
60
40
20
0 10
1
0 .1
0 .0 1
1 E -3
粒 径 /mm
1.1.2 土中水
(1)结合水
强结合水、弱结合水
(2)自由水
重力水、毛细水
(3)气态水
(4)固态水
双电层
• 结合水概念
强结合水、弱结合水
• 双电层概念
k l e 2
2.2.4 基底附加压力
p 0p ch p 0 h
2.3 地基附加应力
2.2.1 基本概念
1、定义
附加应力是由于外荷载作用,在地基中产生的应力增 量。
2、基本假定
地基土是各向同性的、均质的线性变形体,而且在深 度和水平方向上都是无限延伸的。
2.2.2 竖向集中力作用时的地基附加 应力布辛奈斯克解答
• 均布条形荷载下地基中附加应力的分布规律:
(1) 地基附加应力的扩散分布性; (2) 在离基底不同深度处各个水平面上,以基底中心点下轴
线处最大,随着距离中轴线愈远愈小; (3) 在荷载分布范围内之下沿垂线方向的任意点,随深度愈
向下附加应力愈小。
4、三角形分布条形荷载
dp pd
土力学课件

§ 1.4 土的结构和构造
1.4.1 土的结构
1.单粒结构 单粒结构 • 粗大土粒在水或空气中下沉 • 颗粒间位置稳定 • 碎石土和砂土的结构特征 • 密实的单粒结构土是良好的天然地基 2.蜂窝结构 蜂窝结构 • 粉粒(0.075~0.005mm)的结构形式 粉粒( ~ ) • 孔隙大 • 受动力荷载,结构破坏 受动力荷载,
蜂窝结构 单粒结构
3.絮状结构 絮状结构 • 黏粒(0.005~0.0001mm)的结构形式 黏粒( ~ ) • 结构不稳定
絮状结构
在取土试验或施工过程中都必须尽量减少对土的扰动, 在取土试验或施工过程中都必须尽量减少对土的扰动, 避免破坏土的原状结构。 避免破坏土的原状结构。
1.4.2 土的构造
物理风化 化学风化 生物风化
原生矿物 次生矿物 有 机 质
无粘性土 粘性土
动植物活动引起的岩石和土体 粗颗粒的粒度或成分的变化
2. 土的三相组成
土体
固相 + 液相 + 气相
构成土骨架,起决定作用 构成土骨架,
重要影响
次要作用
§1-2 土中固体颗粒
1.2.1 土粒的粒度成分
1. 基本概念
• 粒度 —— 土粒的大小,以粒径表示。 土粒的大小,以粒径表示。
1. 土的特点 2. 土粒粒组的划分 3. 级配的判别
1.2.2 土粒的矿物成分
1. 矿物成分分类 原生矿物 (物理风化) 物理风化) 石英 长石 云母 高岭石 次生矿物 化学风化) (化学风化)
高 岭 石
9克蒙脱土的总表 面积大约与一个足 粗粒土 性质稳定 球场一样大
伊利石 蒙脱石
伊 利 石
细粒土
3.自由水 自由水
重力水: 重力水 •在重力或水头压力作用下运动的自由水 在重力或水头压力作用下运动的自由水 •对土粒有浮力作用 对土粒有浮力作用 •渗流对土体稳定有重大影响 渗流对土体稳定有重大影响 毛细水: 毛细水 • 存在于水与空气交界面 • 在重力和表面张力作用下自由移动 • 上升高度与颗粒粒径有关
土力学课件PPT课件

第15页/共139页
(三)其它沉积物 除了上述四种成囚类型的沉积物外,还有海洋沉积物
(Q”)、 湖泊沉积物(Q‘)、 冰川沉积物(Q”)及风积物(Q”‘)等,它们是分别由海洋, 湖泊、冰川及风等的地质作用形成的.
第16页/共139页
1-3 土 的 组 成
一 土的固体颗粒 · 土中的固体颗粒(简称土粒)的大小和形状、 矿物成分及其组成情况是决定土的物理力学性 质的重要因素。
第13页/共139页
(二)冲积物(Q) 冲积物是河流流水的地质作用将两岸基岩及其上部覆盖 的坡积、洪积物质剥蚀后搬运、沉积在河流坡降平缓地 带形成的沉积物。
第14页/共139页
1平原河谷冲积物 平原河谷除河床外,大多数都有河漫滩及阶地等地貌单元 (图1—7)。
2.山区河谷冲积层 在山区,河谷两岸陡削,大多仅有河谷阶地(图1-8)。
形成电场,在土粒电场范围内的水分子和水溶液中的阳离
子(如Na’、Ca”、A1”等)一起吸附在土粒表面。因为水分
子是极性分子(氢原子端显正电荷,氧原子端显负电荷),
它被土粒表面电荷或水溶液中离子电荷的吸引而定向排列
(图1—13)。
双电子层
第22页/共139页
第23页/共139页
(1)强结合水 强结合水是指紧靠土粒表面的结合水 (2)弱结合水 弱结合水紧靠于强结合水的外围形成一层结合水膜。 2自由水 自由水是存在于土粒表面电场影响范围以外的水。它 的性质和普通水一样,能传递静水压力,冰点为0℃,有 溶解能力。 自由水按其移动所受作用力的不同,可以分为重力水 和毛细水。 (1)重力水 重力水是存在于地下水位以下的透水层中的地下水, 它是在重力或压力差作用下运动的自由水,对土粒有浮 力作用。
三 地质年代的概念 地质年代--地壳发展历史与地壳运动,沉积环境 及生物演化相对应的时代段落。 相对地质年代--根据古生物的演化和岩层形成的 顺序,所划分的地质年代。 在地质学中,根据地层对比和古生物学方法把地 质相对年代划分为五大代(太古代、元古代、古生代、 中生代和新生代),每代又分为若干纪,每纪又细分为 若干世及期。在每一个地质年代中,都划分有相应的地 层(参见表1-6) 在新生代中最新近的一个纪称为第四纪,由原岩 风化产物(碎屑物质),经各种外力地质作用(剥蚀、 搬运、沉积)形成尚未胶结硬化的沉积物(层),通称
(三)其它沉积物 除了上述四种成囚类型的沉积物外,还有海洋沉积物
(Q”)、 湖泊沉积物(Q‘)、 冰川沉积物(Q”)及风积物(Q”‘)等,它们是分别由海洋, 湖泊、冰川及风等的地质作用形成的.
