操作系统-处理机调度算法的实现

操作系统-处理机调度算法的实现
操作系统-处理机调度算法的实现

操作系统实验报告处理机调度算法的实现

姓名:陈民厅

学号: 09070009

班级:09计算机1

一、实验名称及要求

1、实验名称:

处理机调度算法的实现

2、实验要求:

了解操作系统处理机调度概念的基本概念,处理机调度程序的功能,常用的处理机调度算法。C或C++编程方法与语句格式,提前初步编好试验程序。

3、实验方式:

通过实验室的微机上机,实际调试程序。

4、实验环境:

Windows操作系统环境下的个人微机

C或C++程序设计语言

二、实验内容

1.设定系统中有五个进程,每一个进程用一个进程控制块表示。

2.输入每个进程的“优先数”和“要求运行时间”。

3.为了调度方便,将五个进程按给定的优先数从大到小连成就绪队列。用一单元指出队列进程,用指针指出队列的链接情况。

4.处理机调度总是选队首进程运行。采用动态优先数算法,进程每运行一次优先数就减“1”,同时将运行时间减“1”。

5.若要求运行时间为零,则将其状态置为“结束”,且对出队列。

6.运行所设计进程,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程。

三、实验程序

#include

#include

#include

#define getpch(type) (type*)malloc(sizeof(type))

#define NULL 0

struct pcb /* 定义进程控制块PCB */

{

char name[20];

char state;

int super;

int ntime;

int rtime;

struct pcb* link;

} *ready=NULL,*p;

typedef struct pcb PCB;

void sort() /* 建立对进程进行优先级排列函数*/

{

PCB *first, *second;

int insert=0;

if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/ {

p->link=ready;

ready=p;

}

else /* 进程比较优先级,插入适当的位置中*/

{

first=ready;

second=first->link;

while(second!=NULL)

{

if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/

{ /*插入到当前进程前面*/

p->link=second;

first->link=p;

second=NULL;

insert=1;

}

else /* 插入进程优先数最低,则插入到队尾*/ {

first=first->link;

second=second->link;

}

}

if(insert==0) first->link=p;

}

}

void input() /* 建立进程控制块函数*/

{

int i,num;

printf("\n 请输入进程数: ");

scanf("%d",&num);

for(i=1;i<=num;i++)

{

printf("\n 进程号:No.%d\n",i);

p=getpch(PCB);

printf("\n 请输入进程名:");

scanf("%s",p->name);

printf("\n 请输入进程的优先数:");

scanf("%d",&p->super);

printf("\n 请输入进程的运行时间:");

scanf("%d",&p->ntime);

printf("\n");

p->rtime=0;p->state='W';

p->link=NULL;

sort(); /* 调用sort函数*/

}

}

int space()

{

int l=0;

PCB* pr=ready;

while(pr!=NULL)

{

l++;

pr=pr->link;

}

return(l);

}

void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/

{

printf("\n 进程名\t 进程状态\t 优先数\t 需要运行时间\t 已经运行时间\n");

printf("|%s\t",pr->name);

printf("|%c\t",pr->state);

printf("|%d\t",pr->super);

printf("|%d\t\t",pr->ntime);

printf("|%d\t",pr->rtime);

printf("\n");

}

void check() /* 建立进程查看函数 */

{

PCB* pr;

printf("\n **** 当前正在运行的进程是:\n"); /*显示当前运行进程*/

disp(p);

pr=ready;

printf("\n **** 当前就绪队列状态为:\n"); /*显示就绪队列状态*/

while(pr!=NULL)

{

disp(pr);

pr=pr->link;

}

}

void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/ {

printf("\n 进程 [%s] 已完成.\n",p->name);

free(p);

}

void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/ {

(p->rtime)++;

if(p->rtime==p->ntime)

destroy(); /* 调用destroy函数*/

else

{

(p->super)--;

p->state='W';

sort(); /*调用sort函数*/

}

}

void main() /*主函数*/

{

int len,h=0;

char ch;

input();

len=space();

while((len!=0)&&(ready!=NULL))

{

ch=getchar();

h++;

printf("-----------------------------------------------------");

printf("\n 现在是第%d次运行: \n",h);

p=ready;

ready=p->link;

p->link=NULL;

p->state='R';

check();

running();

printf("\n 按回车键继续......\n");

}

printf("\n\n 进程已经完成.\n");

}

四、实验结果

五.实验总结

进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。进程有五个特性:1、动态性 2、并发性3、独立性4、异步性5、结构特性

