操作系统实验--处理机调度算法实现
处理机调度算法实验总结
处理机调度算法实验总结1. 引言处理机调度算法是操作系统中的重要组成部分,它决定了如何合理地分配处理机资源,以提高系统的性能和效率。
本次实验旨在通过实际操作和实验数据的分析,对不同的处理机调度算法进行比较和总结,以便更好地理解和应用这些算法。
2. 实验设计在本次实验中,我们选择了三种常见的处理机调度算法进行比较,分别是先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。
我们设计了以下实验方案:2.1 实验环境•操作系统:Windows 10•开发工具:C语言编译器2.2 实验步骤1.设计并实现三个处理机调度算法的代码;2.编写测试用例,包括不同作业的到达时间和服务时间;3.运行代码,记录每个作业的等待时间和周转时间;4.分析和比较三种算法的性能指标;5.总结实验结果。
3. 实验结果经过实验运行和数据记录,我们得到了以下实验结果:3.1 先来先服务(FCFS)•等待时间:1.作业1:02.作业2:103.作业3:15•周转时间:1.作业1:102.作业2:203.作业3:253.2 最短作业优先(SJF)•等待时间:1.作业1:02.作业2:53.作业3:10•周转时间:1.作业1:52.作业2:153.作业3:203.3 时间片轮转(RR)•等待时间:1.作业1:102.作业2:53.作业3:0•周转时间:1.作业1:202.作业2:153.作业3:104. 结果分析根据实验结果,我们可以得出以下结论:4.1 先来先服务(FCFS)•优点:简单易实现;•缺点:平均等待时间较长,不适用于长作业。
4.2 最短作业优先(SJF)•优点:平均等待时间最短;•缺点:无法预测作业的运行时间,可能导致长作业等待时间过长。
4.3 时间片轮转(RR)•优点:对长作业有较好的响应时间;•缺点:平均等待时间较长,不适用于短作业。
5. 实验总结通过本次实验,我们深入了解了三种常见的处理机调度算法,并通过实验数据对其进行了比较和分析。
操作系统实验之处理机调度实验报告
操作系统实验之处理机调度实验报告一、实验目的处理机调度是操作系统中的核心功能之一,本次实验的主要目的是通过模拟不同的处理机调度算法,深入理解操作系统对处理机资源的分配和管理策略,比较不同调度算法的性能差异,并观察它们在不同负载情况下的表现。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 Python 38。
实验中使用了 Python 的相关库,如`numpy`、`matplotlib`等,用于数据生成、计算和图形绘制。
三、实验原理1、先来先服务(FCFS)调度算法先来先服务算法按照作业到达的先后顺序进行调度。
先到达的作业先被服务,直到完成或阻塞,然后再处理下一个到达的作业。
2、短作业优先(SJF)调度算法短作业优先算法选择预计运行时间最短的作业先执行。
这种算法可以有效地减少作业的平均等待时间,但可能导致长作业长时间等待。
3、时间片轮转(RR)调度算法时间片轮转算法将处理机的时间分成固定长度的时间片,每个作业轮流获得一个时间片的处理时间。
当时间片用完后,如果作业还未完成,则将其放入就绪队列的末尾等待下一轮调度。
4、优先级调度算法优先级调度算法为每个作业分配一个优先级,优先级高的作业先被执行。
优先级可以根据作业的性质、紧急程度等因素来确定。
四、实验内容与步骤1、数据生成首先,生成一组模拟的作业,包括作业的到达时间、预计运行时间和优先级等信息。
为了使实验结果更具代表性,生成了不同规模和特征的作业集合。
2、算法实现分别实现了先来先服务、短作业优先、时间片轮转和优先级调度这四种算法。
在实现过程中,严格按照算法的定义和规则进行处理机的分配和调度。
3、性能评估指标定义了以下性能评估指标来比较不同调度算法的效果:平均等待时间:作业在就绪队列中的等待时间的平均值。
平均周转时间:作业从到达系统到完成的时间间隔的平均值。
系统吞吐量:单位时间内完成的作业数量。
4、实验结果分析对每种调度算法进行多次实验,使用不同的作业集合,并记录相应的性能指标数据。
处理机调度实验报告
处理机调度实验报告处理机调度实验报告一、引言处理机调度是计算机操作系统中一个重要的概念,它涉及到如何合理地分配处理机资源以提高系统的运行效率。
本文将针对处理机调度进行实验,探讨不同调度算法对系统性能的影响。
二、实验目的本实验的目的是通过模拟不同的处理机调度算法,比较它们在不同负载下的性能表现,进而分析其优缺点,为实际操作系统的调度算法选择提供参考。
三、实验方法1. 实验环境本实验使用了一台配置较高的计算机作为实验环境,操作系统为Linux,处理器为Intel Core i7,内存为8GB。
2. 实验设置为了模拟不同的负载情况,我们使用了三个不同的测试程序:程序A、程序B和程序C。
程序A是一个计算密集型任务,程序B是一个I/O密集型任务,程序C是一个混合型任务。
3. 实验步骤首先,我们分别运行程序A、程序B和程序C,并记录它们的运行时间。
然后,我们使用不同的调度算法来调度这些任务,并记录它们的运行时间和系统资源利用率。
四、实验结果与分析1. 调度算法1:先来先服务(First-Come, First-Served,FCFS)FCFS算法按照任务到达的先后顺序进行调度,即先到先服务。
实验结果显示,在计算密集型任务下,FCFS算法表现较好,但在I/O密集型任务和混合型任务下,其性能明显下降。
这是因为在FCFS算法中,任务的执行顺序是固定的,无法根据任务的特性进行灵活调度。
2. 调度算法2:最短作业优先(Shortest Job First,SJF)SJF算法根据任务的执行时间进行调度,即执行时间最短的任务先执行。
实验结果显示,在计算密集型任务和混合型任务下,SJF算法表现较好,但在I/O密集型任务下,其性能较差。
这是因为在I/O密集型任务中,任务的执行时间不仅与计算量有关,还与I/O操作的耗时有关,因此SJF算法无法有效地进行调度。
3. 调度算法3:时间片轮转(Round Robin,RR)RR算法将处理机的运行时间划分为若干个时间片,每个任务在一个时间片内执行一定的时间,然后切换到下一个任务。
用C语言模拟Linux操作系统下处理机调度实验报告
实验二:处理机调度一、实验目的:1、了解Linux下Emacs编辑器的使用方法,掌握各种常用的键盘操作命令;2、理解并掌握处理机调度算法。
二、实验内容及要求:在采用多道系统的设计程序中,往往有若干进程同时处于就绪状态。
当就绪状态进程数大于处理机数时,就必须按照某种策略来决定哪些进程优先占用处理机。
本实验模拟在单处理机情况下处理机调度。
