大学物理7-8章答案详解教学提纲

合集下载

大学物理第8章 稳恒磁场 课后习题及答案

大学物理第8章 稳恒磁场 课后习题及答案

*作品编号:DG13485201600078972981* 创作者: 玫霸*第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。

若通以电流I ,求O 点的磁感应强度。

解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。

AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。

以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。

在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为 x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。

大学物理学 下册 吕海江 谢国秋 第7-8章习题解答

大学物理学 下册  吕海江 谢国秋  第7-8章习题解答

第七章 静电场7.6 D 7.7 C 7.8 D 7.9 D 7.10 C 7.11B 7.12 D 7.13 D 7.14 C 7.15 D 7.16 D 7.17 C 7.18 B 7.19 A 7.20 B7.21 解:直线1带电线密度为λ+,直线2带电线密度为λ-,带电直线1在2处产生的场强为02(2)r d λπεE =e在带电直线2上取电荷元dq ,由场强的定义得该电荷元所受的作用力为d dq F =E带电直线1对带电直线2单位长度上的电荷的作用力为2112000()44rrdq d ddλλλπεπε=-=-⎰⎰e e F =E同理,带电直线2对带电直线1单位长度上的电荷的作用力为22104rdλπεe F =7.22解:在带电细杆上任取一小线元dx ,它所带的电量为dq dx kxdx λ==,dq 在原点产生的电场强度大小为214k x d x dE xπε=其方向与x 轴反向,因为所有电荷元产生的电场强度方向都相同,所以有21ln44d dkxdx k d E dE xdπεπε++===⎰⎰方向沿x 轴负方向。

7.23 解:r R ≤,012r in Sar rh dr πε⋅=⋅⋅⎰⎰E dS ,23in arE ε=(r R ≤)r R >,012R out Sar rh dr πε⋅=⋅⋅⎰⎰E dS ,303out aRE rε=(r R >)7.24解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。

它在O 处产生场强θεεd 24d d 20220R Q Rq E π=π=按θ角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQE E x π== θθεθd cos 2cos d d 202RQ E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2RQ E x =0 2022/2/0202d cos d cos 2R QR QE y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 : j RQj E i E E y x 202επ-=+= 7.25 解:由于球对称分布,故电场也球对称分布。

大学物理课后答案第七章..

大学物理课后答案第七章..

第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念.二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。

(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。

2.电容(1)孤立导体的电容 qC V=电容的物理意义是使导体电势升高单位电势所需的电量。

电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。

它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关. (2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。

B A V V -为A 、B 两极间电势差。

电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。

(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。

等效电容由121111nC C C C =+++进行计算。

并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。

等效电容为12n C C C C =+++。

(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。

②由BA B A V V d -=⋅⎰E l 求两极板间的电势差.③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关.说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。

定义式无论对各向同性介质,还是各向异性介质都适用.对于各向同性电介质,因为0e χε=P E ,所以0r εεε==D E E 。

大学物理_第五版答案(7-8)

大学物理_第五版答案(7-8)

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ). 7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。

7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。

故选择(C )。

7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。

大学物理答案解析第7~8章

大学物理答案解析第7~8章

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

习题7-1图dq ξd ξ习题7-2 图ax θθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

大学物理课后答案_第七八章

大学物理课后答案_第七八章

方向垂直纸面向里。 同理,第二段圆弧在 O 点所产生的磁感应强度为
B2 = ∫
方向垂直纸面向外。
l2
0
µ0 I 2dl µ0 I 2l2 = 4π R 2 4π R 2
2
铁环在 O 点所产生总磁感应强度为
B = B1 − B2 =
7-5
µ0 I1l1 µ0 I2 l2 − =0 4π R 2 4π R 2
dB =
µ0 Idl 4π R 2
方向垂直纸面向内,1/4 圆弧电流在 O 点产生的磁感应强度为
B=∫
πR 2 0
µ0 Idl µ0 I π R µ0 I = = 4π R 2 4π R 2 2 8R
方向垂直纸面向里。 7.2 如图 7.7 所示,有一被折成直角的无限长直导线有 20A 电流,P 点在折线的延长线上, 设 a 为,试求 P 点磁感应强度。 解 P 点的磁感应强度可看作由两段载流直导线 AB 和 BC 所产生的磁场叠加而成。 AB 段 在 P 点所产生的磁感应强度为零,BC 段在 P 点所产生的磁感应强度为
2 2 I (r 2 − R22 ) I ( R3 − r ) µ0 I R32 − r 2 I′ = I − 2 = , B = R3 − R22 R32 − R22 2π r R32 − R22
I ′ = 0, B = 0
7-9 一根很长的同轴电缆,由一导线圆柱(半径为 a)和一同轴的导线圆管(内、外半径分 别为 b、c)构成。使用时,电流 I 从一导体流出,从另一导体流回。设电流都是均匀分布在 导体的横截面上, 求: (1) 导体圆柱内 (r<a) ; (2) 两导体之间 (a<r<b) ;(3)导体圆管内 (b<r<c) ; (4)电缆外(r>c)各点处磁感应强度的大小。 解 如图 7.13 所示,由电流分布具有轴对称性可知,相应的磁场分布也具有轴对称性。根 据安培环路定理有

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

第七章 气体动理论7–1 一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为_________________。

解:由nkT P =,可得单位体积内分子数的增量为kTP P kT P n 12-=∆=∆ 7–2 一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为_______,分子平均平动动能增量为_________。

解:设经加热和压缩后气体的压强为P ',则有TV P T PV 22/⨯'=所以P P 4='压强增量为P P P P 3=-'=∆由分子平均平动动能的计算公式kT 23=ε知分子平均平动动能增量为kT 23。