系统中的进程都具有以下三中基本状态:(1)就绪(Ready)状态 (2)执行(Runing)状态(3)阻塞(Blocked)状态。

最后感谢李老师的指导。

操作系统之调度算法和死锁中的银行家算法习题答案

操作系统之调度算法和死锁中的银行家算法习 题答案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1. 有三个批处理作业,第一个作业 10:00 到达,需要执行 2 小时;第二个作业在10:10到达,需要执行 1 小时;第三个作业在 10:25 到达,需要执行 25 分钟。分别采用先来先服 务,短作业优先和最高响应比优先三种调度算法,各自的平均周转时间是多少?解: 先来先服务: (结束时间=上一个作业的结束时间+执行时间 周转时间=结束时间-到达时间=等待时间+执行时间) 按到达先后,执行顺序:1->2->3 短作业优先: 1)初始只有作业1,所以先执行作业1,结束时间是12:00,此时有作业2和3; 2)作业3需要时间短,所以先执行; 3)最后执行作业2 最高响应比优先:

高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。 1)10:00只有作业1到达,所以先执行作业1; 2)12:00时有作业2和3, 作业2:等待时间=12:00-10:10=110m;响应比=1+110/60=2.8; 作业3:等待时间=12:00-10:25=95m,响应比=1+95/25=4.8; 所以先执行作业3 3)执行作业2 2. 在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示。试计算一下三种 作业调度算法的平均周转时间 T 和平均带权周转时间 W。 ( 1)先来先服务;( 2)短作业优先( 3)高响应比优先 解: 先来先服务: 作业顺序:1,2,3,4 短作业优先: 作业顺序:

模拟一种处理机调度算法讲解

课程设计报告 设计名称:模拟实现一种处理机调度算法 学生姓名: xxx 专业:计算机科学与技术 班别: xxxxxxxx 学号: xxxxxx 指导老师: xxxxx 日期: 2014 年 6 月 20 日

初始条件: 1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。 2.实践准备:掌握一种计算机高级语言的使用。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.模拟进程调度,能够处理以下的情形: ⑴能够选择不同的调度算法(要求中给出的调度算法); ⑵能够输入进程的基本信息,如进程名、优先级、到达 时间和运行时间等; ⑶根据选择的调度算法显示进程调度队列; ⑷根据选择的调度算法计算平均周转时间和平均带权周 转时间。 2.设计报告内容应说明: ⑴需求分析; ⑵功能设计(数据结构及模块说明); ⑶开发平台及源程序的主要部分; ⑷测试用例,运行结果与运行情况分析; ⑸自我评价与总结: i)你认为你完成的设计哪些地方做得比较好或比较出 色; ii)什么地方做得不太好,以后如何改正;

iii)从本设计得到的收获(在编写,调试,执行过程中 的经验和教训); iv)完成本题是否有其他方法(如果有,简要说明该方 法); 进程调度模拟设计——先来先服务、优先级法1、背景: 当计算机系统是多道程序设计系统时,通常会有多个进程或线程同时竞争CPU。只要有两个或更多的进程处于就绪状态,这种情形就会发生。如果只有一个CPU可用,那么就必须选择下一个要运行的进程。在操作系统中,完成选择工作的这一部分称为调度程序,该程序使用的算法成为调度算法。 进程调度的核心问题是采用什么样的算法把处理机分配给进程,好的算法将提高资源利用率,减少处理机的空闲时间,避免有些作业长期得不到相应的情况发生等,从而设计出受欢迎的操作系统。较常见的几种进程调度算法有:先来先服务调度算法;短作业优先调度算法;时间片轮转调度算法;优先级调度算法;高响应比优先算法和多级反馈队列调度算法等。 2.1设计目的 无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。另外,系统进程也同样需要使用处理机。这就要求进程调度程序按一定的策略,动态地把处理机