1、优先调度算法实现处理机的调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(按优先数的大小把进程连成队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针为"0"、要求运行时间、优先数、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"优先数"和"要求运行时间";3把给定的进程按优先数的大小连成队列,用一单元指出队首进程;4每模拟执行一次进程,优先数减一,要求运行时间减一;5如果要求运行的时间>=0,再将它加入队列(按优先数的大小插入,重置队首标志);如果要求运行的时间=0,那么把它的状态修改为结束,且推出队列;6若就绪队列不为空,重复上述,直到所有的进程都结束;7程序有显示和打印语句,每次运行后显示变化。
2、按时间片轮转法实现处理机调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(把进程连成循环队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针指出第一个进程的进程控制块首地址、已运行时间、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"要求运行时间";3用指针把给定的进程按顺序排成循环队列,用另一标志单元记录轮到的进程;4每模拟运行一次进程,已运行时间加一;5进程运行一次后,把该进程控制块的指针值送到标志单元,以指示下一个轮到的进程。
处理机调度实验报告1
设置多个就绪队列,各个队列优先级逐个降低,各个队列时间片逐个增加,优先级越高的队列执行时间片就越短,一般时间片按倍增规则,例如,第二队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍,整合了时间片、FCFS、优先级三种机制。
三.实验过程及内容:(对程序代码进行说明和分析,越详细越好,代码排版要整齐,可读性要高)
time+=pcbdata1[t_ready[0]].time_need;
j=time-pcbdata1[t_ready[0]].time_start;
k=(float)j/pcbdata1[t_ready[0]].time_need;
t_order[0]=0;
printf("完成时间--%d,周转时间--%d,带权周转时间--%.1f\n",time,j,k);
}
}
//**************调度函数
void FCFS()
{
int i,j,temp;
double k;
for(i=0;i<num;i++)
{order[i]=pcbdata[i].time_start;
ready[i]=i;
}
for(i=0;i<num;i++) //按到达时间排序
for(j=i+1;j<num;j++)
t_ready[i]=ready[i];
}
time=order[0];
for(l=0;l<num1;l++){
//判断到达的进程数,用temp_num存放
for(i=0;i<num&&pcbdata1[ready[i]].time_start<=time;i++)
实验一 处理机调度实验报告
实验一处理机调度实验报告一、实验目的处理机调度是操作系统中的一个重要组成部分,其目的是合理地分配处理机资源,以提高系统的性能和效率。
本次实验的主要目的是通过模拟处理机调度算法,深入理解不同调度算法的工作原理和性能特点,并能够对它们进行比较和分析。
二、实验环境本次实验使用了以下软件和工具:1、操作系统:Windows 102、编程语言:Python3、开发环境:PyCharm三、实验内容1、先来先服务(FCFS)调度算法先来先服务调度算法按照作业或进程到达的先后顺序进行调度。
即先到达的作业或进程先得到处理机的服务。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度运行时间短的作业或进程。
在实现过程中,需要对作业或进程的运行时间进行预测或已知。
3、高响应比优先(HRRN)调度算法高响应比优先调度算法综合考虑作业或进程的等待时间和运行时间。
响应比的计算公式为:响应比=(等待时间+要求服务时间)/要求服务时间。
4、时间片轮转(RR)调度算法时间片轮转调度算法将处理机的时间分成固定大小的时间片,每个作业或进程在一个时间片内运行,当时间片用完后,切换到下一个作业或进程。
四、实验步骤1、设计数据结构为了表示作业或进程,设计了一个包含作业或进程 ID、到达时间、运行时间和等待时间等属性的数据结构。
2、实现调度算法分别实现了上述四种调度算法。
在实现过程中,根据算法的特点进行相应的处理和计算。
3、模拟调度过程创建一组作业或进程,并按照不同的调度算法进行调度。
在调度过程中,更新作业或进程的状态和相关时间参数。
4、计算性能指标计算了平均周转时间和平均带权周转时间等性能指标,用于评估不同调度算法的性能。
五、实验结果与分析1、先来先服务(FCFS)调度算法平均周转时间:通过计算所有作业或进程的周转时间之和除以作业或进程的数量,得到平均周转时间。
在 FCFS 算法中,由于按照到达顺序进行调度,可能会导致长作业或进程长时间占用处理机,从而使平均周转时间较长。
操作系统实验一处理机调度算法的实现
实验报告学院(系)名称:计算机与通信工程学院
【实验过程记录(源程序、测试用例、测试结果及心得体会等)】程序运行代码如下:
#include<>
#include <>
#include <>
struct PCB{n");
}
程序运行结果截图如下:
实验体会:
刚开始的时候不知道用什么数据结构,只知道PCB这个结构中有什么,根据题目得知其中包括进程的名字、优先运行数、运行时间。
在看了数据结构的书和一个已经写好的程序后得知,应该使用链式队列。
但是初始化链式队列之后,问题就来了,应该定义哪些函数来运行进程满足题目的要求??根据题目分析出,需要四个函数,对进程的优先数进行从小到大排列的sort()函数,对进程进行检查和判断的check()函数,对进程进行优先数减1和运行时间减1的running()函数,最后是主函数main()。
运行时出现了指针混乱的问题和记录运行的变量没有初始化的问题,最为困难的是sort函数的编写。
操作系统实验一处理机调度算法的实现
操作系统实验一处理机调度算法的实现操作系统中的处理机调度算法是为了合理地分配和利用处理器资源,提高系统的性能和响应速度。
这些算法主要用于决定下一个要执行的进程或线程。
在本篇文章中,我们将介绍几种常见的处理机调度算法以及它们的实际应用。
首先,我们要了解什么是处理机调度算法。
处理机调度是指从就绪队列中选择一个进程,并分配处理机给它。
调度算法的目标是合理地选择进程,以达到最佳的系统性能指标。
这些指标可以包括响应时间、吞吐量、公平性等。
最简单的调度算法是先来先服务(FCFS)。
这种算法按照进程到达的顺序来进行调度。
当一个进程完成后,下一个进程在队列头被选中执行。
FCFS算法的优点是实现简单,但缺点是不考虑进程的执行时间,导致平均等待时间较长。
FCFS主要用于批处理环境中,例如打印任务的排队。
另一种常见的调度算法是短作业优先(SJF)。
这种算法选择剩余执行时间最短的进程进行调度。