第16页/共139页
1-3 土 的 组 成
一 土的固体颗粒 · 土中的固体颗粒(简称土粒)的大小和形状、 矿物成分及其组成情况是决定土的物理力学性 质的重要因素。
第13页/共139页
(二)冲积物(Q) 冲积物是河流流水的地质作用将两岸基岩及其上部覆盖 的坡积、洪积物质剥蚀后搬运、沉积在河流坡降平缓地 带形成的沉积物。
第14页/共139页
1平原河谷冲积物 平原河谷除河床外,大多数都有河漫滩及阶地等地貌单元 (图1—7)。
2.山区河谷冲积层 在山区,河谷两岸陡削,大多仅有河谷阶地(图1-8)。
形成电场,在土粒电场范围内的水分子和水溶液中的阳离
子(如Na’、Ca”、A1”等)一起吸附在土粒表面。因为水分
子是极性分子(氢原子端显正电荷,氧原子端显负电荷),
它被土粒表面电荷或水溶液中离子电荷的吸引而定向排列
(图1—13)。
双电子层
第22页/共139页
第23页/共139页
(1)强结合水 强结合水是指紧靠土粒表面的结合水 (2)弱结合水 弱结合水紧靠于强结合水的外围形成一层结合水膜。 2自由水 自由水是存在于土粒表面电场影响范围以外的水。它 的性质和普通水一样,能传递静水压力,冰点为0℃,有 溶解能力。 自由水按其移动所受作用力的不同,可以分为重力水 和毛细水。 (1)重力水 重力水是存在于地下水位以下的透水层中的地下水, 它是在重力或压力差作用下运动的自由水,对土粒有浮 力作用。
三 地质年代的概念 地质年代--地壳发展历史与地壳运动,沉积环境 及生物演化相对应的时代段落。 相对地质年代--根据古生物的演化和岩层形成的 顺序,所划分的地质年代。 在地质学中,根据地层对比和古生物学方法把地 质相对年代划分为五大代(太古代、元古代、古生代、 中生代和新生代),每代又分为若干纪,每纪又细分为 若干世及期。在每一个地质年代中,都划分有相应的地 层(参见表1-6) 在新生代中最新近的一个纪称为第四纪,由原岩 风化产物(碎屑物质),经各种外力地质作用(剥蚀、 搬运、沉积)形成尚未胶结硬化的沉积物(层),通称
《土力学试验》课件

土的力学性质试验
土的压缩试验
总结词
了解土的压缩性
01
总结词
确定土的压缩系数
03
总结词
分析土的压缩性对工程的影响
05
02
详细描述
通过土的压缩试验,可以了解土在不同压力 下的压缩性,从而评估土的工程性质和稳定 性。
04
详细描述
通过测量土在不同压力下的高度变化 ,可以计算出土的压缩系数,进一步 了解土的压缩性。
在进行土力学试验时,必须严格遵守操作规程, 确保试验过程的规范性和准确性。
注意安全防范措施
在试验过程中,应采取必要的安全防范措施,如 佩戴防护眼镜、手套等,确保试验人员的人身安 全。
定期校准仪器设备
为确保仪器设备的准确性,应定期对使用的仪器 设备进行校准和维护。
加强数据处理和记录的管理
数据处理和记录的管理是确保试验结果准确性的 重要环节,应加强管理和监督,确保数据的真实 性和可靠性。
利用现代技术实现试验过 程的自动化和智能化,提 高试验效率。
绿色化
减少试验过程中对环境的 影响,推广环保型试验方 法。
标准化
制定统一的试验标准和规 范,促进土力学试验的国 际化发展。
对未来研究的展望
新材料和新方法的探索
研究新型土工材料和试验方法,满足工程需求。
多学科交叉融合
加强土力学与其他学科的交叉融合,拓展研究领域。
分析土的动力性质与工程安全的关系
详细描述
在地震、交通等动力作用下,土的动力性质对工程安全性具有重要影 响,如不进行有效的处理,可能导致工程失稳、破坏等问题。
04
土力学试验数据处理与分析
数据处理方法
数据清洗
去除异常值、缺失值和重复值 ,确保数据质量。
土的压缩试验
总结词
了解土的压缩性
01
总结词
确定土的压缩系数
03
总结词
分析土的压缩性对工程的影响
05
02
详细描述
通过土的压缩试验,可以了解土在不同压力 下的压缩性,从而评估土的工程性质和稳定 性。
04
详细描述
通过测量土在不同压力下的高度变化 ,可以计算出土的压缩系数,进一步 了解土的压缩性。
在进行土力学试验时,必须严格遵守操作规程, 确保试验过程的规范性和准确性。
注意安全防范措施
在试验过程中,应采取必要的安全防范措施,如 佩戴防护眼镜、手套等,确保试验人员的人身安 全。
定期校准仪器设备
为确保仪器设备的准确性,应定期对使用的仪器 设备进行校准和维护。
加强数据处理和记录的管理
数据处理和记录的管理是确保试验结果准确性的 重要环节,应加强管理和监督,确保数据的真实 性和可靠性。
利用现代技术实现试验过 程的自动化和智能化,提 高试验效率。
绿色化
减少试验过程中对环境的 影响,推广环保型试验方 法。