处理器调度习题

处理器调度 选择题 当CPU执行操作系统代码时,则处理机处于( )。 A.执行态 B.目态 C.管态 D.就绪态 ( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 A.系统调用 B.操作系统 C.内核 D.特权指令 操作系统提供给程序员的接口是( )。 A.进程 B.系统调用 C.库函数 D.B和C 用户程序向系统提出使用外设的请求方式是( )。 A.作业申请 B.原语 C.系统调用 D.I/O指令 当作业正常完成进入完成状态时,操作系统( )。 A.将输出该作业的结果并删除内存中的作业 B.将收回该作业的所占资源并输出结果 C.将收回该作业的所占资源及输出结果,并删除该作业 D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 B.作业是比进程低一级的概念。 C.一个作业至少由一个进程组成。 D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 作业从后备作业到被调度程序选中的时间称为( )。 周转时间B.响应时间C.等待调度时间D.运行时间 设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 A.T1+T2+T3 B.1/3(T1+T2+T3) C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 从作业提交给系统到作业完成的时间间隔称为作业的( )。 A.中断时间 B.等待时间 C.周转时间 D.响应时间 设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 A.1 h B.5 h C.2.5 h D.8 h FCFS调度算法有利于( )。 A.长作业和CPU繁忙型作业 B.长作业和I/O繁忙型作业 C.短作业和CPU繁忙型作业 D.短作业和I/O繁忙型作业 下列哪种说法不是SJ(P)F调度算法的缺点( )。 A.对于长作业(进程)不利 B.未考虑作业(进程)的紧迫程度 C.不能有效降低作业(进程)的平均等待时间 D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 A.先来先服务调度算法B.短进程优先调度算法 C.优先权调度算法D.高响应比优先调度算法 在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。

操作系统_ 处理机调度

泉州师范学院 软件学院 《计算机操作系统》 课程设计 题目:处理机调度 班级: 10软件工程(2)班 学号: 姓名: 指导教师: 2012 年12 月25 日

目录 第一章概述 (2) 1.1需求分析 (2) 1.2背景设计 (2) 第二章概要设计 (1) 第三章详细设计 (2) 3.1高响应比调度算法 (2) 3.2时间片轮转法 (3) 3.3短进程优先法 (4) 第四章调试分析与测试结果 (5) 第五章总结 (7) 第六章参考文献 (8)

第一章概述 1.1需求分析 进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C语言编写一个进程调度模拟程序,使用短作业优先调度算法,高响应比调度算法,时间片轮转调度算法实现进程调度。可以手动阻塞与唤醒。并用MFC实现图形界面。本实验可加深对进程调度算法的理解。 1.2背景设计 在OS中,调度的实质是一种资源分配,调度算法即指:根据系统的资源分配策略所规定的资源分配算法。对于不同的系统和系统目标,通常采用不同的调度算法,如在批处理系统中,为照顾为数众多的短作业,采用短作业有限调度算法;在分时系统中,为保证系统具有合理的响应时间,采用轮转法进行调度。采用算法时,则要考虑多方面因素,以便达到最佳效果。 第二章概要设计 设计一个有多个进程共行的进程调度程序。 进程调度算法:短作业优先调度算法,高响应比调度算法,时间片轮转调度算法 每个进程有一个进程控制块( PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、服务时间、进程状态等等。 struct progress { CString Name; //进程名称 CString Start; //创建时间 int ServiceT; //服务时间 int RunningT; //消逝时间 int RemainT;//剩余时间 int id;//进程标识符 CProgressCtrl* pro; //指向进度条的指针 int Rp;//进程成为就绪进程的时间

操作系统实验报告(进程调度算法)

操作系统实验报告(进程调度算法)

实验1 进程调度算法 一、实验内容 按优先数调度算法实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验原理 设计一个按优先数调度算法实现处理器调度的程序。 (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: 进程名 指针 要求运行时 间 优先数

状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的优先数从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2

1P1 K 2 P2 K 3 P3 K 4 P4 K 5 P5 0 K4K5K3K1 2 3 1 2 4 1 5 3 4 2 R R R R R PC B1 PC B2 PC B3 PC B4 PC B5 (4) 处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优先数就减“1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行: 优先数-1 要求运行时间-1 来模拟进程的一次运行。 提醒注意的是:在实际的系统中,当一个进程被选中运行时,必须恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行结束。在这里省去了这些工作。

操作系统实验一处理机调度算法的实现

实验报告 学院(系)名称:计算机与通信工程学院 姓名学号专业计算机科学与技术班级2009级3班实验项目实验一:处理机调度算法的实现 课程名称操作系统课程代码0668036 实验时间2011 年11月17日第3、4节 2011 年11月21日第7、8节 2011 年11月24日第3、4节 实验地点软件实验室7-216 批改意见成绩 教师签字: 实验内容: 1.设定系统中有五个进程,每一个进程用一个进程控制块表示。 2.输入每个进程的“优先数”和“要求运行时间”。 3.为了调度方便,将五个进程按给定的优先数从大到小连成就绪队列。用一单元指出队列首进程,用指针指出队列的连接情况。 4.处理机调度总是选队首进程运行。采用动态优先数算法,进程每运行一次优先数就减“1”,同时将运行时间减“1”。 5.若某进程运行时间为零,则将其状态置为“结束”,且退出队列。 6.运行所设计程序,显示或打印逐次被选中进程的进程名,以及进程控制块的动态变化过程。 实验要求: 1.详细描述实验设计思想、程序结构及各模块设计思路; 2.详细描述程序所用数据结构及算法; 3.明确给出测试用例和实验结果; 4.为增加程序可读性,在程序中进行适当注释说明; 5.认真进行实验总结,包括:设计中遇到的问题、解决方法与收获等; 6.实验报告撰写要求结构清晰、描述准确逻辑性强; 7.实验过程中,同学之间可以进行讨论互相提高,但绝对禁止抄袭。