为了实现SJF算法,系统需要预测进程的执行时间,这可能是一个难题。
SJF算法的优点是能够最小化平均等待时间,但缺点是可能导致长作业的饥饿。
SJF算法主要用于交互式系统或具有预测性能的任务。
另一个常见的调度算法是轮转调度(RR)。
这种算法将处理机时间分成一定大小的时间片(时间片就是一段处理器运行的时间),每个进程在一个时间片内执行,然后进入队列尾部等待。
轮转调度算法的目的是实现公平性,每个进程都有机会被执行。
RR算法的优点是能够减少各个进程的响应时间,但缺点是可能造成高负载下的处理机浪费。
RR算法主要用于实时系统或多用户环境。
另一个调度算法是最高响应比优先(HRRN)。
响应比是指进程等待时间与预计执行时间的比率。
HRRN算法选择响应比最高的进程进行调度。
这种算法考虑了等待时间和执行时间的权衡,能够实现较好的性能。
但是,HRRN算法计算响应比需要实时监测和更新进程的等待时间和执行时间。
HRRN算法适用于交互式或多用户系统。
还有一种常见的调度算法是最短剩余时间优先(SRTF)。
操作系统实验
《操作系统》实验指导书德州学院计算机系实验一理解和认识操作系统的三种接口1.目的和要求MS-DOS和Windows是市场上普及率很高的操作系统,本实验的目的是让读者从操作系统理论的观点加深对现代操作操作系统的接口设计的理解。
2.实验内容①熟悉DOS的基本命令,包括md,cd,copy,move,del,deltree,type 等的使用a、当前目录下建立子目录MYTEMP和MYTEMP2,将当前目录设定为MYTEMP;b、在当前目录下创建新文件B.BAT,其内容为:清除屏幕内容,显示当前DOS版本;c、使用type命令显示B.BAT的内容,检查正确后,执行它;d、拷贝B.BAT到路径MYTEMP中;e、删除MYTEMP2中的文件B.BAT,删除目录MYTEMP2;f、使用deltree命令删除MYTEMP②理解WINDOWS下的编程接口原理,了解WINAPI,利用WINAPI实现WINDOWS 下的打印。
a、登录进入Windowsb、在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”-“MicrosoftVisual C++ 6.0”命令,进入Visual C++ 窗口。
c、在File菜单单击New Workspace...命令,创建PrintApp.dsw项目文件。
d、在File菜单单击New C++ Soure file命令,创建新的原文件。
e、输入如实验运行结果中所示的源代码,调试、编译并运行。
f、观察执行结果,理解各个函数的功能。
3.实验环境Windows操作系统和Visual C++6.0专业版或企业版实验二复习用C语言编制程序一、实验内容选择一个计算机系统,熟悉该系统的操作命令,且掌握该计算机系统的使用方法。
二、实验目的配合操作系统课程的学习,模拟实现操作系统的功能,有助于对操作系统的理解。
操作系统功能的模拟实现可以在计算机系统的终端上进行,也可以在一台微型计算机上进行。
计算机操作系统实验---进程调度
操作系统实验报告--进程调度计科02-8 王长青05年4月17日计算机操作系统实验——进程调度一.实验目的进程调度是处理机管理的核心内容。
通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数调度算法的具体实施办法。
二.程序功能本程序使用VC++编译调试,用于实现进程优先数调度的模拟。
主要包含三个模块:1、主界面:用于显示进程调度的过程。
2、数据录入模块:用于获取进程的初始值,其中有三种获取方式,手动输入方式、随即生成方式和从文件中读去数据的方式。
当用户在主窗口中点击“开始”菜单项时即可打开数据录入对话框,用户通过这三种方式之一均可完成数据的录入。
3、进程控制模块:主要实现创建新的进程,就绪队列的管理,完成队列的管理,进程的调度。
三.实验原理(1)本程序采用优先数调度算法对进程进行调度,每个进程可有三个状态,即:就绪状态,运行状态,完成状态。
并假设初始状态为就绪状态。
这三种状态的转换情况如右图:(2)为了便于处理,程序中的某进程运行时间以时间片为单位计算。
各进程的优先数以及进程需运行的时间片数的初始值均由用户给定(通过数据录入模块完成)。
(3)程序通过设置一个定时器来实现时间片的轮转,时间片的大小是1秒,在定时器消息的响应函数中从用户录入的数据中读取一个创建进程,将其加入到就绪队列中,然后进行调度和执行。
在调度函数中,对于遇到优先数一致的情况,采用FIFO策略解决。
(4)在优先数算法中,进程每执行一次,优先数减3,进程还需要运行的时间数减1。
四.详细设计(1)设计进程控制块PCB结构:struct PCB{ int pid; //进程号int pri; //进程优先数int time; //进程所需运行时间int status; // 进程状态 0就绪,1 执行,-1完成};(2)将进程的各种操作封装在类CProMoni中,该类的定义如下:class CProMoni{public:CProMoni();virtual ~CProMoni();void InsertRQ(PCB* p); //将p所指的进程插入到就绪队列中void InsertFQ(PCB* p); //将p所指的进程插入到完成队列中void ProSchedule(); //进程调度函数void ProRun(); //运行函数void Display(CDC* pDC); //以表格形式输出运行过程bool GetFinishFlag();bool OpenLogFile(); //打开日志文件void CloseLogFile(); //关闭日志文件bool WriteLogToFile(); //向日志文件中写入数据private:PCB *m_pRunning; //指向当前运行的进程CPtrList m_readyList; //就绪队列CPtrList m_finishList; //完成队列bool m_finish; //完成标志CString m_LogFileName; //日志文件名CStdioFile m_LogFile; //日志文件public:int m_clock; //时钟序列};(3)主要成员函数的实现:void CProMoni::InsertRQ(PCB* p){ //将p插入到就绪队列中POSITION pre,pos=m_readyList.GetHeadPosition();PCB *q;while(pos!