7–3 从分子动理论导出的压强公式来看,气体作用在器壁上的压强,决定于 和 。

解:由理解气体的压强公式k 32εn P =,可知答案应填“单位体积内的分子数n ”,“分子的平均平动动能k ε”。

7–4 气体分子在温度T 时每一个自由度上的平均能量为 ;一个气体分子在温度T 时的平均平动动能为 ;温度T 时,自由度为i 的一个气体分子的平均总动能为 ;温度T 时,m /M 摩尔理想气体的内能为 。

解:kT 21;kT 23;kT i2;RT i M m 27–5 图7-1所示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线,其中曲线(a )是__________气分子的速率分布曲线; 曲线(c )是__________气分子的速率分布曲线。

解:在相同温度下,对不同种类的气体,分子质量大的,速率分布曲线中的最慨然速率p v 向量值减小方向迁移。

可得图7-1中曲线(a )是氩气分子的速率分布曲线,图7-1中曲线(c )是氦气分子的速率分布曲线。

7–6 声波在理想气体中传播的速率正比于气体分子的方均根速率。

大学物理第7章习题解答

大学物理第7章习题解答

⼤学物理第7章习题解答第七章7-1容器内装有质量为0.lkg 的氧⽓,其压强为l0atm(即lMPa),温度为47C 0。

因为漏⽓,经过若⼲时间后,压强变为原来的85,温度降到27C 0。

问:(1)容器的容积有多⼤?(2)漏去了多少氧⽓? 解:(1)由RT Mm pV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代⼊.证V =8.31×10-3m 3(2) 设漏⽓后,容器中的质量为m ′,则T R Mm V p ''=' 3201.08530030085??='?'=R MR Mm R Mm pV)k g (151='?m漏去的氧⽓为kg 103.3kg 301kg )1511.0(2-?≈=-='-=m m m ?7-2设想太阳是由氢原⼦组成的理想⽓体,其密度可当作是均匀的。

若此⽓体的压强为Pa 141035.1?,试估算太阳的温度。

已知氢原⼦的质量kg H 27 1067.1-?=µ,太阳半径m R S 81096.6?=,太阳质量kg MS301099.1?=。

解:太阳内氢原⼦数HSm MN =故氢原⼦数密度为3827303)1096.6(341067.11099.134===-ππsHSR m M V N n5.8329-?=m由P =nkT 知)(1015.11038.1105.81035.17232914K nkp T ?===-7-3 ⼀容器被中间隔板分成相等的两半,⼀半装有氮⽓,温度为1T,另⼀半装有氧⽓,题7-2图温度为2T ,⼆者压强相等,今去掉隔板,求两种⽓体混合后的温度。

解:如图混合前:2221112222111O He T M m T M m RT Mm pV RT M m pV ===⽓有对⽓有对①总内能 222111212523RT Mm RT M m E E E +=+=前②①代⼊②证11RT M m E =前混合后:设共同温度为T ()RT M m T T EF RT M m M m E 21210221125231,2523???? ?+=+=式得⼜由后③⼜后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒⼦的系统,速率分布函数如习题7⼀4图所⽰,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒⼦数;(4)最概然速率;(5)粒⼦的平均速率;(6) 0.50v ~0v 区间内粒⼦的平均速率。

第七、八章总结提纲

第七、八章总结提纲

第七章总结提纲
1.是否能正确描述出得到运动电荷电磁场的基本思路?
2.能否正确写出低速和任意速度的加速电荷辐射总功率的公式?
3.能否从加速运动电荷辐射功率角分布公式出发,分析出直线加速运动电荷和同步辐射的
特点?
4.是否理解加速运动电荷辐射频谱的物理意义和基本分析方法?
5.能否正确描述切伦科夫辐射的物理图像和辐射特点?
6.是否理解电磁质量、电子经典半径、辐射阻尼力等物理概念以及辐射阻尼力的适用条
件?
第八章总结提纲
1.能否自己推导出自由电子和束缚电子的散射功率角分布、总功率以及总散射截面?
2.能否描述出汤姆逊散射、康普顿散射、瑞利散射、共振散射的基本物理图像和特点?
3.能否从谐振子模型出发解释电磁波在介质中的吸收和色散?
4.是否了解什么是正常色散和反常色散?。

《大学物理》第二版课后习题答案第七章

《大学物理》第二版课后习题答案第七章

习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。

解(1)如图所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内。

半圆弧在O 点产生的磁感应强度为 00022444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。

(2)如图(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024Idl dB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为0002224428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。

如图所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。

解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。

AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。

所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。

大学物理第七章和第八章习题答案

大学物理第七章和第八章习题答案

2
R2 R1
(5) C'
rC
4 0 r R1R2 R2 R1
2. 如图所示,,两块分别带有等量异号电荷的平行金属平板 A 和 B,相距为 d=5.0mm,两板 面积均为 S=150 cm2。所带电量均为 q=2.66×10-8C, A 板带正电并接地。求:(1)B 板的电 势;(2)A、B 板间距 A 板 1.0mm 处的电势。
(4)该电容存储的电场能量;
(5)若在两极板之间充满相对介电常数为r 的各向同性均匀电介质,则电容值变为多少?
解:(1)设极板上分别带电量+Q 和-Q,距离为 d,极板间产生均匀电场,
E Q /( 0 S ) 方向为由带+Q 的极板指向带-Q 的极板
极板外侧 E' 0
(2)两极板间的电势差为U12
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的