【实验过程记录(源程序、测试用例、测试结果及心得体会等)】 程序运行代码如下: #include #include #include struct PCB{//定义进程控制块PCB,包括进程的名字,优先运行数,运行时间char name[20]; int pri; int time; struct PCB * next; }*k; struct LinkQueue{//链式队列节点类型定义 PCB * front; PCB * rear; }; LinkQueue InitQueue(){//链式队列初始化 LinkQueue Q; PCB * p; p=(PCB*)malloc(sizeof(PCB));//申请头结点存储空间 if(p){ Q.front=Q.rear=p; Q.front->next=NULL;//头结点指针域置空 return Q; }else{ printf("初始化队列失败,程序运行终止!\n");//初始化失败 exit(0); } } LinkQueue sort(LinkQueue Q,PCB * p){//定义将进程按给定的优先数从大到小连成就绪队列的函数 PCB *temp1; PCB *temp2; if(Q.rear==Q.front){ Q.front->next=p; Q.rear=p; }else{ temp1=Q.front; temp2=temp1->next; while(temp2->pri>=p->pri && temp2->next!=NULL){ temp1=temp2; temp2=temp1->next; }if(temp2->next==NULL && temp2->pri>=p->pri){ temp2->next=p; Q.rear=p;

计算机操作系统课后习题答案第三章(第四版)

第三章处理机调度与死锁 1,高级调度与低级调度的主要任务是什么?为什么要引入中级调度? 【解】(1)高级调度主要任务是用于决定把外存上处于后备队列中的那些作业调入内存,并为它们创建进程,分配必要的资源,然后再将新创建的进程排在就绪队列上,准备执行。(2)低级调度主要任务是决定就绪队列中的哪个进程将获得处理机,然后由分派程序执行把处理机分配给该进程的操作。(3)引入中级调度的主要目的是为了提高内存的利用率和系统吞吐量。为此,应使那些暂时不能运行的进程不再占用宝贵的内存空间,而将它们调至外存上去等待,称此时的进程状态为就绪驻外存状态或挂起状态。当这些进程重又具备运行条件,且内存又稍有空闲时,由中级调度决定,将外存上的那些重又具备运行条件的就绪进程重新调入内存,并修改其状态为就绪状态,挂在就绪队列上,等待进程调度。 3、何谓作业、作业步和作业流? 【解】作业包含通常的程序和数据,还配有作业说明书。系统根据该说明书对程序的运行进行控制。批处理系统中是以作业为基本单位从外存调入内存。作业步是指每个作业运行期间都必须经过若干个相对独立相互关联的顺序加工的步骤。 作业流是指若干个作业进入系统后依次存放在外存上形成的输入作业流;在操作系统的控制下,逐个作业进程处理,于是形成了处理作业流。 4、在什么情冴下需要使用作业控制块JCB?其中包含了哪些内容? 【解】每当作业进入系统时,系统便为每个作业建立一个作业控制块JCB,根据作业类型将它插入到相应的后备队列中。 JCB 包含的内容通常有:1) 作业标识2)用户名称3)用户账户4)作业类型(CPU 繁忙型、I/O芳名型、批量型、终端型)5)作业状态6)调度信息(优先级、作业已运行)7)资源要求8)进入系统时间9) 开始处理时间10) 作业完成时间11) 作业退出时间12) 资源使用情况等 5.在作业调度中应如何确定接纳多少个作业和接纳哪些作业? 【解】作业调度每次接纳进入内存的作业数,取决于多道程序度。应将哪些作业从外存调入内存,取决于采用的调度算法。最简单的是先来服务调度算法,较常用的是短作业优先调度算法和基于作业优先级的调度算法。 7.试说明低级调度的主要功能。 【解】(1)保存处理机的现场信息(2)按某种算法选取进程(3)把处理机分配给进程。 8、在抢占调度方式中,抢占的原则是什么? 【解】剥夺原则有:(1)时间片原则各进程按时间片运行,当一个时间片用完后,便停止该进程的执行而重新进行调度。这种原则适用于分时系统、大多数实时系统,以及要求较高的批处理系统。(2)优先权原则通常是对一些重要的和紧急的作业赋予较高的优先权。当这种作业到达时,如果其优先权比正在执行进程的优先权高,便停止正在执行的进程,将处理机分配给优先权高的进程,使之执行。(3)短作业(进程)优先原则当新到达的作业(进程)比正在执行的作业(进程)明显地短时,将剥夺长作业(进程)的执行,将处理机分配给短作业(进程),使之优先执行。 9、选择调度方式和调度算法时,应遵循的准则是什么? 【解】应遵循的准则有(1)面向用户的准则:周转时间短,响应时间快,截止时间的保证,优先权准则。(2)面向系统的准则:系统吞吐量高,处理机利用率好,各类资源的平衡利用。 10、在批处理系统、分时系统和实时系统中,各采用哪几种进程(作业)调度算法? 【解】 批处理系统:FCFS算法、最小优先数优先算法、抢占式最小优先数优先算法 2 分时系统:可剥夺调度、轮转调度 实时系统:时间片轮转调度算法、非抢占优先权调度算法、基于时钟中断抢占的优先权调度算法、立即抢占的优先权调度。 11、何谓静态和动态优先权?确定静态优先权的依据是什么? 【解】静态优先权是在创建进程时确定的,且在进程的整个运行期间保持不变。动态优先权是指,在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。确定静态优先权的依据是:(1)进程类型,通常系统进程的优先权高于一般用户进程的优先权。(2)进程对资源的需要。(3)用户要求,用户进程的紧迫程度及用户所付费用的多少来确定优先权的。 12、试比较FCFS和SPF两种进程调度算法。 【解】FCFS算法按照作业提交或进程变为就绪状态的先后次序,分派CPU。当前作业或进程占有CPU,直到执行完或阻塞,才让出CPU。在作业或进程唤醒后,并不立即恢复执行,通常等到当前作业或进程让出CPU。FCFS比较有利于长作业,而不利于短作业;有利于CPU繁忙的作业,而不利于I/O繁忙的作业。SPF有利于短进程调度,是从就绪队列中选出一估计运行时间最短的进