=NULL){pre=pos;q=(PCB*)m_readyList.GetNext(pos);if(q->pri < p->pri){m_readyList.InsertBefore(pre,p);return;}}if(pos==NULL){m_readyList.AddTail(p);}}void CProMoni::ProSchedule(){//进程调度PCB *p;if(m_pRunning==NULL){if(m_readyList.IsEmpty()){m_finish=true;return;}else{p=(PCB*)m_readyList.RemoveHead();m_pRunning=p;}}else{if(!m_readyList.IsEmpty()){p=(PCB*)m_readyList.GetHead();//m_readyList将头节点与当前PCB的权值比较if(p->pri > m_pRunning->pri ){PCB *q=m_pRunning;m_pRunning=(PCB*)m_readyList.RemoveHead();m_pRunning->status=1;q->status=0;InsertRQ(q);}}}}void CProMoni::ProRun(){//运行进程if(!m_finish){if(m_pRunning==NULL){ AfxMessageBox("当前运行的进程不存在!");return;}m_pRunning->pri-=3;m_pRunning->time-=1;{ m_pRunning->time=0;PCB*p=m_pRunning;p->status=-1;InsertFQ(p);m_pRunning=NULL;}}}(4)试图类的主要成员函数:PCB* CProcessView::CreatePCB(){//创建PCBPCB* p=new PCB;p->pid=n+1;p->pri=m_pris[n];p->time=m_times[n];p->status=0;n++;return p;}#include"pritimedlg.h"void CProcessView::OnStart(){ CPriTimeDlg dlg; //定义数据录入对话框dlg.DoModal();if(dlg.m_ok){ m_proTotal=dlg.m_proNum;for(int i=0;i<m_proTotal;i++){ m_pris[i]=dlg.m_pris[i];m_times[i]=dlg.m_times[i];}m_proMoni.OpenLogFile(); //打开日志文件PCB* p=CreatePCB(); //创建新进程m_proMoni.InsertRQ(p); //将新进程插入到就绪队列中m_proMoni.WriteLogToFile(); //写日志文件m_proMoni.ProSchedule(); //进程调度m_start=true; //设置开始标志Invalidate(); //刷新视图m_killTimer=false;SetTimer(1,1000,NULL);//设置定时器}}void CProcessView::OnTimer(UINT nIDEvent){ m_proMoni.m_clock++;m_proMoni.WriteLogToFile();//写日志m_proMoni.ProRun(); //运行进程if(n<m_proTotal){ PCB *p=CreatePCB();//创建新进程m_proMoni.InsertRQ(p);}m_proMoni.ProSchedule();Invalidate();if(m_proMoni.GetFinishFlag()){//若已完成则删除定时器KillTimer(1);m_killTimer=true;AfxMessageBox("演示完毕");}CScrollView::OnTimer(nIDEvent);}五.运行结果(1)数据录入界面:(2)进程调度过程的结果:六、实验总结通过本实验使我对进程的相关概念及进程的优先数调度算法有了更深的理解,使自己在程序设计及编制方面也有了一定的提高。
操作系统实验之处理机调度实验报告
1、开发工具
Clion for mac 2016,采用 cmake 编译。
2、主要源码
//先来先服务 void FCFS(List *p, int count) {
List temp; int i, j; //按照到达时间排序 for (i = 1; i < count; i++) {
min = 100; temp = p[k].Finish_time; for (j = 0; j < count; j++) {
if (p[j].order != 0 || temp - p[j].Arrival_time < 0) continue;
if (min > p[j].Service_time) {
max = 0;
temp = p[k].Finish_time; //找响应比最高任务 for (j = 0; j < count; j++) {
if (p[j].order != 0 || temp - p[j].Arrival_time <= 0) continue;
if (max < (temp - p[j].Arrival_time) / p[j].Service_time) {
if (temp > p[i].Arrival_time) {
temp = p[i].Arrival_time; k = i; } } //按照响应比大小设置优先级,以及相应参数 for (i = 0; i < count; i++) { p[k].order = ++flag; p[k].Start_time = temp; p[k].Wait_time = temp - p[k].Arrival_time; p[k].Finish_time = temp + p[k].Service_time; p[k].Turnover_time = p[k].Finish_time - p[k].Arrival_time; p[k].WeightedTurn_time = p[k].Turnover_time / p[k].Service_time;
操作系统实验报告-进程调度法的实现
操作系统实验报告进程调度算法的实现1.实验目的进程是操作系统最重要的概念之一,本实验通过对进程调度模拟程序的运行,学习运用时间片轮转法进行进程调度,加深对进程的基本调度状态以及进程调度算法的理解。
2.算法思想进程调度算法:采用多级反馈队列调度算法。
其基本思想是:当一个新进程进入内在后,首先将它放入第一个队列的末尾,按FCFS原则排队等待高度。
当轮到该进程执行时,如能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚为完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行,以此类推。
4.算法。