大学物理答案第7~8章

大学物理答案第7~8章

第七章 实空中的静电场之阳早格格创做7-1 正在边少为a 的正圆形的四角,依次搁置面电荷q,2q,-4q 战2q ,它的几许核心搁置一个单位正电荷,供那个电荷受力的大小战目标.解:如图可瞅出二2q 的电荷对于单位正电荷的正在效率力将相互对消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε目标由q 指背-4q. 7-2 如图,匀称戴电细棒,少为L ,电荷线稀度为λ.(1)供棒的延少线上任一面P 的场强;(2)供通过棒的端面与棒笔直上任一面Q 的场强.解:(1)如图7-2 图a ,正在细棒上任与电荷元dq ,修坐如图坐标,dq =d,设棒的延少线上任一面P 与坐标本面0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒正在P 面爆收的电场强度的大小为=)(40L x x L-πελ目标沿轴正背.q2q-4q2q习题7-1图dq ξd ξP习题7-2 图ax(2)如图7-2 图b ,设通过棒的端面与棒笔直上任一面Q 与坐标本面0的距离为y204rdxdE πελ=θπελcos 420rdxdE y =, 果θθθθcos ,cos ,2yr d y dx ytg x ===,代进上式,则)cos 1(400θπελ--=y=)11(4220Ly y +--πελ,目标沿x 轴背背.00sin 4θπελy ==2204Ly y L+πελ 7-3 一细棒直成半径为R 的半圆形,匀称分散有电荷q ,供半圆核心O 处的场强.解:如图,正在半环上任与d l =Rd 的线元,其上所戴的电荷为dq=Rd.对于称分解E y =0.θπεθλsin 420R Rd dE x =2022R qεπ=,如图,目标沿x 轴正背.7-4 如图线电荷稀度为λ1的无限少匀称戴电直线与另一少度为l 、线θθπελθd y dE E x x ⎰⎰-=-=00sin 40dq xdxP习题7-2 图bydEθy Qθ0d θθθdEx习题7-3图R电荷稀度为λ2的匀称戴电直线正在共一仄里内,二者互相笔直,供它们间的相互效率力.解:正在λ2的戴电线上任与一dq ,λ1的戴电线是无限少,它正在dq 处爆收的电场强度由下斯定理简单得到为,xE 012πελ=二线间的相互效率力为,ln 2021ala +πελλ如图,目标沿x 轴正背.7-5 二个面电荷所戴电荷之战为Q ,问它们各戴电荷几时,相互效率力最大?解:设其中一个电荷的戴电量是q ,另一个即为Q -q ,若它们间的距离为r ,它们间的相互效率力为相互效率力最大的条件为 由上式可得:Q=2q ,q=Q/27-6 一半径为R 的半球壳,匀称戴有电荷,电荷里稀度为σ,供球心处电场强度的大小.解:将半球壳细割为诸多细环戴,其上戴电量为dq 正在o 面爆收的电场据(7-10)式为λ1 习题7-4图习题7-6图304RydqdE πε=,θcos R y = )(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=.如图,目标沿y 轴背背.7-7 设匀强电场的电场强度E 与半径为R 的半球里对于称轴仄止,估计通过此半球里电场强度的通量.解:如图,设做一圆仄里S 1挡住半球里S 2,成为关合直里下斯,对于此下斯直里电通量为0, 即7-8 供半径为R ,戴电量为q 的空心球里的电场强度分散.解: 由于电荷分散具备球对于称性,果而它所爆收的电场分散也具备球对于称性,与戴电球里共心的球里上各面的场强E 的大小相等,目标沿径背.正在戴电球里里与中部天区分别做与戴电球里共心的下斯球里S 1与S 2.对于S 1与S 2,应用下斯定理,即先估计场强的通量,而后得退场强的分散,分别为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )rrˆ204q πε=外E (r>R)E习题7-7图r习题7-18图7-9 如图所示,薄度为d 的“无限大”匀称戴电仄板,体电荷稀度为ρ,供板内中的电场分散.解:戴电仄板匀称戴电,正在薄度为d/2的仄分街里上电场强度为整,与坐标本面正在此街里上,修坐如图坐标.对于底里积为A ,下度分别为x <d/2战x >d/2的下斯直里应用下斯定理,有1d ερψAxEA S ==⋅=⎰S E 得 )2( 01d x i x E <=ερ7-10 一半径为R 的无限少戴电圆柱,其体电荷稀度为分散.)(0R r r ≤=ρρ,ρ0为常数.供场强解: 据下斯定理有R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk22επR r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ7-11 戴电为q 、半径为R 1的导体球,其中共心底搁一金属球壳,球壳内、中半径为R 2、R 3.(1)球壳的电荷及电势分散;(2)把中球交天后再绝缘,供中球壳的电荷及球壳内中电势分散;(3)再把内球交天,供内球的电荷及中球壳的电势.习题7-9图x习题7-10图r解:(1)静电仄稳,球壳内表面戴-q ,中表面戴q 电荷.据(7-23)式的论断得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(4213202R r R R R r qV ≤≤+-=πε (2)),)(11(412101R r R R q U ≤-=πε (3分散设静电仄稳,内球戴q //q /-q.得:21313221R R R R R R qR R q +-='7-12 一匀称、半径为R 的戴电球体中,存留一个球形空腔,空腔的半径r(2r<R),试说明球形空腔中任性面的电场强度为匀强电场,其目标沿戴电球体球心O 指背球形空腔球心O /.说明:利用补缺法,此空腔可视为共电荷稀度的一个完备的半径为R 的大球战一个半径为r 与大球电荷稀度同号完备的小球组成,二球正在腔内任性面P 爆收的电场分别据〔例7-7〕截止为3ερ11r E =, 03ερ22r E -= E =E 1+E 2=03ερ1r 03ερ2r -q习题7-11图上式是恒矢量,得证.7-13 一匀称戴电的仄里圆环,内、中半径分别为R 1、R 2,且电荷里稀度为σ.一量子被加速器加速后,自圆环轴线上的P 面沿轴线射背圆心O.若量子到达O 面时的速度恰佳为整,试供量子位于P 面时的动能E K .(已知量子的戴电量为e ,忽略沉力的效率,OP=L )解:圆环核心的电势为 圆环轴线上p 面的电势为量子到达O 面时的速度恰佳为整有p k eV eV E -=0=21()2e R R σε=-2222210()2eR L R L σε-+-+7-14 有一半径为R 的戴电球里,戴电量为Q ,球里中沿直径目标上搁置一匀称戴电细线,线电荷稀度为λ,少度为L (L>R ),细线近端离球心的距离为L.设球战细线上的电荷分散牢固,试供细线正在电场中的电势能.解:正在戴电细线中任与一少度为dr 的线元,其上所戴的电荷元为dq=dr ,据(7-23)式戴电球里正在电荷元处爆收的电势为rQ V 04πε=电荷元的电势能为:rdrQ dW 04πελ=R 2o R 1xp习题7-13图orQdr习题7-14图细线正在戴电球里的电场中的电势能为:*7-15 半径为R 的匀称戴电圆盘,戴电量为Q.