操作系统原理第四章 处理机调度习题

第四章处理机调度 4.3 习题 4.3.1 选择最合适的答案 1.某系统采用了银行家算法,则下列叙述正确的是()。 A.系统处于不安全状态时一定会发生死锁 B.系统处于不安全状态时可能会发生死锁 C.系统处于安全状态时可能会发生死锁 D.系统处于安全状态时一定会发生死锁 2.银行家算法中的数据结构包括有可利用资源向量Available、最大需求矩阵Max、分配矩阵Allocation、需求矩阵Need,下列选项正确的是()。 A.Max[i,j]=Allocation[i,j]+Need[i,j] B.Need[i,j]= Allocation[i,j]+ Max[i,j] C.Max[i,j]= Available[i,j]+Need[i,j] D.Need[i,j]= Available[i,j]+ Max[i,j] 3.下列进程调度算法中,()可能会出现进程长期得不到调度的情况。 A.非抢占式静态优先权法 B.抢占式静态优先权法 C.时间片轮转调度算法 D.非抢占式动态优先权法 4.在下列选项中,属于预防死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.资源随意分配 D.银行家算法 5.在下列选项中,属于检测死锁的方法是()。 A.银行家算法 B.消进程法 C.资源静态分配法 D.资源分配图简化法 6.在下列选项中,属于解除死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.银行家算法 D.资源静态分配法 7.为了照顾紧迫型作业,应采用()。 A.先来服务调度算法 B.短作业优先调度算法 C.时间片轮转调度算法 D.优先权调度算法 8.在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则