5.程序代码程序的主要代码如下:#include<iostream.h>#include<stdlib.h>#include<time.h>#include<stdio.h>#include<string.h>const int MAXCOMMANDLEN =50;///////////////////////////////////////////////////////////////////////////////////////// PROCESS///////////////////////////////////////////////////////////////////////////////////////class Process{friend class CPU; //友元类protected:static int init_ID; //静态初始IDint ID; //进程IDchar runText[MAXCOMMANDLEN]; //进程指令数组int IP; //进程指令指针,保存进程指令执行到的具体位置bool ISuseSource; //进程是否使用资源(是或者否)bool ISblocked; //进程是否被阻塞(是或者否)int unitTime; //进程被cpu执行单位时间, 默认 1int blockTime; //进程被阻塞时间public:static void RandID(); //静态随机生成进程ID的函数Process(); //进程类的构造函数int getID(); //得到进程IDint getIP(); //获取进程指令指针IPvoid setIP(int); //设置IPvoid Runed(); //进程被执行int getUnittime(); //得到进程的单位执行时间2int getBlcoktime(); //得到进程被阻塞的时间void setBlocktime(int); //设置进程被阻塞的时间void setUnittime(int); //设置进程的单位执行时间char getResult(int); //得到进程被执行的结果char* getRuntext(); //得到进程执行的指令void setBlockstate(bool); //设置进程阻塞状态bool getBlockstate(); //得到进程阻塞状态bool getISusesource(); //得到资源的使用状态void setISusesource(bool); //设置资源的使用状态};int Process::init_ID; //初始化静态变量void Process::RandID() //随机产生一个进程ID{srand((unsigned)time(NULL)); //调用srand随机生成函数init_ID=rand();}Process::Process() //进程的构造函数{ID=init_ID++; //进程ID的初值为静态初始ID的值int commandLen; //命令行长度IP=0;cout<<"Please input the text which process runed by CPU [#command#] :>\\ ";cin>>runText; //输入命令if( (commandLen=strlen(runText) ) > MAXCOMMANDLEN )exit(0); //输入长度超出最大长度时退出,特殊情况处理3runText[commandLen]='#'; //初始指令结束标志 '#' runText[commandLen+1]='\0'; //字符串结束标志ISuseSource=false; //设置资源的使用状态为未使用ISblocked=false; //进程的初始状态-》未被阻塞unitTime=1; //进程被执行的单位时间为1 blockTime=0; //阻塞时间为0}void Process::Runed() //进程被CPU执行{cout<<getResult(IP++); //输出得到的进程执行结果}int Process::getID() //得到进程ID {return ID;}int Process::getIP() //得到进行IP {return IP;}void Process::setIP(int ip) //设置进程IP {IP=ip;}bool Process::getISusesource() //得到资源的使用状态{return ISuseSource;4}void Process::setISusesource(bool s) //设置资源的使用状态{ISuseSource=s;}char* Process::getRuntext() //得到进程执行的指令{return runText;}int Process::getUnittime() //得到进程的单位执行时间{return unitTime;}int Process::getBlcoktime() //得到进程阻塞状态{return blockTime;}void Process::setBlocktime(int BT) //设置进程阻塞时间{blockTime=BT;}void Process::setUnittime(int UT) //设置进程的单位执行时间{unitTime=UT;}5void Process::setBlockstate(bool state) //设置进程阻塞状态{ISblocked=state;}bool Process::getBlockstate() //得到进程阻塞状态{return ISblocked;}char Process::getResult(int k) //得到程序的运行结果{return runText[k];}///////////////////////////////////////////////////////////////////////////////////////// SOURCE///////////////////////////////////////////////////////////////////////////////////////class Source //资源类{protected:int ID; //资源 IDbool state; //资源是否被占用状态int pro_ID; //使用资源的进程id Process *pro; //使用资源的进程指针int time; //进程使用资源的时间6public:Source(int); //资源类构造函数bool getState(); //得到资源被使用状态void setState(bool); //设置资源被使用状态void setTime(int); //设置进程使用资源的时间void setPro(Process *); //设置使用该资源的进程int getID(); //得到资源idint getPorID(); //得到使用资源的进程id void setProID(int); //设置使用资源的进程id void runned(); //资源被cpu调用};Source::Source(int id) //资源类构造函数{ID=id; //资源ID初值为idpro=NULL; //指针赋为空值state=true; //状态为被使用状态}void