过盘心笔直于盘里的轴线上一面P 到盘心的距离为L.试供P 面的电势并利用电场强度与电势的梯度关系供电场强度.解:P 到盘心的距离为L ,p 面的电势为)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上任性面的电势为 利用电场强度与电势的梯度关系得:i xR x R Q i dx dV x E )1(2)(22220+-=-=πεP 到盘心的距离为L ,p 面的电场强度为:i L R LRQ L E)1(2)(22220+-=πε7-16 二个共心球里的半径分别为R 1战R 2,各自戴有电荷Q 1战Q 2.供:(1)各区乡电势分散,并绘出分散直线;(2)二球里间的电势好为几?解:(1)据(7-23)式的论断得各区乡电势分散为),( )(411221101R r R Q R Q V ≤+=πε (2)二球里间的电势好为7-17 一半径为R 的无限少戴电圆p习题7-15图习题7-16图柱,其里里的电荷匀称分散,电荷体稀度为ρ,若与棒表面为整电势,供空间电势分散并绘出电势分散直线. 解: 据下斯定理有R r ≤时:R r =时,V=0,则 R r ≤时:⎰=R r rdr V 02ερ)(4220r R -=ερ R r >时:空间电势分散并绘出电势分散直线大概如图.7-18 二根很少的共轴圆柱里半径分别为R 1、R 2,戴有等量同号的电荷,二者的电势好为U ,供:(1)圆柱里单位少度戴有几电荷?(2)二圆柱里之间的电场强度.解:设圆柱里单位少度戴电量为,则二圆柱里之间的电场强度大小为rE 02πελ=二圆柱里之间的电势好为 由上式可得:120ln 2R R U =πελ所以n e r E 02πελ=)( ln 2112R r R e rR R Un <<⋅= 习题7-10图roRoV习题7-18图ro7-19 正在一次典型的闪电中,二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,如果释搁出去的能量皆用去使00C 的冰熔化成00C 的火,则可融化几冰?(冰的熔 ×105J ﹒kg -1)解:二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,其电势能为上式释搁出去的能量可融化冰的品量为:=⨯⨯=∆591034.31030m ×104kg7-20 正在玻我的氢本子模型中,电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通.(1)若把电子从本子中推出去需要克服电场力做几功?(2)电子正在玻我轨讲上疏通的总能量为几?解:电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通,其电势能为(1)把电子从本子中推出去需要克服电场力做功为:ae W W p 024πε=-=外(2)电子正在玻我轨讲上疏通的总能量为:k p E W W +=221mv W p += 电子的总能量为:221mv W W p +=a e 024πε-=a e 028πε+ae 028πε-=第八章 静电场中的导体与电介量8-1 面电荷+q 处正在导体球壳的核心,壳的内中半径分别为R l 战R 2,试供,电场强度战电势的分散.解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q 电荷正在r<R 1的天区内rr q ˆ4E 201πε=,)111(42101R R r qU +-=πε 正在R 1<r<R 2的天区内 正在r>R 2的天区内:.ˆ4E 203r r πεq=.403rq U πε= 8-2 把一薄度为d 的无限大金属板置于电场强度为E 0的匀强电场中,E 0与板里笔直,试供金属板二表面的电荷里稀度.解:静电仄稳时,金属板内的电场为0,金属板表面上电荷里稀度与紧邻处的电场成正比 所以有8-3 一无限少圆柱形导体,半径为a ,单位少度戴有电荷量1,其中有一共轴的无限少导体圆简,内中半径分R 2R 1习题 8-1图q-qqE 0 E 0习题 8-2图σ1 σ2别为b 战c ,单位少度戴有电荷量2,供(1)圆筒内中表面上每单位少度的电荷量;(2)供电场强度的分散.解:(1)由静电仄稳条件,圆筒内中表面上每单位少度的电荷量为;,21λλλ+-(2)正在r<a 的天区内:E=0正在a<rb 的天区内:E r012πελ=e n正在r>b 的天区内:E r0212πελλ+=e n8-4 三个仄止金属板A 、B 战C ,里积皆是200cm 2,A 、B 相距,A 、C 相距,B 、C 二板皆交天,如图所示.如果A 板戴正电×10-7C ,略去边沿效力(1)供B 板战C 板上感触电荷各为几?(2)以天为电势整面,供A 板的电势.解:(1)设A 板二侧的电荷为q 1、q 2,由电荷守恒本理战静电仄稳条件,有A q q q =+21(1)1q q B -=,2q q C -=(2)依题意V AB =V AC ,即101d S q ε=202d Sqε112122q q d d q ==→代进(1)(2)式得习题 8-3图A BC习题 8-4图d 12q 1=×10-7C ,q 2×10-7C ,q B ×10-7C ,q C =-q 2×10-7C ,(2)101d S q U A ε==202d Sq ε==⨯⨯⨯⨯⨯⨯----312471021085810200102.×103V 8-5 半径为R 1=l.0cm 的导体球戴电量为×10-10C ,球中有一个内中半径分别为R 2=战R 3=的共心导体球壳,壳戴有电量Q=11×10-10C ,如图所示,供(1)二球的电势;(2)用导线将二球连交起去时二球的电势;(3)中球交天时,二球电势各为几?(以天为电势整面)解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q+Q 电荷 (1))(4132101R Qq R q R q U ++-=πε代进数据 )41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---U=×102V=×102V(2)用导线将二球连交起去时二球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V (3)中球交天时,二球电势各为)(412101R qR q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V 8-6 说明:二仄止搁置的无限大戴电的习题 8-5图q-qq+Q2 ABq 1 q 3 4仄止仄里金属板A 战B 相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,略去边沿效力,供二个板的四个表面上的电里稀度.证:设A 板戴电量为Q A 、二侧的电荷为q 1、q 2,B 板板戴电量为Q B 、二侧的电荷为q 3、q 4.