操作系统处理机调度算法的实现c语言源代码

处理机调度算法的实现 处理机调度算法的实现 1.设定系统中有五个进程,每一个进程用一个进程控制块表示。 2.输入每个进程的“优先数”和“要求运行时间”, 3.为了调度方便,将五个进程按给定的优先数从大到小连成就绪队列。用一单元指出队列首进程,用指针指出队列的连接情况。 4.处理机调度总是选队首进程运行。采用动态优先数算法,进程每运行一次优先数就减“1”,同时将运行时间减“1”。 5.若要求运行时间为零,则将其状态置为“结束”,且退出队列。 6.运行所设计程序,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程。 #include #include struct PCB { char name[10]; int priority,time; struct PCB *next; }*k; struct LinkQueue { PCB * front; PCB * rear; }; //队列初始化 LinkQueue init(){ LinkQueue Q; PCB * p; p=(PCB *)malloc(sizeof(PCB)); if(p) { Q.front=Q.rear=p; Q.front->next=NULL; return Q; }else{ printf("队列初始化失败,程序运行终止! \n"); exit(0); } } //插入新进程,使优先数从大到小排列 LinkQueue sort(LinkQueue Q,PCB *p) { PCB * temp1;

PCB * temp2; if(Q.rear==Q.front) { Q.front->next=p; Q.rear=p; } else { temp1=Q.front; temp2=temp1->next; while(temp2->priority>=p->priority && temp2->next!=NULL) { temp1=temp2; temp2=temp1->next; } if(temp2->next==NULL && temp2->priority>=p->priority) { temp2->next=p; Q.rear=p; } else { p->next=temp1->next; temp1->next=p; } } return Q; } LinkQueue input(LinkQueue Q) /* 建立进程控制块函数*/ { int i; for(i=1;i<=5;i++) { printf("\n 进程号No.%d:\n",i); k=(PCB *)malloc(sizeof(PCB)); printf("\n 输入进程名:"); scanf("%s",k->name); printf("\n 输入进程优先数:"); scanf("%d",&k->priority); printf("\n 输入进程运行时间:"); scanf("%d",&k->time); printf("\n"); k->next=NULL; Q=sort(Q,k); /* 调用sort函数*/ } return Q; } LinkQueue running(LinkQueue Q) /* 建立进程就绪函数(进程运行时间到,置就绪状态*/ { if(k->time==0) {

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

操作系统-课程设计报告-处理机调度程序

: 操作系统 课程设计报告 @ 学校:广州大学 学院:计算机科学与教育软件学院 班级:计算机127班 课题:处理机调度程序 任课老师:陶文正、陈文彬 姓名:黄俊鹏 { 学号:11

班内序号:27 成绩: 日期:2015年1月6日 一、设计目的 在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个。也就是说能运行的进程数大于处理机个数。为了使系统中的进程能有条不紊地工作,必须选用某种调度策略,选择一进程占用处理机。要求学生设计一个模拟处理机调度算法,以巩固和加深处理机调度的概念。 二、设计要求 1)进程调度算法包括:时间片轮转法,短作业优先算法,动态优先级算法。2)可选择进程数量 3)本程序包括三种算法,用C语言实现,执行时在主界面选择算法(可用函数实现)(进程数,运行时间,优先数由随机函数产生)执行,显示结果。 三、设计思路及算法思想 1.· 2.界面菜单选项 一级菜单提供2个选项: ①自动生成进程数量 ②手动输入所需进程数量 一级菜单选择完毕后进入二级菜单: ①重新生成进程 ②时间片轮转法 《 ③短作业优先算法 ④动态优先级算法 ⑤退出程序 3.调度算法

程序所用PCB结构体 ! 需要用到的进程结构体如上图所示 1)时间片轮转法 主要是设置一个当前时间变量,curTime和时间片roundTime。 遍历进程组的时候,每运行一个进程,就把curTime += roundTime。进程已运行时间加roundTime 2)短作业优先算法 遍历进程组,找到未运行完成并且运行时间最短的进程,让它一次运行完成,如此往复,直到所有进程都运行完成为止。 3)— 4)动态优先级算法 做法跟短作业优先算法类似,此处主要是比较进程的优先数,优先级高者,先执行。直到全部执行完毕。当一个进程运行完毕后,适当增减其余进程的优先数,以达到动态调成优先级的效果。 4.程序流程图