标准化
制定统一的试验标准和规 范,促进土力学试验的国 际化发展。
对未来研究的展望
新材料和新方法的探索
研究新型土工材料和试验方法,满足工程需求。
多学科交叉融合
加强土力学与其他学科的交叉融合,拓展研究领域。
分析土的动力性质与工程安全的关系
详细描述
在地震、交通等动力作用下,土的动力性质对工程安全性具有重要影 响,如不进行有效的处理,可能导致工程失稳、破坏等问题。
04
土力学试验数据处理与分析
数据处理方法
数据清洗
去除异常值、缺失值和重复值 ,确保数据质量。
土质学和土力学课件

透水性很大,无粘性,毛细水上升高 度不超 过粒径大小
易透水,当混入云母等杂质时透水性 减小,而压缩性增加;无粘性,遇水不膨 胀,干燥时松散,毛细水上升高度不大, 随粒径变小而增大
粉粒 粘粒
粗 细
0.05~0.01 0.01~0.005
透水性小,湿时稍有粘性,遇水膨胀 小,干时稍有收缩,毛细水上升高度较大 较快,极易出现冻胀现象
土中水
土中水处于不同位置和温度条件下,可具 有不同旳物理状态——固态、液态、气态。液 态水是土中孔隙水旳主要存在状态,因其受土 粒表面双电层影响程度旳不同可分为结合水、 毛细水、重力水。后两者也称为非结合水(自
由水)。
水的类型
主要作用力
结合水
物理化学力
毛细水 非结合水
重力水
表面张力和重力 重力
1.结合水
土力学与土质学
(第1章)
第1章 土旳物理性质和工程分类
学习要求:
了解土旳成因和三相构成,掌握土旳物理性 质和物理状态指标旳定义、物理概念、计算公式 和单位。要求熟练地掌握物理指标旳三相换算。 了解地基土旳工程分类根据与精拟定名。
基本内容:
1.1 土旳形成与特征 1.2 土旳三相构成 1.3 土旳物理性质指标 1.4 土旳物理状态指标 1.5 土旳工程分类
化学风化——指岩石碎屑与空气、水和多种水溶液相接触, 经氧化、碳化和水化作用,变化原来矿物成份,形成新 旳矿物(次生矿物)。生成旳土为细粒土,粘性土。
生物风化——由动物、植物和人类对岩体旳破坏称~。
土旳构造和构造
1.定义: 指土颗粒旳大小、形状、表面特征, 相互排列及其联结关系旳综合特征。
2.分类:
水溶盐
●有有机高质岭石、伊利石和蒙脱石
《土力学与基础工程》课件

土的工程分类
01
02
巨粒土、粗粒土、细粒土
无粘性土、粘性土
03
饱和土、非饱和土
04
粉质粘土、粘质粉土等
土的渗透性与渗流
01
渗透系数的测 定与计算
02
渗透力与渗透 变形
地下水的运动 规律与水头差
03
04
渗流力与渗流 场的概念
02
土力学性质与工程应 用
土的压缩性与地基沉降
土的压缩性
土在压力作用下体积减小的性质。
浅基础设计原则
浅基础设计时需要考虑地质勘察报告、建筑物类型、荷载 大小等因素,并遵循相应的设计规范和标准。
浅基础类型
常见的浅基础类型包括平板基础、独立基础、条形基础等 。这些基础类型根据不同的地质条件和建筑物要求进行选 择和设计。
浅基础施工方法
浅基础的施工方法包括开挖、填筑、排水等措施,施工过 程中需要采取相应的安全措施,确保施工质量和安全。
软土地基处理、边坡稳定等。
水利工程
在水利工程建设中,土力学与基 础工程涉及水库大坝、堤防、水 电站等工程的设计和施工,如坝 基稳定性分析、库岸滑坡治理等
。
城市建筑
在高层建筑、地铁、地下空间开 发等城市建筑领域,土力学与基 础工程涉及深基坑开挖、桩基设 计等方面,对于保障建筑安全具
有重要意义。
THANK YOU
桩基设计
第一季度
第二季度
第三季度
第四季度
桩基设计概述
桩基是一种深基础类型 ,通过在地基中设置桩 基来承受建筑物荷载。 桩基具有较高的承载力 和稳定性,适用于地质 条件复杂或荷载较大的 建筑物。
桩基类型
根据不同的材料和施工 方法,桩基可分为预制 桩、灌注桩、扩基桩等 类型。不同类型的桩基 适用于不同的地质条件
土力学课件ppt

环境工程中的土力学
总结词
环境保护、土壤修复
详细描述
在环境工程中,土力学主要关注土壤污染和修复、土壤保持和土地复垦等方面。它研究土壤污染物的 迁移转化规律,提出土壤修复和改良的方法和技术,为环境保护和土地资源可持续利用提供科学依据 。
地质工程中的土力学
总结词
岩土工程、地质灾害防治
详细描述
地质工程中的土力学主要研究岩土体的稳定性、变形和渗流 等问题,涉及到边坡工程、地下工程、地基处理等方面的应 用。同时,它也涉及到地质灾害的防治,如滑坡、泥石流等 自然灾害的预测和治理。
04
渗流基本概念
渗流
土中水流在土壤孔隙中的流动现象。
孔隙压力
土壤孔隙中的流体压力。
渗透力
水流在土壤孔隙中流动时对土壤颗粒产生的动水 压力。