由电荷守恒有A Q q q =+21(1)B Q q q =+43(2)正在A 板与B 板里里与二场面,金属板里里的电场为整有020122εεS q S q -0220403=--εεS qS q ,得04321=---q q q q (3) 020122εεS q S q +0220403=-+εεS qS q ,得04321=-++q q q q (4) 联坐上头4个圆程得:241B A Q Q q q +==,232B A Q Q q q -=-=即相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共,本题得证.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,则=⨯⨯⨯+==--844110101002)46(σσ×10-6C/m 2, =⨯⨯⨯-=-=--843210101002)46(σσ×10-6C/m 2 8-7 半径为R 的金属球离大天很近,并用细导线与天相联,正在与球心相距离为D=3R 处有一面电荷+q ,试供金属球上的感触电荷.解:设金属球上的感触电荷为Q ,金属球交天电势为整,即8-8 一仄止板电容器,二极板为相共的矩形,宽为a ,少为b ,间距为d ,今将一薄度为t 、宽度为a 的金属板仄止天背电容器内拔出,略去边沿效力,供拔出金属板后的电容量与金属板拔出深度x 的关系.解:设如图左边电容为C 1,左边电容为C 2安排电容并联,总电容即金属板后的电容量与金属板拔出深度x 的关系,为=)(0td tx b da -+ε 8-9 支音机里的可变电容器如图(a )所示,其中公有n 块金属片,相邻二片的距离均为d ,奇数片联正在所有牢固没有动(喊定片)奇数片联正在起而可一共转化(喊动片)每片的形状如图(b )所示.供当动片转到使二组片沉叠部分的角度为时,电容器的电容.解:当动片转到使二组片沉叠部分的角度 为时,电容器的电容的灵验里积为此结构相称有n-1的电容并联,总电容为td bx习题 8-8图(a) (b)习题 8-9图qQD=3RRd S n C 0)1(ε-==dr r n 360)()1(21220--θπε8-10 半径皆为a 的二根仄止少直导线相距为d (d>>a ),(1)设二直导线每单位少度上分别戴电十战一供二直导线的电势好;(2)供此导线组每单位少度的电容.解:(1)二直导线的电电场强度大小为rE 022πελ⨯= 二直导线之间的电势好为(2)供此导线组每单位少度的电容为VC λ==aa d -lnπε8-11 如图,C 1=10F ,C 2=5F ,C 3=5F ,供(1)AB 间的电容;(2)正在AB 间加上100V 电压时,供每个电容器上的电荷量战电压;(3)如果C 1被打脱,问C 3上的电荷量战电压各是几?解:(1)AB 间的电容为20155)(321213⨯=+++=C C C C C C C =F ;(2)正在AB 间加上100V 电压时,电路中的总电量便是C 3电容器上的电荷量,为C CV q q 4631073.31001073.3--⨯=⨯⨯===o(3)如果C 1被打脱,C 2短路,AB 间的100V 电压齐加正在C 3上,即V 3=100V ,C 3上的电荷量为8-12 仄止板电容器,二极间距离为l.5cm ,中加电压39kV ,若气氛的打脱场强为30kV/cm ,问此时电容器是可会被打脱?现将一薄度为的玻璃拔出电容器中与二板仄止,若玻璃的相对于介电常数为7,打脱场强为100kV/cm ,问此时电容器是可会被打脱?截止与玻璃片的位子有无关系?解:(1)已加玻璃前,二极间的电场为 没有会打脱(2)加玻璃后,二极间的电压为气氛部分会打脱,今后,玻璃中的电场为cm kV cm kV E /100/1303.039>==,玻璃部分也被打脱.截止与玻璃片的位子无关.8-13 一仄止板电容器极板里积为S ,二板间距离为d,其间充以相对于介电常数分别为r1、r2,的二种匀称电介量,每种介量各占一半体积,如图所示.若忽略边沿效力,供此电容器的电容.解:设如图左边电容为C 1,左边电容为C 2dS C r 2/101εε=安排电容并联,总电容为V习题 8-12图εr1εr2习题 8-13图8-14 仄止板电容器二极间充谦某种介量,板间距d 为2mm ,电压600V ,如坚决启电源后抽出介量,则电压降下到1800V .供(1)电介量相对于介电常数;(2)电介量上极化电荷里稀度;(3)极化电荷爆收的场强.解:设电介量抽出前后电容分别为C 与C /8-15 圆柱形电容器是由半径为R 1的导体圆柱战与它共轴的导体圆筒组成.圆筒的半径为R 2,电容器的少度为L ,其间充谦相对于介电常数为r的电介量,设沿轴线目标单位少度上圆柱的戴电量为+,圆筒单位少度戴电量为-,忽略边沿效力.供(1)电介量中的电位移战电场强度;(2)电介量极化电荷里稀度.解:8-16 半径为R 的金属球被一层中半径为R /的匀称电介量包裹着,设电介量的相对于介电常数为r ,金属球戴电量为Q,供(1)介量层内中的电场强度;(2)介量层内中的电势;(3)金属球的电势.解:8-17 球形电容器由半径为R 1的导体球战与它共心的导体球壳组成,球壳内半径为R 2,其间有二层匀称电介量,分界里半径为r ,电介量相对于介电常数分别为r1、r2,如图所示.供(1)电容器的电容;(2)当内球戴电量为+Q 时各介量表面上的束缚电荷里稀度.R 1 R /习题 8-16图U 1 U 2U 0 E 1 E 2解:1221221212220102010221022011021211221221(1)4,4,441111()()444()(r r r r rR R rr r r r r r r Q D ds D r Q D D r D D Q QE E r r Q Q U E dl E dl r R R rR R r QC U R R r R R ππεεεεπεεπεεπεεπεεπεεεεεεε⋅=⋅=∴==∴====∴=⋅+⋅=-+-∴==-+-⎰⎰⎰取同心高斯球面,由介质的高斯定理得1110112211112342221222)11(1)(1),(1)44111(1),(1),(1)444r r r r r r Q Q D E R R Q Q Q r r R σεσεεππσσσεεεπππ=-=-∴=--=-=--=-8-18 一仄止板电容器有二层介量(如图),r1=4,r2=2,薄度为d 1=,d 2=,极板里积S=40cm 2,二极板间电压为200V .(1)供每层电介量中的能量稀度;(2)估计电容器的总能量;(3)估计电容器的总电容.解:8-19 仄板电容器的极板里积S=300cm 2二极板相距d 1=3mm ,正在二极板间有一个与天绝缘的仄止金属板,其里积与极板的相共,薄度d 1=1mm.当电容器被充电到600V 后,拆去电源,而后抽出金属板,问(1)电容器间电场强度是可变更;(2)抽出此板需做几功?解:8-20 半径为R 1=的导体球,中套有一共心的导体球壳,球壳内中半径分别为R 2=、R 3=.球与壳之间是气氛,壳中也是气氛,当内球戴电荷为×10-8C 时,供(1)所有电场R 1 R 2r习题 8-17图习题 8-18图贮存的能量;(2)如果将导体球壳交天,估计贮存的能量,并由此供其电容.解:。