操作系统处理机调度练习题

1.下表给出作业1、2、3到达时间和运行时间。采用短作业优先调度算法和先来先 服务调度算法,试问平均周转时间各为多少?是否还有更好的调度策略存在?(时间单位:小时,以十进制进行计算。) 2.假设有四个作业,它们提交、运行时间如下表所示。若采用响应比高者优先调度算 法,试问平均周转时间和带权周转时间为多少?(时间单位:小时,以十进制进行计算。) a、 b、c,且满足a<b<c,试证明采用短作业优先调度算法能获得最小平均周转时间。 4.在单CPU和两台输入/输出设备(I1,I2)的多道程序设计环境下,同时投入三个作业 Job1、Job2、Job3运行。这三个作业对CPU和输入/输出设备的使用顺序和时间如下所示: Job1: I2(30ms);CPU(10ms);I1(30ms);CPU(10ms);I2(20ms|) Job2: I1(20ms);CPU(20ms); I2(40ms|) Job3: CPU(30ms);I1(20ms);CPU(10ms);I1(10ms|) 假定CPU 、I1、I2都能并行工作,Job1优先级最高,Job2次之,Job3优先级最低,优先级高的作业可以抢占优先级低的作业的CPU但不抢占I1和I2。试求: (1)三个作业投入到完成分别需要的时间。 (2)从投入到完成的CPU利用率。 (3)I/O设备利用率 1.对下面的5个非周期性实时任务,按最早开始截止时间优先权调度算法应如何进行

A要求每20ms执行一次,执行时间为10ms;任务B要求50ms执行一次,执行时间为10ms;任务C要求 50ms执行一次,执行时间为15ms,应如何按最低松弛度优先算法对它们进行 CPU调度? 5.某系统有R1、R2和R3共3种资源,在T0时刻P1、P2、P3和P4 这4 个进程对资源的占用和需求情况见下表,此时系统的可用资源向量为(2,1, 2),问题: ①将系统中各种资源总数和此刻各进程对各资源的需求数目用向量或矩阵 表示出来; ②如果此时P1和P2均发出资源请求向量Request(1,0,1),为了保证系统的安 全性,应该如何分配资源给这两个进程,说明你所采用策略的原因。 6假定某计算机系统有R1(2)、R2(1)两类可再使用资源,它们被进程P1、P2所共享,两个进程均以下列顺序使用资源: ?申请R1?申请R2?申请R1?释放R1?释放R2?释放R1 ? 试求出系统可能到达的死锁点,并画出死锁点的资源分配图。

操作系统 之 处理机调度

实验2 处理机调度 一、实验要求 ●了解引起处理机调度的原因 ●分析先来先服务算法,给出代码注释 二、实验内容 进程调度算法的数据结构主要有:进程函数定义,建立进程函数,进程调度函数。示例: #include "stdio.h" #include #define max 100 #define pfree 0 /*process end*/ #define running 1 /*process running status*/ #define aready 2 /*process aready status */ #define blocking 3 /*process aready blocking status*/ typedef struct node { char name; int status; int precendence; int ax,bx,cx,dx; int pc; int psw; struct node *next; /*pcb define*/ }pcb; pcb *createprocess(pcb *head) { pcb *p,*q; int a,b,c,d,m,n; char ID; int s; q=NULL; printf("\ninput the first seven status pcb:"); scanf("\n%c",&ID); scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&m,&n); while(ID!='*') {

p=(pcb*)malloc(sizeof(pcb)); p->name=ID; p->ax=a; p->bx=b; p->cx=c; p->dx=d; p->pc=m; p->psw=n; p->precendence=pre; p->status=aready; if(head==NULL) head=p; else q->next=p; q=p; printf("\ninput the next pcb: "); scanf("\n%c",&ID); scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&m,&n); } if(q!=NULL) q->next=NULL; q=head; while(q) { printf("\n peocess name. status.ax. bx. cx. dx. pc. psw.\n "); printf("%10c%5d%8d%5d%5d%5d%5d%5d%5d",q->name,q->status,q->precende nce,q->ax,q->bx,q->cx,q->dx,q->pc,q->psw); q=q->next; } return head;/*createprocess end*/ } void processfifo(pcb *head) { pcb *p; p=head; printf("\n the process use fifo method.\n"); printf("running the frist process:\n"); while(p!=NULL) { p->status=running; printf("\nprocess name status. ax. bx. cx. dx. pc. psw."); printf("\n%10c%5d%8d%5d%5d%5d%5d%5d",p->name,p->status,p->ax,p->bx, p->cx,p->dx,p->pc,p->psw); /*check process running status */

操作系统磁盘调度算法

操作系统课程设计任务书 题目: 磁盘调度算法 院系: 专业: 班级: 姓名: 学号: 指导教师: 设计时间:2018.1.1-2018.1.5 指导教师评语

目录 1、需求分析?4 1.1课题描述 (4) 1.2课题目的 (4) 1.3理论依据?7 2、概要设计?8 2.1设计方法 ............................................................................................... 82.2技术?8 2.3运行环境?8 3、详细设计?9 3.1流程图 (11) 3.2程序主要代码? 13 14 4、运行结果及分析? 4.1运行结果? 15 4.2结果详细分析?6 1 16 5、总结和心得? 7 1 6、参考文献? 2 7、附录:程序源代码? 3