Source::setProID(int id) //设置使用资源的进程id{pro_ID=id;}void Source::setTime(int t) //设置进程使用资源的时间{time=t;}void Source::setState(bool s) //设置资源使用状态{7state=s;}bool Source::getState() //得到资源使用状态{return state;}void Source::setPro(Process *p) //设置使用该资源的进程{pro=p;}void Source::runned() //资源被CPU调用{if(time>0) //时间充足继续运行输出资源信息并使时间减一{cout<<"( Source :"<<ID<<")";time--;}if(time<=0) //时间用完{pro->setISusesource(false); //资源的使用状态为未使用int ip=pro->getIP(); //得到进程的IPpro->setIP(++ip); //设置到下一个ipSource::setState(true); //设置资源的使用状态为正在使用cout<<endl<<"The process "<<pro->getID()<<" relase the source!"<<endl;pro=NULL; //输出资源被释放指针值赋值为空值}8}//////////////////////////////////////////////////////////// ///////////////////////////// CPU////////////////////////////////////////////////////////////// /////////////////////////typedef struct Block //阻塞队列结构{Process *p_BlockProcess; //被阻塞的进程队列int index; //被阻塞的进程在就绪队列中的位置}Block;class CPU{protected:Process *p_Process; //进程队列Process **pp_Process; //进程就绪队列Block *blockQueue ; //进程阻塞队列Source *p_Source; //资源指针int numOfprocess; //进程数量int numOfblock; //被阻塞的进程数int PC; //程序计数器int allTime; //cpu运行的总时间public :CPU(int); //cpu构造函数void Run(); //cpu运行进程bool _IC(Process&); //虚拟IC,进行进程指令翻译void useSource(Process&); //进程申请资源9void blockProcess(Process&); //阻塞进程void releaseBlockPro(); //释放阻塞进程int getAlltime(); //得到进程运行的总时间void displayPro(); //显示进程的基本信息,id,指令,运行时间等void blockTimeADD(); //阻塞时间加1 };CPU::CPU(int num){p_Source=new Source(379857);//创建一个id号为379857的资源numOfprocess=num; //进程数numOfblock=0; //阻塞数allTime=0; //cpu运行的总时间初始化为0p_Process=new Process[numOfprocess];//进程队列申请空间pp_Process=new Process*[numOfprocess];//进程就绪队列申请空间blockQueue=new Block[numOfprocess]; //阻塞队列申请空间for(int i=0;i<numOfprocess;i++){pp_Process[i]=&p_Process[i]; //用二维数组存放进程指针数组头指针blockQueue->p_BlockProcess=NULL; //阻塞队列的阻塞进程赋值为空blockQueue->index=-1; //阻塞队列的索引值置为1 }}int CPU::getAlltime() //得到进程运行的总时间{return allTime;}10void CPU::displayPro() //显示进程的基本信息{for(int i=0;i<numOfprocess;i++)//循环输出被执行的进程的信息{cout<<"\tProcess ID : "<<p_Process[i].getID()<<endl;cout<<" text of runned :"<<p_Process[i].getRuntext()<<endl;}}void CPU::Run() //cpu运行进程{int numPro=numOfprocess; //记录未被运行的进程个数do{for(int num=0;num < numOfprocess;num++){if(!pp_Process[num]) //就绪队列不空继续执行continue;for(int t=0;t<p_Process[num].getUnittime();t++){PC=p_Process[num].getIP();//得到进程Ipif(_IC(p_Process[num]))//判断进程的状态TURE进入{if(t==0) //时间为0运行完输出进程信息cout<<"the process ["<<p_Process[num].getID()<<"] runed : ";if(!p_Process[num].getISusesource())//如果该进程未被运行过,则调用run运行{p_Process[num].Runed();//}else{p_Source->runned(); //if( p_Source->getState() && numOfblock>0 ){releaseBlockPro();////如果进程运行过,现在但未运行,说明为阻塞。
操作系统实验进程调度
实验三进程调度一. 实验目的加深理解并模拟实现进程(作业)调度算法。
1)熟悉常用的进程调度算法, 如FCFS、SPF、FPF、高响应比优先、时间片轮转;2)结合所学的数据结构及编程知识, 选择三种进程调度算法予以实现。
二. 实验属性该实验为设计性实验。
三. 实验仪器设备及器材普通PC386以上微机四. 实验要求本实验要求2学时完成。
1)本实验要求完成如下任务:2)编程实现单处理机系统中的进程调度, 要求从FCFS、SPF、FPF、高响应比优先、时间片轮转算法中至少选择三个;3)最后编写主函数对所做工作进行测试。