新编基础物理学上册7-8单元课后答案.

新编基础物理学上册7-8单元课后答案.

第七章7-1 氧气瓶的容积为32,L 瓶内充满氧气时的压强为130atm 。

若每小时用的氧气在1atm 下体积为400L 。

设使用过程温度保持不变,当瓶内压强降到10atm 时,使用了几个小时? 分析 氧气的使用过程中,氧气瓶的容积不变,压强减小。

因此可由气体状态方程得到使用前后的氧气质量。

进而将总的消耗量和每小时的消耗量比较求解。

解 已知123130,10,1;P atm P atm P atm === ,3221L V V V ===L V 4003=。

质量分别为1m ,2m ,3m ,由题意可得:11m PV RT M = ○1 22m PV RT M = ○2 233m PV RT M= ○3 所以一瓶氧气能用小时数为: ()121233313010329.61.0400m m PV PV n m PV -⨯--====⨯小时 7-2 一氦氖气体激光管,工作时管内温度为 27C ︒。

压强为2.4mmHg ,氦气与氖气得压强比是7:1.求管内氦气和氖气的分数密度.分析 先求得氦气和氖气各自得压强,再根据公式P nkT =求解氦气和氖气的分数密度。

解:依题意, n n n =+氦氖, 52.41.01310760P P P Pa =+=⨯⨯氦氖;:7:1P P =氦氖 所以 552.10.31.01310, 1.01310760760P Pa P Pa =⨯⨯=⨯⨯氦氖, 根据 P nkT =所以 ()5223232.1760 1.01310 6.76101.3810300P n m kT --⨯⨯===⨯⨯⨯氦氦 2139.6610Pn m kT-=⨯氖氖7-3 氢分子的质量为243.310-⨯克。

如果每秒有2310个氢分子沿着与墙面的法线成︒45角的方向以510厘米/秒的速率撞击在面积为22.0cm 的墙面上,如果撞击是完全弹性的,求这些氢分子作用在墙面上的压强.分析 压强即作用在单位面积上的平均作用力,而平均作用力由动量定理求得。

大学物理答案第七章热力学基础-习题解答

大学物理答案第七章热力学基础-习题解答

展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。

大学物理第8章习题答案

大学物理第8章习题答案

µId 1
d
d
d B
dΦ µ d dI 4 Ei = − ln = 2 π dt 3 dt
0
Ei
顺时针方向
习题答案
8-12 解:
第八章电磁感应 电磁场 第八章电磁感应
r v v dEi = ( v × B ) ⋅ dl
O′
= vBdlsinθ
= ωrBsinθdl
= Bωl sin θdl
2
v B
O
a
l
L
b
Ei 方向
a
b
习题答案
第八章电磁感应 电磁场 第八章电磁感应
v v b 解:Eab = ∫a E k ⋅ d l
b
r dB r < R Ek = 2 dt
× × × × × × × × × × × × × × × ×
× × × × r dB dl cos θ = ∫a B × × × × × 2 dt × × × × × L h dB = ∫0 dl O × × × × × 2 dt EK h = r cosθ h θ hL dB × = a b 2 dt dl
L = µn V
2
N 2 πd 2 N 2 πd 2 L = µ 0 n 2V = µ0 ( ) l = µ0 l 4 l 4
2 2 2 2 2
1 2 1 N πd ε 2 µ 0 N πd ε Wm = LI = µ 0 ( ) = = 3.28 × 10 −5 J 2 2 l 4 R 8R 2l
2
习题答案
8-18
+
第八章电磁感应 电磁场 第八章电磁感应 连接oa和 与 构成回路 构成回路oab. 解:连接 和ob与ab构成回路

新编基础物理学上册7-8单元课后答案

新编基础物理学上册7-8单元课后答案

第七章7-1氧气瓶的容积为32 L ,瓶内充满氧气时的压强为13Oatm 。

若每小时用的氧气在Iatm 下体积为400L 。

设使用过程温度保持不变,当瓶内压强降到IOatm 时,使用了几个小时?分析氧气的使用过程中,氧气瓶的容积不变,压强减小。

因此可由气体状态方程得到使用 前后的氧气质量。

进而将总的消耗量和每小时的消耗量比较求解。

解 已知 R = 130atm, P 2 =10atm, P 3 = Iatm; V I= V ? = V = 32 L, V^ = 400L 。

质量分别为m ,m 2, m ,由题意可得:m 2 RT M所以一瓶氧气能用小时数为:7-3氢分子的质量为3.3 10 ^4克。

如果每秒有10 23个氢分子沿着与墙面的法线成 45角的方向以105厘米/秒的速率撞击在面积为 2.0cm 2的墙面上,如果撞击是完全弹性的,求这些氢分子作用在墙面上的压强分析 压强即作用在单位面积上的平均作用力,而平均作用力由动量定理求得。