1、需求分析 1.1课题描述 这次课程设计我研究的题目是:磁盘调度算法。具体包括三种算法分别是:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(电梯调度算法)(SCAN)。 1.2课题目的 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS,最短寻道时间优先SSTF,扫描SCAN算法的实现方法。 1.3理论依据 设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。常用的分配策略有先请求先分配、优先级高者先分配等策略。在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。操作系统中,对磁盘的访问要求来自多方面,常常需要排队。这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。 平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即:L=(M1+M2+……+Mi+……+MN)/N

按优先数调度算法实现处理机调度C++程序代码

#include using namespace std; struct PCB { char Name; //进程名 float Time; //要求运行时间 int Level; //优先数 bool state; //状态,1表就绪 PCB *next; //指针 }; void Init(PCB *head) { int num; PCB *s,*p; cout<<"请输入进程数"; cin>>num; for(int i=0;i >s->Name>>s->Time>>s->Level; if(s->Time>0) { s->state =1; while(p->next) { if(s->Level >p->next->Level )break; p=p->next ; } s->next=p->next; p->next=s; } else { s->state =0; cout<<"此进程要求运行时间时间不符合要求,不添加入进程列表"; } } } int Run(PCB *head) {

PCB *cur,*p; p=head; cur=p->next; p->next =cur->next; cur->Level--; cur->Time--; cout<<"此次执行的进程信息(执行后):进程名"; cout<Name<<"剩余时间"<Time<<"优先数"<Level; if(cur->Time<=0) { cout<<"状态为完成态"<next) { if(cur->Level >p->next->Level )break; p=p->next ; } cur->next=p->next; p->next=cur; } cout<<"此次执行后的进程列表序列为:"; p=head; while(p->next) { cout<next->Name<<" "; p=p->next ; } cout<

处理机调度算法实验报告

实验二处理机调度算法 (1)处理机调度的目的是什么? 为提高内存利用率和系统吞吐量。 将那些暂时不能运行的进程调至外存,当内存不紧张时,将那些具备运行条件的就绪进程重新调入内存。 合理快速的处理计算机软件硬件资源,分配处理机,用以提高处理机的利用率及改善系统性能(吞吐量,响应时间)。 (2)处理机调度的算法有哪些,各自的优缺点是什么? ①先来先服务算法:有利于长作业(进程),不利于短作业(进程); ②短作业优先调度算法:有利于短作业(短进程),不利于长作业(长进程); ③高优先权调度算法:静态缺点:可能导致低优先权进程长期得不到调度甚至饿死; 动态:优先权随进程等待时间增加或执行而变 ④高响应比优先调度算法 ⑤基于时间片轮转调度算法:时间片太小,会频繁发生中断,系统开销增大 时间片太大,响应进程慢。 ⑥多级反馈队列调度算法:具有较好的性能,能很好满足各类型用户的需求。 1.内存中作业运行的序列:A、B、D、C 2.A进入内存的时刻1,结束的时刻5 B进入内存的时刻5,结束的时刻8 D进入内存的时刻8,结束的时刻10 C进入内存的时刻10,结束的时刻15 3.平均周转时间:6 1.内存中作业运行的序列:B、C、A、D 2.B进入内存的时刻3,结束的时刻6 C进入内存的时刻6,结束的时刻11 A进入内存的时刻11,结束的时刻15 D进入内存的时刻15,结束的时刻17 3.平均周转时间:8.75

(4)画出处理机调度算法的程序流程图;

(5)补全参考程序; void process(int currentTmp, int nextTmp) { int j; int s=nextTmp-currentTmp; while(memoryNum>0 && s>=memory[0].needtime){ totalTime=totalTime+memory[0].needtime; s=s-memory[0].needtime; printf("线程%c的开始时间是:%d,结束时间 是:%f\n",memory[0].id,memory[0].cputime,totalTime+1); allTime+=totalTime+1; memoryNum--; for(j = 1; j<=memoryNum; j++) memory[j-1] = memory[j]; if(waitNum>0 && s>0){ memory[memoryNum] = wait[0]; memoryNum++; waitNum--; for(j = 1; j<=waitNum; j++) wait[j-1] = wait[j]; sort(memory,memoryNum, 'P'); } } if(memoryNum>0 && spriority)>((p+1)->priority)){ mao=*p;

相关文档
最新文档