达西定律
达西定律描述了水在土壤孔隙中流动 时的速度与压力梯度之间的关系,即 水流的速率与孔隙压力梯度成正比。
达西定律是渗流理论的基本定律,适 用于描述土壤和岩石等连续介质的渗 流。
的数学模型。
常见的固结方程有太沙 基固结方程、剑桥固结
方程等。
土力学在工程中的
07
应用
土木工程中的土力学
总结词
基础建设、建筑安全
详细描述
土力学在土木工程中主要用于研究和解决地基与基础的问题,确保建筑物的安 全性和稳定性。它涉及到土的强度、变形、渗透等基本特性,以及如何进行合 理的地基设计、基础选型和施工方法选择。
土压力理论
02
静止土压力
静止土压力是指土体在无外力作用或外力作用平衡时产生的土压力,通常表现为 土体内部的应力状态。
静止土压力的大小与挡土墙的刚度和位移有关,计算公式为:P = K * γ * H,其 中K为静止土压力系数,γ为土的容重,H为挡土墙高度。
非饱和土力学ppt课件.ppt

已提出了由干燥曲线预测增湿曲线,或由增湿曲线预测 干燥曲线的方法(Phan H。Q,2003)
• 非饱和土基本特性的学习/2、非饱和土的吸力特性
土-水特征曲线形态的重要参数
由于土中的水分可以有 结晶水、吸着水、结合水(薄膜水)和自由水等
具有不同属性的不同类型。 含水量变化时,土中水有不同的类型,气有不同的连通,
孔隙水压力和孔隙气压力分别在土的孔隙水体 和孔隙气体中是各向等压的静水压力型应力
孔隙水压力和孔隙气压力 各自作用在其与土颗粒接触部分的表面上, 其差值对土骨架的作用不会是各处相等的。
当孔隙水为弯液面环状水时,吸力只在接触点的 法向上作用;当孔隙水为有弯液面的体积水时, 所产生的吸力必然有法向和切向两个方向上分力 的作用。国内也出现了湿吸力与牵引力的提法(汤连生)。
单一有效应力型的应力状态变量
人们在寻求非饱和土的应力状态变量时,首先想到了 单一有效应力型的应力状态变量
它不是一般的纯力学量,而是一个材料有关的力学量,与材料 的本构关系有着密切的联系(如饱和土力学中的有效应力)。 研究提出具有真实合理性的有效应力表达式是当前的主要任务。
对已经提出的各种表达式还需要作出认真的选择与检验。
导致了非饱和土十分复杂的力学性质。
• 非饱和土基本特性的学习/2、非饱和土的吸力特性
2、非饱和土的吸力特性
非饱和土的土水势一般包括 温度势、压力势、重力势、基质势和溶质势
在等温、等压、等高(不计重力)的情况下, 土中水的温度势、压力势、重力势保持不变,
自由能的变化只有基质势和溶质势的变化。
如将它们分别称之为基质吸力和溶质吸力, 它们之和,即此时的自由能,称为总吸力,则有
应该取决于各自的相对压缩性。
在孔隙流体不能排出的条件下,土受力后的孔隙水压力 和孔隙气压力的增量是一种超孔隙压力
• 非饱和土基本特性的学习/2、非饱和土的吸力特性
土-水特征曲线形态的重要参数
由于土中的水分可以有 结晶水、吸着水、结合水(薄膜水)和自由水等
具有不同属性的不同类型。 含水量变化时,土中水有不同的类型,气有不同的连通,
孔隙水压力和孔隙气压力分别在土的孔隙水体 和孔隙气体中是各向等压的静水压力型应力
孔隙水压力和孔隙气压力 各自作用在其与土颗粒接触部分的表面上, 其差值对土骨架的作用不会是各处相等的。
当孔隙水为弯液面环状水时,吸力只在接触点的 法向上作用;当孔隙水为有弯液面的体积水时, 所产生的吸力必然有法向和切向两个方向上分力 的作用。国内也出现了湿吸力与牵引力的提法(汤连生)。
单一有效应力型的应力状态变量
人们在寻求非饱和土的应力状态变量时,首先想到了 单一有效应力型的应力状态变量
它不是一般的纯力学量,而是一个材料有关的力学量,与材料 的本构关系有着密切的联系(如饱和土力学中的有效应力)。 研究提出具有真实合理性的有效应力表达式是当前的主要任务。
对已经提出的各种表达式还需要作出认真的选择与检验。
导致了非饱和土十分复杂的力学性质。
• 非饱和土基本特性的学习/2、非饱和土的吸力特性
2、非饱和土的吸力特性
非饱和土的土水势一般包括 温度势、压力势、重力势、基质势和溶质势
在等温、等压、等高(不计重力)的情况下, 土中水的温度势、压力势、重力势保持不变,
自由能的变化只有基质势和溶质势的变化。
如将它们分别称之为基质吸力和溶质吸力, 它们之和,即此时的自由能,称为总吸力,则有
应该取决于各自的相对压缩性。
在孔隙流体不能排出的条件下,土受力后的孔隙水压力 和孔隙气压力的增量是一种超孔隙压力
《土力学原理》PPT课件

2)三相体:颗粒、水、空气,性质复杂。 3)土力学的研究方法:理论+试验+经验。
精选ppt
8
土力学有何特点?
