操作系统实验一处理机调度算法的实现
操作系统-处理机调度的层次和调度算法的目标
CPU 有效工作时间
CPU 的利用率 = CPU 有效工作时间 ? CPU 空闲等待时间
3
第一章 操作系统引论
(2) 公平性。公平性是指应使诸进程都获得合理的CPU 时间,不会发生进程饥饿现象。公平性是相对的,对相同类 型的进程应获得相同的服务;但对于不同类型的进程,由于 其紧急程度或重要性的不同,则应提供不同的服务。
7
第一章 操作系统引论
3. 分时系统的目标 (1) 响应时间快。 (2) 均衡性。
8
第一章 操作系统引论
4. 实时系统的目标 (1) 截止时间的保证。 (2) 可预测性。
9
4
第一章 操作系统引论
2. 批处理系统的目标 (1) 平均周转时间短。 对每个用户而言,都希望自己作业的周转时间最短。但 作为计算机系统的管理者,则总是希望能使平均周转时间最 短,这不仅会有效地提高系统资源的利用率,而且还可使大 多数用户都感到满意。应使作业周转时间和作业的平均周转 时间尽可能短。否则,会使许多用户的等待时间过长,这将 会引起用户特别是短作业用户的不满。可把平均周转时间描 述为:
tn1tn1i???i66第一章操作系统引论为了进一步反映调度的性能更清晰地描述各进程在其周转时间中等待和执行时间的具体分配状况往往使用带权周转时间即作业的周转时间t与系统为它提供服务的时间ts之比即w??tts
第一章 操作系统引论
?3.1 处理机调度的层次和调度算法的目标
在多道程序系统中,调度的实质是一种资源分配,处理 机调度是对处理机资源进行分配。处理机调度算法是指根据 处理机分配策略所规定的处理机分配算法。在多道批处理系 统中,一个作业从提交到获得处理机执行,直至作业运行完 毕,可能需要经历多级处理机调度,下面先来了解处理机调 度的层次。
用C语言模拟Linux操作系统下处理机调度实验报告
实验二:处理机调度一、实验目的:1、了解Linux下Emacs编辑器的使用方法,掌握各种常用的键盘操作命令;2、理解并掌握处理机调度算法。
二、实验内容及要求:在采用多道系统的设计程序中,往往有若干进程同时处于就绪状态。
当就绪状态进程数大于处理机数时,就必须按照某种策略来决定哪些进程优先占用处理机。
本实验模拟在单处理机情况下处理机调度。
1、优先调度算法实现处理机的调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(按优先数的大小把进程连成队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针为"0"、要求运行时间、优先数、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"优先数"和"要求运行时间";3把给定的进程按优先数的大小连成队列,用一单元指出队首进程;4每模拟执行一次进程,优先数减一,要求运行时间减一;5如果要求运行的时间>=0,再将它加入队列(按优先数的大小插入,重置队首标志);如果要求运行的时间=0,那么把它的状态修改为结束,且推出队列;6若就绪队列不为空,重复上述,直到所有的进程都结束;7程序有显示和打印语句,每次运行后显示变化。
2、按时间片轮转法实现处理机调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(把进程连成循环队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针指出第一个进程的进程控制块首地址、已运行时间、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"要求运行时间";3用指针把给定的进程按顺序排成循环队列,用另一标志单元记录轮到的进程;4每模拟运行一次进程,已运行时间加一;5进程运行一次后,把该进程控制块的指针值送到标志单元,以指示下一个轮到的进程。
设计一个按优先数调度算法实现处理器调度的进程
设计一个按优先数调度算法实现处理器调度的进程
一.处理器调度的简介
处理器调度是指在若干作业并发处理时,对处理器分配工作的动态过程。
它是操作系统中的一种重要技术,其主要功能是控制并发作业的执行,使他们得到公平的分配,正确的完成执行,以达到有效利用处理机资源,
提高系统的工作效率。
处理器调度技术包括:处理机调度算法、处理机调
度技术等。
处理机调度算法就是基于计算机系统的工作机制,根据不同的作业在
处理机上的执行情况,系统在不同的阶段,根据量的不同,采用不同的算法,按优先级、分时等原则进行处理机调度,使作业在不同的阶段得到公
平的分配,以达到有效利用处理机资源,提高系统工作效率的目的。
按优先数调度算法( Priority Scheduling Algorithm )是指根据作
业的优先级先后来分配处理机资源,使作业能够按照优先级依次被处理,
使得系统性能有所提高。
1.处理器调度的算法流程
按优先数调度算法的处理器调度的过程,如下:
首先,从队列中取出一个作业,检查是否具有最高优先级,如果是,
则将其分配给处理机,否则,该作业放回队列,继续下一步判断;
其次,在没有作业可以处理时,处理机将停止运转。
操作系统原理实验教学大纲(本科)-2013
《操作系统原理》实验教学大纲一、实验教学内容与基本要求实验一 批处理系统的作业调度1 目的要求1.加深对作业概念的理解;2.深入了解批处理系统如何组织作业、管理作业和调度作业。
2 实验内容编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验二 进程管理1 目的要求1.加深对进程概念的理解,明确进程和程序的区别。
2.深入了解系统如何组织进程、创建进程。
3.进一步认识如何实现处理器调度。
2 实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。
实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验三 动态分区存储管理方式的主存分配回收1 目的要求深入了解动态分区存储管理方式主存分配回收的实现。
2 实验内容编写程序完成动态分区存储管理方式的主存分配回收的实现。
实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验四 页式虚拟存储管理中地址转换和缺页中断1 目的要求1.深入了解页式存储管理如何实现地址转换;2.进一步认识页式虚拟存储管理中如何处理缺页中断。
2 实验内容编写程序完成页式存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
实验一 处理机调度实验报告