PV 3 g —m 2 PV —P 2V n =13°一10 32 76小时m ∣31.0 4007-2 一氦氖气体激光管, 工作时管内温度为27 C 。

压强为2.4mmHg 氦气与氖气得压强比是7:1.求管内氦气和氖气的分数密度分析 先求得氦气和氖气各自得压强,再根据公式 P= nkT 求解氦气和氖气的分数密度。

解:依题意,n =n 氦∙ n 氖,P=P 氦 P 氖=2.4 所以二空 1.013 105Pa,760心.013 汇 105Pa ; P K : F 氖=7:1760031.013 105Pa , 760根据 P =nkT所以 (2.仃760产 1.013"=6.76D0 22 m'n 氦=氦kTP 氖 21 3 n 氖 -9.66 10 m 氖kT_231.38 10 300 解:单位时间内作用在墙面上的平均作用力为F = 2mvcos45 NJ 22 3.3 10 ^7 10510——1023 F 2mv COS 45 N2 P = S=2330 Pa7-4 一个能量为1012ev 的宇宙射线粒子,射入一氖气管中,氖管中含有氦气0.10mol,如果宇宙射线粒子的能量全部被氖气分子所吸收而变为热运动能量,问氖气的温度升高了多少 ?分析对确定的理想气体,其分子能量是温度的单值函数, 因此能量的变化对应着温度的变 化。

物理7-8

物理7-8

第七节 电容器和电容教学建议:1.容器是在收音机、电视机、电子仪器中广泛应用的,教学中可以进行实物展示,从而引入对电容器的学习。

再演示电容器充电和放电现象,说明充电后,电容器两极板带上等量异种电荷,电容器的功能就是能够储存电荷。

强调指出:电容器所带的电荷量,是指一个极板所带的电荷量的绝对值。

2.不同电容器容纳电荷的本领是不相同的,并且电容器这个概念比较抽象,可以把它与容器的容量作了对比,达到理解电容的目的。

3.讨论决定平行板电容器的电容大小因素,使学生对电容的物理意义有深入的了解,所以一定要做好演示实验,可以用示教平行板电容器演示。

4.对于常用电容器可以先展示不同类型的电容器,再介绍相关的电容器的特点,让学生了解电容器的工作电压和击穿电压。

自主探究:1、 电容器在充放电过程中能量的转化如何?充电过程中是电能转化为电场能;放电过程是将储存的电场能转化为其他形式的能。

2、 平行板电容器的电容受哪些因素的影响?平行板电容器的电容与平行板的正对面积、电介质的相对介电常数以及极板间的距离有关。

要点归纳:1、 电容器(1) 平行板电容器:有两个正对的平行板中间夹一层绝缘物质电介质,就组成一个最简单的电容器。

实际上,任何两个彼此绝缘又相隔很近的导体,都可以看成是一个电容器。

(2) 电容器的工作基础:①充电:使电容器带电的过程成为充电,充电后两板带等量异种电荷,电容器储存了电场能。

②放电:使充电后的电容器失去电荷叫放电。

(3) 电容器的带电量:一个极板所带电荷量的绝对值。

2、 电容(1) 定义:电容器所带电荷量Q 与电容器两极板间的电势差U 的比值,叫做电容器的电容。

(2) 公式:UQ C = (3) 物理意义:电容是表示电容器容纳电荷本领的物理量,数值上等于使两极板间的电势差为V 1时电容器需要带的电荷量。

(4) 单位:法(F ),还有微法(F μ)、和皮法(pF )。

(5) 电容器的电容值仅由电容器的结构决定,与所带电荷量Q 和所加电压U 无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理7-8章答案详解第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520a qπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204rdxdE πελ=θπελcos 420r dxdE y =,习题7-1图ξd ξ,P习题7-2 图axdθπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y=)11(4220Ly y+--πελ,方向沿x 轴负向。

θθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420R Rd dE x =⎰⎰==πθπελ0sin 4R dE E xR02πελ= 2022R q επ=,如图,方向沿x 轴正向。

θθπελθd y dE E x x ⎰⎰-=-=00sin4x习题7-3图7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。

解:在λ2的带电线上任取一dq ,λ1的带电线是无限长,它在dq 处产生的电场强度由高斯定理容易得到为,xE 012πελ=两线间的相互作用力为⎰⎰==x dx dF F 0212πελλ⎰=la x dx 0212πελλ,ln 2021ala +πελλ如图,方向沿x 轴正向。

7-5 两个点电荷所带电荷之和为 Q ,问它们各带电荷多少时,相互作用力最大?解:设其中一个电荷的带电量是q ,另一个即为Q -q ,若它们间的距离为r ,它们间的相互作用力为204)(r q Q q F πε-=相互作用力最大的条件为04220=-=r qQ dq dF πε 由上式可得:Q=2q ,q=Q/27-6 一半径为R 的半球壳,均匀带有电荷,电荷面密度为σ,求球心处电场强度的大小。

λ1 习题7-4图解:将半球壳细割为诸多细环带,其上带电量为θθπσθπσd R rRd dq sin 222==dq 在o 点产生的电场据(7-10)式为304R ydqdE πε=,θcos R y =θθπεθπσπd RR dE E cos 4sin 200303⎰⎰== 20sin (sin )2d πσθθε=⎰20202sin 2πθεσ=4εσ=。