土力学发展的历史
1776 Coulomb 强度定律,土压力 理论 1856 Darcy 渗透定律 1857 Rankine 新的土压力理论 1925 Terzaghi 有效应力原理及渗透固结理论 1936 第一届国际土力学及基础工程会议 1949 中国土力学研究的兴起
精选ppt
5
土有哪些特点?
碎散性 三相体系 自然变异性
力学特性复杂
• 变形特性
• 强度特性 • 渗透特性
精选ppt
6
土力学有何特点?
学科 土力学
研究对象
天然的三相碎散 堆积物(碎散材料)
理论力学 材料力学 结构力学 弹性力学
流体力学
质点或刚体 连续固体
连续流体
精选ppt
7
土力学有何特点?
1)天然介质: 种类多 ,变化大,分布形态复杂。
11
土力学包括哪些内容?
1、土的物理性质——土力学基础
2、土中应力——土力学先导
3、强度特性 变形特性——土力学核心 渗透特性
4、土压力——土力学应用
精选ppt
12
如何学好土力学?
注意土的基本特点 — 通过与其它材料对比
注重理论联系实际 — 通过现场观察与试验
注重正确学习方法 — 概念,原理,方法 内容间联系 要记忆,但不要死记
精选ppt
13
本课程安排和要求
教学环节: 课堂讲授 (14 次 28 学时) 习题讨论课( 2 次 4 学时) 实验课 ( 4 次 8 学时) 课堂表现及作业
考核及成绩 80% (期末考试)
精选ppt
8
土力学有何特点?
土力学发展的历史
1776 Coulomb 强度定律,土压力 理论 1856 Darcy 渗透定律 1857 Rankine 新的土压力理论 1925 Terzaghi 有效应力原理及渗透固结理论 1936 第一届国际土力学及基础工程会议 1949 中国土力学研究的兴起
精选ppt
5
土有哪些特点?
碎散性 三相体系 自然变异性
力学特性复杂
• 变形特性
• 强度特性 • 渗透特性
精选ppt
6
土力学有何特点?
学科 土力学
研究对象
天然的三相碎散 堆积物(碎散材料)
理论力学 材料力学 结构力学 弹性力学
流体力学
质点或刚体 连续固体
连续流体
精选ppt
7
土力学有何特点?
1)天然介质: 种类多 ,变化大,分布形态复杂。
11
土力学包括哪些内容?
1、土的物理性质——土力学基础
2、土中应力——土力学先导
3、强度特性 变形特性——土力学核心 渗透特性
4、土压力——土力学应用
精选ppt
12
如何学好土力学?