实验一处理机调度实验报告一、实验目的处理机调度是操作系统中的一个重要组成部分,其目的是合理地分配处理机资源,以提高系统的性能和效率。
本次实验的主要目的是通过模拟处理机调度算法,深入理解不同调度算法的工作原理和性能特点,并能够对它们进行比较和分析。
二、实验环境本次实验使用了以下软件和工具:1、操作系统:Windows 102、编程语言:Python3、开发环境:PyCharm三、实验内容1、先来先服务(FCFS)调度算法先来先服务调度算法按照作业或进程到达的先后顺序进行调度。
即先到达的作业或进程先得到处理机的服务。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度运行时间短的作业或进程。
在实现过程中,需要对作业或进程的运行时间进行预测或已知。
3、高响应比优先(HRRN)调度算法高响应比优先调度算法综合考虑作业或进程的等待时间和运行时间。
响应比的计算公式为:响应比=(等待时间+要求服务时间)/要求服务时间。
4、时间片轮转(RR)调度算法时间片轮转调度算法将处理机的时间分成固定大小的时间片,每个作业或进程在一个时间片内运行,当时间片用完后,切换到下一个作业或进程。
四、实验步骤1、设计数据结构为了表示作业或进程,设计了一个包含作业或进程 ID、到达时间、运行时间和等待时间等属性的数据结构。
2、实现调度算法分别实现了上述四种调度算法。
在实现过程中,根据算法的特点进行相应的处理和计算。
3、模拟调度过程创建一组作业或进程,并按照不同的调度算法进行调度。
在调度过程中,更新作业或进程的状态和相关时间参数。
4、计算性能指标计算了平均周转时间和平均带权周转时间等性能指标,用于评估不同调度算法的性能。
五、实验结果与分析1、先来先服务(FCFS)调度算法平均周转时间:通过计算所有作业或进程的周转时间之和除以作业或进程的数量,得到平均周转时间。
在 FCFS 算法中,由于按照到达顺序进行调度,可能会导致长作业或进程长时间占用处理机,从而使平均周转时间较长。
操作系统进程调度算法模拟实验
操作系统进程调度算法模拟实验进程调度是操作系统中一个重要的功能,它决定了哪些进程能够获得处理器资源以及如何按照一定的策略来分配这些资源。
为了更好地理解进程调度算法的工作原理,我们可以进行一个模拟实验来观察不同算法的表现效果。
实验设想:我们设想有5个进程要运行在一个单核处理器上,每个进程有不同的运行时间和优先级。
进程信息如下:进程A:运行时间10ms,优先级4进程B:运行时间8ms,优先级3进程C:运行时间6ms,优先级2进程D:运行时间4ms,优先级1进程E:运行时间2ms,优先级5实验步骤:1.先来先服务(FCFS)调度算法实验:将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。
2.最短作业优先(SJF)调度算法实验:将上述进程按照运行时间的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。
3.优先级调度算法实验:将上述进程按照优先级的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。
4.时间片轮转(RR)调度算法实验:设置一个时间片大小,将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。
实验结果:通过模拟实验,我们可以得到每个进程的运行时间、完成时间和等待时间。
对于FCFS算法,进程的运行顺序是按照先来先服务的原则,因此进程A首先得到处理器资源并完成运行,其它进程依次按照到达顺序得到资源。
因此,对于进程A、B、C、D、E,它们的完成时间分别是10ms、18ms、24ms、28ms和30ms,等待时间分别是0ms、10ms、18ms、24ms和28ms。
对于SJF算法,进程的运行顺序是按照运行时间的大小,即短作业优先。
因此,进程E首先得到处理器资源并完成运行,其它进程依次按照运行时间的大小得到资源。
对于进程E、D、C、B、A,它们的完成时间分别是2ms、6ms、12ms、20ms和30ms,等待时间分别是0ms、2ms、6ms、12ms和20ms。
操作系统单处理机系统的进程调度
操作系统单处理机系统的进程调度第一篇:操作系统单处理机系统的进程调度一.实验内容描述1.目的(1)了解Windows内存管理器(2)理解Windows的地址过程2.内容任意给出一个虚拟地址,通过WinDbg观察相关数据并找到其物理地址二.理论分析Windows采用页式虚拟存储管理技术管理内存,页面是硬件级别上的最小保护单位 1.Windows内存管理器Windows的内存管理主要由Windows执行体中的虚存管理程序负责,并由环境子系统负责,并由环境子系统负责与具体API相关的一些用户态特性的实现。
虚存管理程序是Windows中负责内存管理的那些子程序和数据结构的集合内存管理器的主要任务是:地址变换:将一个进程的虚拟地址空间转译为物理内存地址交换:当内存不足时,将内存中的有些内容转移到磁盘上,并且以后还要再次将这些内容读回2.Windows内存管理策略Windows采用页式虚拟存储管理技术管理内存,页面是硬件级别上最小的保护单位。
根据硬件的体系结构不同,页面尺寸被分为两种,大页面和小页面。
X86系统下小页面为4KB,大页面为4MB。
大页面的优点是:当引用同一页面内其他数据时,地址转移的速度会很快。
不过使用大页面通常要较大的内存空间,而且必须用一个单独的保护项来映射,因此可能会造成出现错误而不引发内存访问违例的情况。
通常PC机都为小页面 3.Windows虚拟地址空间布局 x86结构下的布局方式:默认情况下,32位Windows系统中每个用户进程可以占有2GB 的私有地址空间。
操作系统占有另外的2GB 2GB用户的进程地址空间布局如表:2GB的系统地址空间布局如同:3.虚拟地址转译地址转译是指将进程的虚拟地址空间映射到实际物理页面的过程。
x86系统中地址转译过程如图:关键数据结构如下:页目录:每个进程都有一个页目录,它是内存管理器为了映射进程中所有的页表位置而创建的一个页面。
进程也目录的地址被保存在内核进程快KPROCESS中,在x86系统上,它被映射到虚拟地址0xC0300000,当一个进程正在执行时,CPU可以通过寄存器CR3知道该进程页目录的位置。
处理器调度实验报告
一、实验目的1. 理解处理器调度的基本概念和原理;2. 掌握常用的处理器调度算法,如先来先服务(FCFS)、短作业优先(SJF)、优先级调度等;3. 分析不同调度算法的性能指标,如平均周转时间、平均带权周转时间等;4. 通过实验,提高实际操作和编程能力。
二、实验原理处理器调度是操作系统中的一个重要组成部分,其主要任务是合理分配处理器资源,使系统中的多个进程高效、有序地运行。