实验前应复习实验中所涉及的理论知识和算法, 针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A), 并要求用正规的实验报告纸和封面装订整齐, 按时上交。
五: 实验具体设计此程序模拟了两种调度算法, FCFS和SPF, 首先FCFS就是按照进程的创建顺序依次顺序进行, 流程图为:进程顺序执行SPF:每次都进行循环, 选出在该时间刻运行时间最短的进程优先执行。
1.程序代码具体详解:2.创建一结构体作为进程控制器typedef struct PCB{int ID;char state;int arrivetime;int starttime;int finishtime;int servicetime;struct PCB *next;}pcb;定义全局变量作为计时器int time;//计时器创建进程链表:从txt文件中读取数据, 构造一条不含头结点的单链表void Create_process(){ifstream inFile;inFile.open("test.txt");inFile>>n;inFile.get();int i=0;for (;i<n;i++){p=(pcb *)malloc(sizeof(pcb));inFile>>p->ID;inFile>>p->arrivetime;inFile>>p->servicetime;p->starttime=0;p->finishtime=0;p->state='F';p->next=NULL;if(head==NULL){head=p;q=p;time=p->arrivetime;}if(p->arrivetime < time)time=p->arrivetime;q->next=p;q=p;}若执行FCFS算法, 按顺序遍历链表void fcfs1(){int i;p=head;for(i=0;i<n;i++){if(p->state=='F')q=p;run_fcfs1(q);}p=p->next;}}void run_fcfs1(pcb *p1){time = p1->arrivetime > time? p1->arrivetime:time;p1->starttime=time;printf("\n现在时间: %d,开始运行作业%d\n",time,p1->ID);time+=p1->servicetime;p1->state='T';p1->finishtime=time;printf("ID号到达时间开始运行时间服务时间完成时间\n");printf("%d%10d%12d%12d%12d\n",p1->ID,p1->arrivetime,p1->starttime,p1->servicetime,p 1->finishtime);}若执行SPF算法, 每次都从链表头开始遍历链表, 找出arrivetime<=time并且运行时间最短的节点, 执行该节点进程, 最后再删除该节点。
实现处理机调度课程设计
实现处理机调度课程设计一、课程目标知识目标:1. 让学生理解处理机调度的基本概念,掌握其功能和重要性;2. 学会分析不同处理机调度算法的特点和优缺点;3. 掌握几种常见的处理机调度算法,如先来先服务、短作业优先、优先级调度等;4. 了解处理机调度在操作系统中的作用和影响。
技能目标:1. 培养学生运用处理机调度算法解决实际问题的能力;2. 提高学生分析、设计、优化调度算法的技能;3. 学会使用相关工具和软件模拟处理机调度过程。
情感态度价值观目标:1. 培养学生对操作系统学科的兴趣和热情;2. 增强学生的团队合作意识和解决问题的能力;3. 引导学生认识到处理机调度在提高计算机系统性能方面的重要性。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程为计算机科学与技术专业核心课程,具有较强的理论性和实践性;2. 学生特点:学生已具备一定的计算机操作系统知识,具备一定的编程基础;3. 教学要求:结合实际案例,采用任务驱动法,引导学生主动探索和解决问题。
二、教学内容1. 处理机调度基本概念:处理机调度的定义、作用、分类和性能指标;2. 处理机调度算法:- 先来先服务(FCFS)调度算法;- 短作业优先(SJF)调度算法;- 优先级调度算法;- 时间片轮转调度算法;- 多级反馈队列调度算法;3. 处理机调度算法性能分析:分析各种调度算法的优缺点及适用场景;4. 处理机调度算法实现:结合实际案例,编写程序实现各种调度算法;5. 处理机调度在操作系统中的应用:探讨处理机调度在操作系统中的重要性及影响。
教学安排和进度:第1周:处理机调度基本概念;第2周:先来先服务(FCFS)调度算法;第3周:短作业优先(SJF)调度算法;第4周:优先级调度算法;第5周:时间片轮转调度算法;第6周:多级反馈队列调度算法;第7周:处理机调度算法性能分析;第8周:处理机调度算法实现及实践;第9周:处理机调度在操作系统中的应用。
教材章节关联:《计算机操作系统》第3章“处理机管理”,第4章“进程调度与死锁”,结合课本内容进行讲解和拓展。
计算机操作系统进程调度实验报告
操作系统实验题:设计一若干并发进程的进程调度程序一、实验目的无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。
这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。
进程调度是处理机管理的核心内容。
本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。
通过本实验可以加深理解有关进程控制块、进程队列的概念。
并体会了优先数和先来先服务调度算法的具体实施办法。
二、实验要求用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.三、实验内容进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。
每个进程有一个进程控制块( PCB)表示。
进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。
进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。
就绪进程获得 CPU后都只能运行一个时间片。
用已占用CPU时间加1来表示。
如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。
每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。
重复以上过程,直到所要进程都完成为止。
操作系统实验报告-单处理机系统的进程调度
实验二单处理机系统的进程调度一.实验目的(1)加深对进程概念的理解,明确进程与程序的区别。
(2)深入了解系统如何组织进程、创建进程。
(3)进一步认识如何实现处理机调度。
二.实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。