如图,方向沿y 轴负向。

7-7 设匀强电场的电场强度E 与半径为R 的半球面对称轴平行,计算通过此半球面电场强度的通量。

解:如图,设作一圆平面S 1盖住半球面S 2,成为闭合曲面高斯,对此高斯曲面电通量为0, 即021=⋅+⋅=⋅⎰⎰⎰S S SS d E S d E S d E2211R E S d E S d E S S S π-=⋅-=⋅=ψ⎰⎰7-8 求半径为R ,带电量为q 的空心球面的电场强度分布。

解: 由于电荷分布具有球对称性,因而它所产生的电场分布也具有球对称性,与带电球面同心的球面上各点的场强E 的大小相等,方向沿径向。

在带电习题7-6图E习题7-7图球内部与外部区域分别作与带电球面同心的高斯球面S 1与S 2。

对S 1与S 2,应用高斯定理,即先计算场强的通量,然后得出场强的分布,分别为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )24d 2επψqr E S ==⋅=⎰S Errˆ204q πε=外E (r>R) 7-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外的电场分布。

解:带电平板均匀带电,在厚度为d/2的平分街面上电场强度为零,取坐标原点在此街面上,建立如图坐标。

对底面积为A ,高度分别为x <d/2和x >d/2的高斯曲面应用高斯定理,有1d ερψAxEA S ==⋅=⎰S E 得 )2( 01d x i x E <= ερ2d 2ερψdA EA S ==⋅=⎰S E )2( 202dx i d E > ερ=7-10 一半径为R 的无限长带电圆柱,其体电荷密度为)(0R r r ≤=ρρ,ρ0为常数。

求场强分布。

解: 据高斯定理有r习题7-18图习题7-9图xr⎰⎰==⋅VSdV rl E S d E ρεπ012R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk202επ=rl E π23230r lk επn e kr E 023ε=→R r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ=rl E π23230R lk επn e rkR E 033ε=→7-11 带电为q 、半径为R 1的导体球,其外同心地放一金属球壳,球壳内、外半径为R 2、R 3。

(1)球壳的电荷及电势分布;(2)把外球接地后再绝缘,求外球壳的电荷及球壳内外电势分布; (3)再把内球接地,求内球的电荷及外球壳的电势。

解:(1)静电平衡,球壳内表面带-q ,外表面带q 电荷。

据(7-23)式的结论得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(4213202R r R R R r qV ≤≤+-=πε ),(432303R r R R q V ≤≤=πε).(4304R r rq V ≥=πε(2)),)(11(412101R r R R q U ≤-=πε );)(11(421202R r R R r qV ≤≤-=πε),(0323R r R V ≤≤=).(034R r V >>=q习题7-11图(3)再把内球接地,内球的电荷及外球壳的电荷重新分布设静电平衡,内球带q /,球壳内表面带-q /,外表面带q /-q 。

),)((41132101R r R q q R q R q V ≤-'+'-'=πε 得:21313221R R R R R R qR R q +-='=-'=3034R qq V πε)(4)(213132021R R R R R R q R R +--πε)(32R r R ≤≤ 7-12 一均匀、半径为R 的带电球体中,存在一个球形空腔,空腔的半径r(2r<R),试证明球形空腔中任意点的电场强度为匀强电场,其方向沿带电球体球心O 指向球形空腔球心O /。

证明:利用补缺法,此空腔可视为同电荷密度的一个完整的半径为R 的大球和一个半径为r 与大球电荷密度异号完整的小球组成,两球在腔内任意点P 产生的电场分别据〔例7-7〕结果为03ερ11r E =, 03ερ22rE -= E =E 1+E 2=03ερ1r 03ερ2r - o o '=3ερ上式是恒矢量,得证。

7-13 一均匀带电的平面圆环,内、外半径分别为R 1、R 2,且电荷面密度为σ。

一质子被加速器加速后,自圆环轴线上的P 点沿轴线射向圆心O 。

若质子到达O 点时的速度恰好为零,试求质子位于P 点时的动能E K 。

(已知质子的带电量为e ,忽略重力的影响,OP=L )习题7-12图解:圆环中心的电势为⎰=210042R R r rdr V πεπσ )(2120R R -=εσ圆环轴线上p 点的电势为⎰+=2122042R R P Lr rdrV πεπσ)(22221222022021L R L R L r R R +-+=+=εσεσ质子到达O 点时的速度恰好为零有 k P E E E +=0p k E E E -=→0p k eV eV E -=0=210()2e R R σε=-02e σε-210(2e R R σε=- 7-14 有一半径为R 的带电球面,带电量为Q ,球面外沿直径方向上放置一均匀带电细线,线电荷密度为λ,长度为L (L>R ),细线近端离球心的距离为L 。

设球和细线上的电荷分布固定,试求细线在电场中的电势能。

解:在带电细线中任取一长度为dr 的线元,其上所带的电荷元为dq=λdr ,据(7-23)式带电球面在电荷元处产生的电势为rQ V 04πε=电荷元的电势能为: rdrQ dW 04πελ=细线在带电球面的电场中的电势能为: ===⎰⎰LLr dr Q dW W 204πελ2ln 40πελQ习题7-13图r习题7-14图*7-15 半径为R 的均匀带电圆盘,带电量为Q 。

过盘心垂直于盘面的轴线上一点P 到盘心的距离为L 。

试求P 点的电势并利用电场强度与电势的梯度关系求电场强度。

解:P 到盘心的距离为L ,p 点的电势为⎰+=RP Lr rdrV 022042πεπσ)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上任意点的电势为⎰+=Rxr rdrx V 022042)(πεπσ)(22222200220x x R RQ x r R -+=+=πεεσ利用电场强度与电势的梯度关系得:i xR xR Q i dx dV x E )1(2)(22220+-=-=πεP 到盘心的距离为L ,p 点的电场强度为:i L R LR Q L E)1(2)(22220+-=πε7-16 两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2。

相关文档
最新文档