注意土的基本特点 — 通过与其它材料对比
注重理论联系实际 — 通过现场观察与试验
注重正确学习方法 — 概念,原理,方法 内容间联系 要记忆,但不要死记
精选ppt
13
本课程安排和要求
教学环节: 课堂讲授 (14 次 28 学时) 习题讨论课( 2 次 4 学时) 实验课 ( 4 次 8 学时) 课堂表现及作业
考核及成绩 80% (期末考试)
土力学(全套318页PPT课件)

苏州名胜虎丘塔
土 • 虎丘塔共七层,高47.5m,底层直径13.7m。 呈八角形,全为砖砌,在建筑艺术风格上有独 特的创意,被国务院公布为全国重点文物保护 单位。
力 • 目前该塔倾斜严重塔顶偏离中心线2.31m。经 勘探发现,该塔位于倾斜基岩上,复盖层一边 深3.8m,另一边为5.8m。由于在一千余年前
土 • 作为建筑地基、建筑介质或建筑材料的地壳表 层土体是土力学的研究对象。
• 土力学不仅研究土体当前的性状,也要分析其 性质的形成条件,并结合自然条件和建筑物修
力 建后对土体的影响,分析并预测土体性质的可 能变化,提出有关的工程措施,以满足各类工 程建筑的要求。
学 • 土力学是一门实践性很强的学科,它是进行地 基基础设计和计算的理论依据。
• 土力学研究对象:与工程建设有关的土
上部结构、基础和地基三者之间的关系
土 • 地基(Ground) 由于建筑
物的修建,使一定范围内土层
的应力状态发生变化,这一范
力
围内的地层称为地基。
• 基础(Foundation)指与地基
接触的建筑物下部结构。
学 • 一般建筑物由上部结构 (Superstructure)和基础两 部分组成。
坏或不能正常使用,这类问题在土力学中叫做 变形问题。
力 • 如果土受力超过了它所能承受的能力,土便要 被破坏,建筑物将随之倒毁或不能使用。土体 的破坏,在力学中亦称为稳定性丧失。研究土
学 体是否会破坏这一类问题称为稳定问题,土的 稳定性取决于它的强度。
二、土力学研究特点.内容与方法
土 • 土力学是研究与工程建筑有关的土的变形和强度 特性,并据此计算土体的固结与稳定,为各项专 门工程服务。
学 • 掌握土体变形与强度指标的测定方法及在工程实践中 的应用。 • 掌握土的动力特性的基本概念。来自三、土力学发展简史与趋势
土力学基本知识ppt课件

稠度状态与含水量有关
稠度状态 固态 半固态
强结合水 含水量
塑态 弱结合水
流态 自由水
w
稠度界限 缩限WS 塑限wp
液限wL Ip wl wp
强结合水膜最大
出现自由水
粘性土的稠度反映土中水的形态
吸附弱结合 水的能力
塑性指数
粘性土四种物理状态状态:固态、半固态、可塑状 态及流动状态
界限含水率
粘性土从一种状态过渡到另一种状态,可用某一界限含水 率来区分,这种界限含水率称为稠度界限或阿太堡界限
h hm
Δh x
z k1
v
k2
H1 H2 H
H Hm
等效渗透系数:
hm
vHm km
vm
km
hm Hm
vH h
kz
vH kz
vHm km
k3
H3
承压水
H
1
kz
Hm H
1 km
kz
Hm km
H1 1.0m, k1 0.01m / day
算例
H2 1.0m, k 2 1m / day
(1) 水平渗流
1
2 Δh
x
条件:
im
i h L
qx qmx
q1x
z k1
H1
q2x
k2
H2 H
q3x
k3
H3
H Hm
等效渗透系数:
qx=vxH=kxiH Σqmx=ΣkmimHm
1
L
2 不透
水层
1
kx H
Hmkm
ቤተ መጻሕፍቲ ባይዱ
Hm H
km
层状地基的等效渗透系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同土层的重量可以叠加:
cz 1h1 2h2 3h3 pw wh3
岩土工程研究所
第二章 土体应力计算
2-2 地基中的自重应力
无侧向变形条件下,侧向应力:
ch cx cy K0 cz
K0——静止侧压力系数,它是土体在无侧向变形条件下有效小主应力 σ’3与有效大主应力σ’1之比。
矩形基础 条形基础
p P b
P 集中力 P 线荷载 p 分布的基底压力
岩土工程研究所
第二章 土体应力计算
(二)偏心荷载下的基底压力 对于单向偏心荷载作用下的矩形面 积基底的刚性基础如图(a)、(b )所示。 两端边缘最大压力pmax与最小压力 pmin可按下式计算:
pmax Fv M pmin lb W
K0与土层的应力历史及土的类型有关;
经验公式:
正常固结粘土:K0 =1-sinf’ 岩土工程研究所
对一般地基K0 =0.5左右
第二章 土体应力计算
2-3 基底压力和基底净压力
基底压力:指上部结构荷载和基础自重通过基础传递,在基础底面 处施加于地基上的单位面积压力。
地基反向施加于基础底面上的压力称为基底反力。 基底净压力:是指基底压力扣除因基础埋深所开挖的土的自重应力 之后在基底处施加于地基上的单位面积压力。
当基础底面受到倾斜的偏心荷载作用时,先将倾斜偏心的合力R分解为 竖向分量Fv和水平分量Fh,其中Fv=Rcosβ, Fh =Rsinβ, β为倾斜荷 载与竖向线之间的倾角。
对于竖向分量Fv作用下的基底 压力计算,矩形基底用式(2 -11),条形基底用式(2- 13)