常见的处理器调度算法有以下几种:1. 先来先服务(FCFS):按照进程到达就绪队列的顺序进行调度,先到先服务;2. 短作业优先(SJF):优先选择运行时间最短的进程执行;3. 优先级调度:根据进程的优先级进行调度,优先级高的进程先执行;4. 时间片轮转(RR):将每个进程分配一个时间片,按照时间片轮转的方式调度进程。
三、实验内容1. 实验环境:Windows操作系统,Python编程语言;2. 实验工具:Python编程环境,如PyCharm、Spyder等;3. 实验步骤:(1)设计一个进程类,包含进程名、到达时间、运行时间、优先级等属性;(2)编写调度算法,实现FCFS、SJF、优先级调度和时间片轮转算法;(3)模拟进程执行过程,记录各个进程的执行时间、等待时间、周转时间等性能指标;(4)分析不同调度算法的性能,比较其优劣。
四、实验结果与分析1. FCFS调度算法实验结果:平均周转时间为20,平均带权周转时间为1.25。
分析:FCFS调度算法简单易实现,但可能导致进程响应时间长,不利于实时性要求高的系统。
2. SJF调度算法实验结果:平均周转时间为16,平均带权周转时间为1.2。
分析:SJF调度算法可以缩短平均周转时间,提高系统性能,但可能使长作业长时间等待,影响公平性。
3. 优先级调度算法实验结果:平均周转时间为18,平均带权周转时间为1.3。
分析:优先级调度算法可以根据进程的优先级进行调度,提高系统响应速度,但可能导致低优先级进程长时间等待。
操作系统第3章 处理机调度(调度)
3.2 调度算法
进程调度的核心问题就是采用什么样的算法将处 理机分配给进程,常用的进程调度算法有:
先来先服务调度算法
短作业/进程优先调度算法
优先权调度算法
高响应比优先调度算法
时间片轮转调度算法
多级队列调度算法
多级反馈队列调度算法
返回目录
一、先来先服务调度算法FCFS
基本思想:按照进程进入就绪队列的 先后次序来分配处理机。
抢占(剥夺)方式
非抢占方式
一旦把处理机分配给某进程后,便让该进程 一直执行,直到该进程完成或因某事件而被 阻塞,才再把处理机分配给其它进程,不允 许进程抢占已分配出去的处理机。
特点:实现简单,系统开销小,常用于批处 理系统;但不利于处理紧急任务,故实时、 分时系统不宜采用。
抢占方式
允许调度程序根据某种原则(时间片、优 先权、短进程优先),停止正在执行的进 程,而将处理机重新分配给另一进程。
调度算法(太长---FCFS); 上下文切换(太短---上下文切换频繁); 平均周转时间。
短时间片增加上下文切换频率
周转时间随时间片变化
三、时间片轮转调度算法—例(1)
EG: 进程 到达时间
P1
0
P2
2
P3
4
P4
5
RR(时间片为1)
服务时间
7 4 1 4
P1 P2 P1 P2 P3 P1 P4 P2 P1 P4 P2 P1 P4 P1 P4
FCFS SPF-非 SPF-抢
周转T 124.25 100
75.75
等待T 74.25 49.5
25.25
二、SJF/SPF ——抢占式
到达顺序: 进程名 到达时间 服务时间
操作系统第13讲:第4章 处理机调度调度算法.ppt
2019/10/31
18
4.6 实时系统调度方算法简介
四、时限调度算法
导语:基本思想是:按用户的时限要求顺序设置优先级,优先
●实时系统所处理的外部任务可分为周期性的与非周期性的两大类。非周期性 任务,存在有一个完成或开始进行处理时限;而周期性任务要求在周期T内 完成或开始进行处理。
2019/10/31
13
4.6 实时系统调度算法简介
一、实时系统的特点
1.有限等待和响应时间(决定性) 2.可靠性高 3.用户可以控制 4.系统纠错能力强,实时系统要求很高的可靠性。
导语:
●实时系统广泛用在移动通信、网络计算、航空航天等领域。os是实时系统中 最重要的部分之一,它负责在用户要求的时限内进行事件处理和控制。
●实时系统与其他系统的最大区别:处理和控制的正确性不仅取决于计算的逻 辑结果,而且取决于计算和处理结果产生的时间。因此,实时系统的调度, 即把给定的任务,按所要求的时限调配到相应的设备上处理完成。根据实 时系统对处理外部事件的时限要求,分为硬、软实时任务。 ◆硬实时任务要求系统必须完全满足任务的时限要求。 ◆软实时任务允许时限要求有一定的延迟,时限要求只是一个相对条件。
注意P90: 周转T、完成T、提交T、带权周转T等概念在公式中的含义。 ●分析结论:P3 执行的时间非常短,但等待时间过长,显然是不合理的。
2019/10/31
3
4.4 调度算法
二、短作业或短进程调度算法(SJF)
1. 适应范围:作业或进程 2. 原则:选取最短作业或进程进行执行 3. 优点:当短作业或短进程较多时,系统效率较高 4. 缺陷:对长作业不利,设有考虑优先级
操作系统实验
《操作系统》实验指导书德州学院计算机系实验一理解和认识操作系统的三种接口1.目的和要求MS-DOS和Windows是市场上普及率很高的操作系统,本实验的目的是让读者从操作系统理论的观点加深对现代操作操作系统的接口设计的理解。
2.实验内容①熟悉DOS的基本命令,包括md,cd,copy,move,del,deltree,type 等的使用a、当前目录下建立子目录MYTEMP和MYTEMP2,将当前目录设定为MYTEMP;b、在当前目录下创建新文件B.BAT,其内容为:清除屏幕内容,显示当前DOS版本;c、使用type命令显示B.BAT的内容,检查正确后,执行它;d、拷贝B.BAT到路径MYTEMP中;e、删除MYTEMP2中的文件B.BAT,删除目录MYTEMP2;f、使用deltree命令删除MYTEMP②理解WINDOWS下的编程接口原理,了解WINAPI,利用WINAPI实现WINDOWS 下的打印。
a、登录进入Windowsb、在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”-“MicrosoftVisual C++ 6.0”命令,进入Visual C++ 窗口。
c、在File菜单单击New Workspace...命令,创建PrintApp.dsw项目文件。
d、在File菜单单击New C++ Soure file命令,创建新的原文件。
e、输入如实验运行结果中所示的源代码,调试、编译并运行。
f、观察执行结果,理解各个函数的功能。
3.实验环境Windows操作系统和Visual C++6.0专业版或企业版实验二复习用C语言编制程序一、实验内容选择一个计算机系统,熟悉该系统的操作命令,且掌握该计算机系统的使用方法。
二、实验目的配合操作系统课程的学习,模拟实现操作系统的功能,有助于对操作系统的理解。
操作系统功能的模拟实现可以在计算机系统的终端上进行,也可以在一台微型计算机上进行。
(完整word版)操作系统作业调度实验报告-多道批处理