对于水平分量Fh引起的基底反力可按下式计算
pmax=2Fv/3kb 式中:k——单向偏心荷载作用点至具有最大压力的基底边缘的距离,
k=(l/2-e)。
对于荷载沿长度方向均布的条形基础,P和G对应均取单位长度内的相应 值,基础宽度取为b,则基底压力为
岩土工程研究所
pmax Fv (1 6e)
pmin b
b
第二章 土体应力计算
三、倾斜偏心荷载作用下的基底压力
对矩形基底,抗弯截面系数: 岩土工程研究所
bl 2 W
6
e M Fv
第二章 土体应力计算
(二)偏心荷载下的基底压力
根据上式,当 e<L/6时,基底压力成梯形分布; e=L/6时,基底压力为三角形分布; e>L/6时,基底压力pmin<0 岩土工程研究所
第二章 土体应力计算
当pmin<0时,由于地基与基础接触面不能承受拉力,此时基底与地基将局 部脱离而使基底压力重新分布。根据基底压力与偏心荷载相平衡的条件, 三角形反力分布如图(c)中的实线所示的形心应在P+G的合力Fv作用线 上,由此可计算基础边缘的最大压力pmax为
p
基底净压力: pn p d
d
rd
岩土工程研究所
第二章 土体应力计算
2-3 基底压力与基底净压力
一、柔性基础与刚性基础 基底压力的大小和分布与荷载的性质(中心或偏心、倾斜等)、
大小等有关,也与基础的刚度有关。 柔性基础:刚度较小,基底压力与荷载大小及分布相同
岩土工程研究所
第二章 土体应力计算
岩土工程研究所
第二章 土体应力计算
对于饱和土体由于孔隙应力是通过土中孔隙水来传递的,因而它不 会使土体产生变形,土体的强度也不会改变。 孔隙应力分为:静孔隙应力和超静孔隙应力。 自重应力——由土体自身重量所产生的应力。 附加应力——由外荷(静的或动的)引起的土中应力。
岩土工程研究所
第二章 土体应力计算
第二章 土体应力计算
2-1 概 述
支撑建筑物荷载的土层称为地基。 与建筑物基础底面直接接触的土层称为持力层。 将持力层下面的土层称为下卧层。 土体的应力按引起的原因分为自重应力和附加应力; 按土体中土骨架和土中孔隙(水、气)的应力承担作用原理或应力传 递方式可分为有效应力和孔隙应(压)力。 有效应力——由土骨架传递(或承担)的应力。 孔隙应力——由土中孔隙流体(水和气体)传递(或承担)的应力。
2-3 基底压力与基底附加应力
刚性基础:刚度较大,基底压力与荷载的分布不同
一般情况下,可假定基底压力为直线分布 岩土工程研究所
第二章 土体应力计算
二、刚性基础下基底压力分布
(一)中心荷载下的基底压力
中心荷载作用下的基础,上部结构荷载P与基础自重G的合力Fv通过基 底形心,基底压力为均匀分布。平均基底压力为
对于基底压力p为均布情况
p
pn p d
对于基底压力为梯形分布情况
d
rd
pn pt
pm in pmax
d
pm in
岩土工程研究所
第二章 土体应力计算
2-4 地基中的附加应力计算
基本假定:地基土是各向同性的、均质的线弹性体,而且在深度和水平方 向上都是无限延伸的。
应力计算可分为空间问题和平面问题。 空间问题:地基中的应力是直角坐标的三个分量x、y、z的函数; 平面问题:地基中的应力是直角坐标的两个分量x、z的函数; 研究对象到底使用哪个问题由基底压力、基础形状和地基土的性质决定。
矩形基底
pphh=Fhl/F*hblb
岩土工程研究所
条形基底
ph
Fh b
第二章 土体应力计算
四、——基底净压力
实际工程中,基础总是埋置在天然地面以下一定的深度,势必要进行基 坑开挖,这样一来就意味着加了一个负荷载。因此,应在基底压力中扣 除基底标高处原有土的自重应力,才是基础底面下真正施加于地基的压 力,称为基底净压力。基底净压力按下式计算:
岩土工程研究所
第二章 土体应力计算
2-4 地基中的附加应力计算
一、附加应力基本解答 (一)竖向集中力作用下地基附加应力——半无限空间体弹性力学基本解 由布辛内斯克解答得σz的表达式:
R x2 y2 z2
岩土工程研究所
第二章 土体应力计算
由图中的几何关系,得
式中
称为竖向集中力作用竖向附加应 力系数。
岩土工程研究所
第二章 土体应力计算
(二)等代荷载法——基本解答的初步应用 由于集中力作用下地基中的附加应力σz仅是荷载的一次函数,因此当若 干个竖向集中力Fi(I=1,2,‥ ‥ ‥n)作用于地表时,应用叠加原理,地 基中z深度任一点M的附加应力σz应为各集中力单独作用时在该点所引起 的附加应力总和。
cz 1h1 2h2 3h3 pw wh3
岩土工程研究所
第二章 土体应力计算
2-2 地基中的自重应力
无侧向变形条件下,侧向应力:
ch cx cy K0 cz
K0——静止侧压力系数,它是土体在无侧向变形条件下有效小主应力 σ’3与有效大主应力σ’1之比。
矩形基础 条形基础
p P b
P 集中力 P 线荷载 p 分布的基底压力
岩土工程研究所
第二章 土体应力计算
(二)偏心荷载下的基底压力 对于单向偏心荷载作用下的矩形面 积基底的刚性基础如图(a)、(b )所示。 两端边缘最大压力pmax与最小压力 pmin可按下式计算:
pmax Fv M pmin lb W
K0与土层的应力历史及土的类型有关;