计算机学院计算机科学与技术专业07 班姓名学号教师评定_________________实验题目作业调度一、实验目的本实验要求学生模拟作业调度的实现,用高级语言编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解。
二、实验内容和要求1、为单道批处理系统设计一个作业调度程序(1)、编写并调试一个单道处理系统的作业调度模拟程序。
(2)、作业调度算法:分别采用先来先服务(FCFS),最短作业优先(SJF)的调度算法。
(3)、由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的CPU时限等因素。
(4)、每个作业由一个作业控制块JCB表示,JCB可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。
作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。
每个作业的最初状态总是等待W。
(5)、对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间,并比较各种算法的优缺点。
2、模拟批处理多道操作系统的作业调度(1)写并调试一个作业调度模拟程序。
(2)作业调度算法:分别采用先来服务(FCFS)调度算法。
(3)在批处理系统中,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求,所需要的资源是否得到满足。
作业调度程序负责从输入井选择若干个作业进入主存,为它们分配必要的资源,当它们能够被进程调度选中时,就可占用处理机运行。
作业调度选择一个作业的必要条件是系统中现有的尚未分配的资源可满足该作业的资源要求。
但有时系统中现有的尚未分配的资源既可满足某个作业的要求也可满足其它一些作业要求,那么,作业调度必须按一定的算法在这些作业中作出选择。
操作系统进程调度模拟算法附源码
先来先服务(FCFS)
定义:按照进程到 达的先后顺序进行 调度
优点:实现简单, 适用于CPU繁忙型 进程
缺点:等待时间较 长,可能导致饥饿 现象
适用场景:适用于 CPU密集型进程, 不适用于I/O密集 型进程
最短作业优先(SJF)
定义:按照作业的估计运行时间进行排序,选择最短作业优先执行 优点:响应时间快,作业平均等待时间少 缺点:存在饥饿现象,长作业可能长时间得不到执行 适用场景:适用于作业量较大且作业到达时间间隔较长的情况
Part Five
模拟实验结果及分 析
实验环境及参数设置
处理器:Intel Core i78700K
操作系统:Linux
内存:16GB DDR4 硬盘:256GB SSD
实验结果展示
实验数据:模拟算法在不同情况下的运行结果 数据分析:对实验数据进行分析,得出结论 结果对比:将模拟算法与实际操作系统进行对比,分析差异 结果展示:以图表、表格等形式展示实验结果
优先级调度算法
定义:根据进 程的优先级进 行调度,优先 级高的进程优 先获得处理器
资源
分类:静态优 先级调度算法 和动态优先级
调度算法
静态优先级调 度算法:优先 级在进程创建 时就确定,且 在运行过程中
保持不变
动态优先级调 度算法:优先 级根据进程的 行为和需求动
态调整
轮转法(RR)
定义:轮转法是 一种简单且常用 的进程调度算法, 也称为循环调度
算法。
原理:按照进程 到达的先后顺序, 按照固定的时间 片进行循环调度。
特点:每个进程 分配一个固定时 间片,时间片用 完后自动切换到 下一个进程,如 果时间片未用完, 则一直运行直到
操作系统实验报告 实验一 进程管理
实验一进程管理一、目的进程调度是处理机管理的核心内容..本实验要求编写和调试一个简单的进程调度程序..通过本实验加深理解有关进程控制块、进程队列的概念;并体会和了解进程调度算法的具体实施办法..二、实验内容及要求1、设计进程控制块PCB的结构PCB结构通常包括以下信息:进程名进程ID、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等..可根据实验的不同;PCB结构的内容可以作适当的增删..为了便于处理;程序中的某进程运行时间以时间片为单位计算..各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定..2、系统资源r1…r w;共有w类;每类数目为r1…r w..随机产生n进程P i id;s j;k;t;0<=i<=n;0<=j<=m;0<=k<=dt为总运行时间;在运行过程中;会随机申请新的资源..3、每个进程可有三个状态即就绪状态W、运行状态R、等待或阻塞状态B;并假设初始状态为就绪状态..建立进程就绪队列..4、编制进程调度算法:时间片轮转调度算法本程序用该算法对n个进程进行调度;进程每执行一次;CPU时间片数加1;进程还需要的时间片数减1..在调度算法中;采用固定时间片即:每执行一次进程;该进程的执行时间片数为已执行了1个单位;这时;CPU时间片数加1;进程还需要的时间片数减1;并排列到就绪队列的尾上..三、实验环境操作系统环境:Windows系统..编程语言:C..四、实验思路和设计1、程序流程图2、主要程序代码//PCB结构体struct pcb{public int id; //进程IDpublic int ra; //所需资源A的数量public int rb; //所需资源B的数量public int rc; //所需资源C的数量public int ntime; //所需的时间片个数public int rtime; //已经运行的时间片个数public char state; //进程状态;W等待、R运行、B阻塞//public int next;}ArrayList hready = new ArrayList;ArrayList hblock = new ArrayList;Random random = new Random;//ArrayList p = new ArrayList;int m; n; r; a;a1; b;b1; c;c1; h = 0; i = 1; time1Inteval;//m为要模拟的进程个数;n为初始化进程个数//r为可随机产生的进程数r=m-n//a;b;c分别为A;B;C三类资源的总量//i为进城计数;i=1…n//h为运行的时间片次数;time1Inteval为时间片大小毫秒//对进程进行初始化;建立就绪数组、阻塞数组..public void input//对进程进行初始化;建立就绪队列、阻塞队列{m = int.ParsetextBox4.Text;n = int.ParsetextBox5.Text;a = int.ParsetextBox6.Text;b = int.ParsetextBox7.Text;c = int.ParsetextBox8.Text;a1 = a;b1 = b;c1 = c;r = m - n;time1Inteval = int.ParsetextBox9.Text;timer1.Interval = time1Inteval;for i = 1; i <= n; i++{pcb jincheng = new pcb;jincheng.id = i;jincheng.ra = random.Nexta + 1;jincheng.rb = random.Nextb + 1;jincheng.rc = random.Nextc + 1;jincheng.ntime = random.Next1; 5;listBox1.Items.Add"产生进程ID:" + jincheng.id;listBox1.Items.Add"所需A资源数目:" + jincheng.ra;listBox1.Items.Add"所需B资源数目:" + jincheng.rb;listBox1.Items.Add"所需C资源数目:" + jincheng.rc;listBox1.Items.Add"所需时间片数:" + jincheng.ntime;if a - jincheng.ra >= 0 && b - jincheng.rb >= 0 && c - jincheng.rc >= 0{a = a - jincheng.ra;b = b - jincheng.rb;c = c - jincheng.rc;jincheng.state = 'W';hready.Addjincheng;//加入就绪队列}else{jincheng.state = 'B';hblock.Addjincheng;//加入阻塞队列}listBox1.Items.Add"当前进程状态:" + jincheng.state;}}//从数组起始地址开始输出该数组的内容public void dispArrayList list{ArrayList list1 = new ArrayList;list1 = list;if list1.Count > 0{for int j = 0; j < list1.Count; j++{pcb p = pcblist1j;listBox1.Items.Add" " + p.id.ToString + " " + p.state.ToString + " " + p.ra.ToString + " " + p.rb.ToString + " " + p.rc.ToString+" " + p.ntime.ToString + " " + p.rtime.ToString + " \r\n";}}else{listBox1.Items.Add"\r\n\t 该队列中没有进程\r\n";}}//输出就绪数组和阻塞数组的信息public void outputall{listBox1.Items.Add"当前就绪队列的信息";listBox1.Items.Add"进程ID 进程状态A资源数B资源数C资源数所需时间片已运行时间片";disphready;listBox1.Items.Add"当前就阻塞列的信息";listBox1.Items.Add"进程ID 进程状态A资源数B资源数C资源所需时间片已运行时间片";disphblock;}//运行就绪数组的头进程;运行一个时间片;轮转一个时间片;时间片轮转调度算法public void running{ArrayList hready1 = new ArrayList;hready1 = hready;pcb p1 = new pcb;p1=pcbhready10;p1.state='R';p1.rtime= p1.rtime + 1;h=h+1;listBox1.Items.Add"\r\n~~~~~~~当前正在运行进程ID是:" +p1.id + "~~~~~~~~\r\n";listBox1.Items.Add"\r\n进程ID 进程状态A资源数B资源数C资源数所需时间片已运行时间片\r\n";listBox1.Items.Addp1.id + " " +p1.state+ " " + p1.ra + " " + p1.rb + " " + p1.rc + " " + p1.ntime + " " + p1.rtime;if p1.ntime==p1.rtime{listBox1.Items.Addp1.id.ToString+"的进程已经完成\r\n";a = a + p1.ra;b = b + p1.rb;c = c + p1.rc;hready.RemoveAt0;}else{p1.state='W';hready1.Addp1;hready.RemoveAt0;}}//检测当前资源数目是否满足阻塞数组里进程的需求public void testblock{ArrayList hblock1 = new ArrayList;hblock1 = hblock;for int m = 0; m < hblock1.Count; m++{p1 = pcbhblock1m;if a - p1.ra >= 0 && b - p1.rb >= 0 && c - p1.rc >= 0{p1.state='W';hready.Addp1;a = a - p1.ra;b = b - p1.rb;c = c - p1.rc;listBox1.Items.Add"ID号为:"+p1.id + "的进程由阻塞队列转入就绪队列~~\r\n";hblock.RemoveAtm;m--;}}}//检测是否有新的进程产生;随机产生新进程public void testnew{int t;if r>0//r为随机产生的进程数目{t = random.Next9 + 1;if t <= 7{listBox1.Items.Add"\r\n有新的进程申请加入:~~";pcb jincheng = new pcb;jincheng.id = i++;jincheng.ra = random.Nexta + 1;jincheng.rb = random.Nextb + 1;jincheng.rc = random.Nextc + 1;jincheng.ntime = random.Next1; 5;jincheng.rtime = 0;listBox1.Items.Add"产生进程ID:" + jincheng.id;listBox1.Items.Add"所需A资源数目:" + jincheng.ra;listBox1.Items.Add"所需B资源数目:" + jincheng.rb;listBox1.Items.Add"所需C资源数目:" + jincheng.rc;listBox1.Items.Add"所需时间片数:" + jincheng.ntime;if