经验公式:
正常固结粘土:K0 =1-sinf’ 岩土工程研究所
对一般地基K0 =0.5左右
第二章 土体应力计算
2-3 基底压力和基底净压力
基底压力:指上部结构荷载和基础自重通过基础传递,在基础底面 处施加于地基上的单位面积压力。
地基反向施加于基础底面上的压力称为基底反力。 基底净压力:是指基底压力扣除因基础埋深所开挖的土的自重应力 之后在基底处施加于地基上的单位面积压力。
当基础底面受到倾斜的偏心荷载作用时,先将倾斜偏心的合力R分解为 竖向分量Fv和水平分量Fh,其中Fv=Rcosβ, Fh =Rsinβ, β为倾斜荷 载与竖向线之间的倾角。
对于竖向分量Fv作用下的基底 压力计算,矩形基底用式(2 -11),条形基底用式(2- 13)
对于水平分量Fh引起的基底反力可按下式计算
pmax=2Fv/3kb 式中:k——单向偏心荷载作用点至具有最大压力的基底边缘的距离,
k=(l/2-e)。
对于荷载沿长度方向均布的条形基础,P和G对应均取单位长度内的相应 值,基础宽度取为b,则基底压力为
岩土工程研究所
pmax Fv (1 6e)
pmin b
b
第二章 土体应力计算
三、倾斜偏心荷载作用下的基底压力
对矩形基底,抗弯截面系数: 岩土工程研究所
bl 2 W
6
e M Fv
第二章 土体应力计算
(二)偏心荷载下的基底压力
根据上式,当 e<L/6时,基底压力成梯形分布; e=L/6时,基底压力为三角形分布; e>L/6时,基底压力pmin<0 岩土工程研究所
第二章 土体应力计算
当pmin<0时,由于地基与基础接触面不能承受拉力,此时基底与地基将局 部脱离而使基底压力重新分布。根据基底压力与偏心荷载相平衡的条件, 三角形反力分布如图(c)中的实线所示的形心应在P+G的合力Fv作用线 上,由此可计算基础边缘的最大压力pmax为
p
基底净压力: pn p d
d
rd
岩土工程研究所
第二章 土体应力计算
2-3 基底压力与基底净压力
一、柔性基础与刚性基础 基底压力的大小和分布与荷载的性质(中心或偏心、倾斜等)、
大小等有关,也与基础的刚度有关。 柔性基础:刚度较小,基底压力与荷载大小及分布相同
岩土工程研究所
第二章 土体应力计算
岩土工程研究所
第二章 土体应力计算
对于饱和土体由于孔隙应力是通过土中孔隙水来传递的,因而它不 会使土体产生变形,土体的强度也不会改变。 孔隙应力分为:静孔隙应力和超静孔隙应力。 自重应力——由土体自身重量所产生的应力。 附加应力——由外荷(静的或动的)引起的土中应力。
岩土工程研究所
第二章 土体应力计算
第二章 土体应力计算
2-1 概 述
支撑建筑物荷载的土层称为地基。 与建筑物基础底面直接接触的土层称为持力层。 将持力层下面的土层称为下卧层。 土体的应力按引起的原因分为自重应力和附加应力; 按土体中土骨架和土中孔隙(水、气)的应力承担作用原理或应力传 递方式可分为有效应力和孔隙应(压)力。 有效应力——由土骨架传递(或承担)的应力。 孔隙应力——由土中孔隙流体(水和气体)传递(或承担)的应力。
2-3 基底压力与基底附加应力
刚性基础:刚度较大,基底压力与荷载的分布不同
一般情况下,可假定基底压力为直线分布 岩土工程研究所
第二章 土体应力计算
二、刚性基础下基底压力分布
(一)中心荷载下的基底压力
中心荷载作用下的基础,上部结构荷载P与基础自重G的合力Fv通过基 底形心,基底压力为均匀分布。平均基底压力为
对于基底压力p为均布情况
p
pn p d
对于基底压力为梯形分布情况
d
rd
pn pt
pm in pmax
d
pm in
岩土工程研究所
第二章 土体应力计算
2-4 地基中的附加应力计算
基本假定:地基土是各向同性的、均质的线弹性体,而且在深度和水平方 向上都是无限延伸的。
应力计算可分为空间问题和平面问题。 空间问题:地基中的应力是直角坐标的三个分量x、y、z的函数; 平面问题:地基中的应力是直角坐标的两个分量x、z的函数; 研究对象到底使用哪个问题由基底压力、基础形状和地基土的性质决定。
矩形基底
pphh=Fhl/F*hblb
岩土工程研究所
条形基底
ph
Fh b
第二章 土体应力计算
四、——基底净压力
实际工程中,基础总是埋置在天然地面以下一定的深度,势必要进行基 坑开挖,这样一来就意味着加了一个负荷载。因此,应在基底压力中扣 除基底标高处原有土的自重应力,才是基础底面下真正施加于地基的压 力,称为基底净压力。基底净压力按下式计算:
岩土工程研究所
第二章 土体应力计算
2-4 地基中的附加应力计算
一、附加应力基本解答 (一)竖向集中力作用下地基附加应力——半无限空间体弹性力学基本解 由布辛内斯克解答得σz的表达式:
R x2 y2 z2
岩土工程研究所
第二章 土体应力计算
由图中的几何关系,得
式中
称为竖向集中力作用竖向附加应 力系数。
岩土工程研究所
第二章 土体应力计算
(二)等代荷载法——基本解答的初步应用 由于集中力作用下地基中的附加应力σz仅是荷载的一次函数,因此当若 干个竖向集中力Fi(I=1,2,‥ ‥ ‥n)作用于地表时,应用叠加原理,地 基中z深度任一点M的附加应力σz应为各集中力单独作用时在该点所引起 的附加应力总和。