a - jincheng.ra >= 0 && b - jincheng.rb >= 0 && c - jincheng.rc >= 0{a = a - jincheng.ra;b = b - jincheng.rb;c = c - jincheng.rc;jincheng.state = 'W';listBox1.Items.Add"进程状态为:" + jincheng.state;hready.Addjincheng;//加入就绪队列listBox1.Items.Add"资源满足新进程请求;该进程进入就绪队列~~\r\n";else{jincheng.state = 'B';hblock.Addjincheng;//加入阻塞队列listBox1.Items.Add"进程状态为:" + jincheng.state;listBox1.Items.Add"资源不满足新进程请求;该进程进入阻塞队列~~\r\n";}}}r = r - 1;}//系统三类资源变化情况的显示public void rescore//系统三类资源变化情况的显示{if a > a1 { textBox1.Text = a1.ToString; }if a < 0 { textBox1.Text = "0"; }if a >= 0 && a < a1 { textBox1.Text = a.ToString; }if b > b1 { textBox2.Text = b1.ToString; }if b < 0 { textBox2.Text = "0"; }if b >= 0 && b <= b1 { textBox2.Text = b.ToString; }if c > c1 { textBox3.Text = c1.ToString; }if c < 0 { textBox3.Text = "0"; }if c >= 0 && c <= c1 { textBox3.Text = c.ToString; }}//时间片轮转调度算法先来先服务FCFS算法public void runFcfs{if hready.Count>0{outputall;running;testblock;testnew;rescore;}else{timer1.Enabled = false;textBox1.Text = a1.ToString;textBox2.Text = b1.ToString;textBox3.Text = c1.ToString;listBox1.Items.Add"\r\n<<<<<<<<所有进程都已经运行结束>>>>>>>~\r\n";}//计时器触发时间片轮转调度算法private void timer1_Tickobject sender; EventArgs erunFcfs;}//开始模拟按钮单击执行函数private void button1_Clickobject sender; EventArgs e {runmain;button1.Enabled = false;textBox1.Enabled = false;textBox2.Enabled = false;textBox3.Enabled = false;textBox4.Enabled = false;textBox5.Enabled = false;textBox6.Enabled = false;textBox7.Enabled = false;textBox8.Enabled = false;textBox9.Enabled = false;}//清除屏幕按钮单击执行函数private void button2_Clickobject sender; EventArgs e {textBox1.Text = "";textBox2.Text = "";textBox3.Text = "";textBox4.Text = "";textBox5.Text = "";textBox6.Text = "";textBox7.Text = "";textBox8.Text = "";textBox9.Text = "";listBox1.Items.Clear;textBox4.Enabled = true;textBox5.Enabled = true;textBox6.Enabled = true;textBox7.Enabled = true;textBox8.Enabled = true;textBox9.Enabled = true;button1.Enabled = true;}//运行的主函数public void runmain{input;imer1.Enabled = true;3、运行界面和运行结果界面中;可以任意设定需要模拟的进程总数如5;初始化进程个数如3;还有A、B、C三类资源的总数如10、10、10..为了方便显示;还可以设定时间片的长度如500毫秒..除此之外;在运行过程中;所有的资源都是随机生成的;并且其中新进程的产生也是随机的;但是产生的进程总数不会多于开始设定的模拟的进程总数;以防止不断产生新进程;程序不断运行..在显示窗口的上方;还会实时显示资源的变化情况;方便对运行的观察..当运行结束后;可以通过工具栏中的显示选项中的保存结果按钮;将结果保存成txt文件格式;方便运行后的结果分析..五、心得体会本次实验;我的任务是设计一个允许n个进程并发运行的进程管理模拟系统..该系统包括有简单的进程控制、同步与通讯机构;系统在运行过程中能显示各进程的状态及有关参数的变化情况;从而观察诸进程的运行过程及系统的管理过程;我是用C写的;在我的电脑能够运行通过;虽不能尽善尽美;但也基本能实现老师的要求..两个星期的实验;虽然时间有点短;但我也收获不少;这次实验;加深了我对进程概念及进程管理的理解;比较熟悉进程管理中主要数据结构的设计及进程调度算法、进程控制机构、同步机构及通讯机构的实施..也让我认识到自己的不足;操作系统的有些知识;我知道的还不多;没有掌握好;还需要多多学学;不断提升自己的能力..实验中;我们小组分工合作;共同学习;虽然在实验中遇到了一些问题;但在老师和同学的细心指导和热心帮助下解决了..同时;了解到团队精神的重要性;也为以后的学习和工作打下了坚实的基础;同时积累了宝贵的经验..。
处理机调度算法的实现
处理机调度算法的实现调度算法是计算机科学中一个重要的概念,它涉及到对处理机的任务进行合理的分配和调度,以提高计算机系统的性能和效率。
在现代计算机系统中,有各种不同的调度算法可供选择,每种算法都有其独特的特点和适用场景。
调度算法的实现是指将某种具体的调度策略编写成代码并应用于计算机系统中。
通过实现调度算法,我们能够使计算机系统在处理任务时更加高效和稳定。
为了实现一个有效的调度算法,我们需要考虑多个因素,包括任务的优先级、处理机的资源利用率、任务的完成时间等。
本文将介绍调度算法的背景和重要性,以及如何进行调度算法的实现。
通过理解调度算法的原理和实现方法,我们能够更好地应用适合的调度算法来优化计算机系统的性能。
调度算法是计算机中重要的概念,用于管理和安排处理机资源以有效地执行任务。
下面将解释调度算法的基本概念,包括作业调度、进程调度和线程调度。
作业调度作业调度是指在多道程序设计中,根据一定的策略和算法,合理地安排和调度作业的执行顺序和时间。
作业调度的目标是提高系统的利用率和吞吐量,减少等待时间和响应时间。
常见的作业调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和优先级调度等。
进程调度进程调度是指在操作系统中,根据一定的策略和算法,合理地安排和调度进程的执行顺序和时间。
进程调度的目标是实现公平性、高效性和吞吐量的平衡。
常见的进程调度算法包括时间片轮转调度、最短剩余时间优先(SRTF)和多级反馈队列调度等。
线程调度线程调度是指在多线程环境下,根据一定的策略和算法,合理地安排和调度线程的执行顺序和时间。
线程调度的目标是提高系统的并发性、响应性和效率。
常见的线程调度算法包括抢占式调度、优先级调度和轮询调度等。
以上就是调度算法的基本原理和概念。
了解和掌握这些调度算法对于有效地管理和利用处理机资源至关重要。
常见的处理机调度算法先来先服务(FCFS):先到先服务算法是一种简单的调度算法,按照进程到达的顺序分配处理机资源。
进程调度实验报告
操作系统实验 报告实验项目: 进程调度学 院: 计算机学院专 业:班 级:学 号:姓 名:1. 实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理机数时,就必须依照某种策略来决定哪些进程优先占用处理机。
本实验模拟在单处理机情况下的进程调度,加深了解进程调度的工作。
2. 实验内容设计一个按时间片轮转法实现进程调度的程序。
(1)假定系统有五个进程,每一个进程用一个进程控制块PCB 来代表,进程控制块的格式为:其中,进程名——作为进程的标识,假设五个进程的进程名分别为Q 1,Q 2,Q 3,Q 4,Q 5。
指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。
要求运行时间——假设进程需要运行的单位时间数。
已运行时间——假设进程已经运行的单位时间数,初始值为“0”。
状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R ”表示。
当一个进程运行结束后,它的状态为“结束”,用“E ”表示。
(2)每次运行所设计的进程调度程序前,为每个进程任意确定它的“要求运行时间”。
(3)把五个进程按顺序排成循环队列,用指针指出队列连接情况。
另用一标志单元记录轮到运行的进程。
例如,当前轮到Q 2执行,则有:进程名 指针 要求运行时间 已运行时间 状态标志单元(4)进程调度总是选择标志单元指示的进程运行。
由于本实验是模拟进程调度的功能,所以对被选中的进程并不实际的启动运行,而是执行“已运行时间+1”来模拟进程的一次运行,表示进程已经运行过一个单位的时间。
请注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理机运行,直到出现等待事件或运行满一个时间片。
在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。
(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。
实验报告操作系统实验一进程调度.doc
计算机电子信息工程学院实验报告成绩________ 课程名称操作系统指导教师杨秀华实验日期 2011年9月15、22、29,10月12院(系)计算机学院专业班级09计算机应用实验地点 B-4009学生姓名学号实验项目名称实验一模拟设计进程调度一、实验目的和要求用C或C++语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.二、实验原理进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。
每个进程有一个进程控制块( PCB)表示。
进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。
进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
每个进程的状态可以是就绪 W(Wait)、运行R(Run)状态之一。
就绪进程获得 CPU后都只能运行一个时间片。
用已占用CPU时间加1来表示。
如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。
每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。
重复以上过程,直到所要进程都完成为止。
三、主要仪器设备或材料PC机,C++环境四、实验方法与步骤(可加附页)1、主要数据结构:struct pcb { /* 定义进程控制块PCB */char name[10]; //进程名字char state; //进程状态int super; //进程的优先级int ntime; //进程需要运行的时间int rtime; //进程已经运行的时间struct pcb* link; }2、调度算法的流程图如上图 :五、实验数据记录、处理及结果分析六、讨论、心得计算机电子信息工程学院实验报告(附页)程序参考代码:参考代码:#include "stdio.h"#include <stdlib.h>#include <conio.h>#define getpch(type) (type*)malloc(sizeof(type))#define NULL 0struct pcb{ /* 定义进程控制块PCB */char name[10];char state;int super;int ntime;int rtime;struct pcb* link;}*ready=NULL,*p;typedef struct pcb PCB;void sort() /* 建立对进程进行优先级排列函数*/{PCB *first, *second;int insert=0;if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/{p->link=ready;ready=p;}else /* 进程比较优先级,插入适当的位置中*/{first=ready;second=first->link;while(second!=NULL){if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/{ /*插入到当前进程前面*/p->link=second;first->link=p;second=NULL;insert=1;}else /* 插入进程优先数最低,则插入到队尾*/{first=first->link;second=second->link;}}if(insert==0) first->link=p;}}void input() /* 建立进程控制块函数*/{int i,num;printf("\n 请输入进程号?");scanf("%d",&num);for(i=0;i<num;i++){printf("\n 进程号No.%d:\n",i);p=getpch(PCB);printf("\n 输入进程名:");scanf("%s",p->name);printf("\n 输入进程优先数:");scanf("%d",&p->super);printf("\n 输入进程运行时间:");scanf("%d",&p->ntime);printf("\n");p->rtime=0;p->state='w';p->link=NULL;sort(); /* 调用sort函数*/}}int space(){int l=0; PCB* pr=ready;while(pr!=NULL){l++;pr=pr->link;}return(l);}Void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/{printf("\n qname \t state \t super \t ndtime \t runtime \n");printf("|%s\t",pr->name);printf("|%c\t",pr->state);printf("|%d\t",pr->super);printf("|%d\t",pr->ntime);printf("|%d\t",pr->rtime);printf("\n");}Void check() /* 建立进程查看函数 */{PCB* pr;printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/ disp(p);pr=ready;printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/while(pr!=NULL){disp(pr);pr=pr->link;}}Void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/{3 / 4printf("\n 进程 [%s] 已完成.\n",p->name);free(p);}Void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/ {(p->rtime)++;if(p->rtime==p->ntime)destroy(); /* 调用destroy函数*/else{(p->super)--;p->state='w';sort(); /*调用sort函数*/}}Void main() /*主函数*/{int len,h=0;char ch;input();len=space();while((len!=0)&&(ready!=NULL)){ch=getchar();h++;printf("\n The execute number:%d \n",h);p=ready;ready=p->link;p->link=NULL;p->state='R';check();running();printf("\n 按任一键继续......");ch=getchar();}printf("\n\n 进程已经完成.\n");ch=getchar();}知识改变命运。
处理机调度与死锁实验报告
探索处理机调度与死锁的实验本次实验主要针对处理机调度与死锁展开,旨在让学生深入理解操作系统中的重要概念,掌握具体的解决方案。
一、实验目的
1. 探究操作系统中的处理机调度算法并了解其原理。
2. 了解死锁概念及其分类,并学习有关死锁预防和避免的方法。
二、实验内容
1. 处理机调度实验
在实验中,我们学习了几种不同的处理机调度算法:先来先服务(FCFS)、短作业优先(SJF)、优先级调度(PS)、时间片轮转调度(RR)等。
通过模拟不同进程的到达和运行,学生们了解每个算法的特点和缺点,并分析在不同场景下使用算法的合理性。
2. 死锁实验
在死锁实验中,学生们学习了死锁的原理和分类。
为了更好地理解死锁的产生,我们首先逐步增加资源请求数量来模拟进程的资源竞争。
在后面的实验中,我们使用了银行家算法和资源分配图等工具来预防和避免死锁。
三、实验结果
在本次实验中,学生们深入理解了处理机调度的相关概念,并通过实践提高了分析和解决问题的能力。
同时,学生们也掌握了死锁的原理和可能出现的场景,并学会了如何通过预防和避免的方法解决这些问题。
总之,本次实验是一次极为成功的尝试,也是学生们加深对操作系统理论知识的关键步骤。
通过深入探究实验中的内容,可以帮助学生更好地理解和掌握操作系统相关知识,并为今后在实际工作中提供指导和支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实验一处理机调
度算法的实现
Last revision on 21 December 2020
实验报告学院(系)名称:计算机与通信工程学院
程序运行代码如下:
#include<>
#include <>
#include <>
struct PCB{n");
}
程序运行结果截图如下:
实验体会:
刚开始的时候不知道用什么数据结构,只知道PCB这个结构中有什么,根据题目得知其中包括进程的名字、优先运行数、运行时间。
在看了数据结构的书和一个已经写好的程序后得知,应该使用链式队列。
但是初始化链式队列之后,问题就来了,应该定义哪些函数来运行进程满足题目的要求根据题目分析出,需要四个函数,对进程的优先数进行从小到大排列的sort()函数,对进程进行检查和判断的check()函数,对进程进行优先数减1和运行时间减1的
running()函数,最后是主函数main()。
运行时出现了指针混乱的问题和记录运行的变量没有初始化的问题,最为困难的是sort函数的编写。