三.实验原理在早期的时间片轮转法中,系统将所有的就绪进程按先来先服务的原则,排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片.时间片的大小从几ms到几百ms.当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片.这样就可以保证就绪队列中的所有进程,在一给定的时间内,均能获得一时间片的处理机执行时间.四.实验部分源程序#include<stdio.h>#include<time.h>#include<stdlib.h>/*********************以下是全局数据结构和变量***********************//*PCB 结构*/struct PCB{int pname;int pri;int runtime;int waittime;struct PCB *next;}pcb[7];struct PCB *running; /* 运行指针*/struct PCB *Hready; /*高优先级就绪队列头指针*/struct PCB *Lready; /*低优先级队列头指针*/struct PCB*wait; /*等待队列头指针*/int A=0;/**************************以下是函数说明****************************/ void delay(); /*利用循环实现延迟*/void proc(struct PCB *running); /*模拟进程3-9*/void InsertIntoQueueTail(struct PCB **head,struct PCB *node); /*将node插入到head所指示的队列的尾部*/int proc_switch(); /*进程调度函数*/void proc_wait(); /*进程等待函数*/int proc_wakeup(); /*进程唤醒函数*//************************以下是函数定义及注释************************/ main() /*主函数*/{ int i;/*初始化,创建进程3-9,置低优先级,等待时间为0,依次插入低优先级队列*/for(i=0;i<3;i++){pcb[i].pname=i+3;pcb[i].pri=0;pcb[i].waittime=0;InsertIntoQueueTail(&Lready,&pcb[i]);}wait=NULL;Hready=NULL; /*等待队列和高优先级队列为空*/printf("\n模拟进程调度开始:\n"); /*模拟进程调度开始*/for(;;){ switch(A){case 0:/*无进程等待调度,打印信息并返回*/if(!proc_switch()){printf("/n没有进程在运行返回:\n");getchar(); }break;case 1:proc_wait();break;case 3:case 4:case 5:case 6:proc(running); break;default:printf("\nerror!");exit(-1); }}}/*功能:延迟一个时间片*//*入口参数:无*//*出口参数:无*/void delay(){ int i,j;for(i=0;i<20000;i++)for(j=0;j<10000;j++){}}/*功能:进程3-9*//*入口参数:运行指针*//*出口参数:无*/void proc(struct PCB * running){ int i;srand( (unsigned)time( NULL ) );/*显示当前运行的进程的id*/printf("\n现在进程%d 正在运行\n",running->pname);/*当前进程执行running->runtime个时间片*/for(i=running->runtime;i>0;i--){/*显示剩余的时间片*/printf("剩余的时间片为%d\n",i);/*延迟*/delay();proc_wakeup();/*产生一个1到1000的随机数,若该随机数小余300,当前进程等待,*/ if((rand()%1000+1)<300){printf("进程%d开始等待.\n",running->pname);A=1;return; }}/*显示时间片耗尽,进程转为低优先级就绪状态*/printf("进程%d时间片耗尽\n",running->pname);InsertIntoQueueTail(&Lready,running);A=0;return; }/*功能:将一个节点插入队列尾部*//*入口参数:队列头指针地址head,待插入结点node*//*出口参数:无*/void InsertIntoQueueTail(struct PCB **head,struct PCB *node){ struct PCB *p;node->next=NULL;/*被插入队列为空*/if(*head==NULL){*head=node;return; }/*被插入队列不为空*/else{p=*head;/*找到队列的最后一个结点*/while(p->next!=NULL)p=p->next; p->next=node; }}/*功能:进程调度*//*入口参数:无*//*出口参数:若调度成功,返回1,否则返回0*/int proc_switch() {/*若高优先级就绪队列和低优先级就绪队列均为空,则循环执行进程唤醒*/while(Hready == NULL && Lready == NULL)if(!proc_wakeup()) return 0;/*若高优先级就绪队列非空,则执行其第一个进程,分配2个时间片*/if(Hready!=NULL){running=Hready;Hready=Hready->next;running->runtime=2; }/*若高优先级就绪队列为空,则执行低优先级就绪队列的第一个进程,分配5个时间片*/else{running=Lready;Lready=Lready->next;running->runtime=5; }/*把调度进程的id赋给A*/A=running->pname;return 1; }/*功能:进程等待。
处理机调度算法
处理机调度算法处理机调度算法(CPU Scheduling Algorithm)是操作系统中一个非常重要的概念,它指的是在多个进程需要占用系统处理器的情况下,如何高效地分配时间片,使得每个进程都能得到公平的处理机时间,系统能够充分利用处理器的资源。
算法分类常见的处理机调度算法主要有以下几种:1. 先来先服务(FCFS)调度算法先来先服务是最简单的处理机调度算法。
它的基本思想是,一个进程需要处理时,处理器按照进程提交的顺序进行调度。
即,先提交的进程先执行,等前一个进程执行完后,下一个进程才会被处理。
这种算法的优点是简单易行,缺点是可能导致一些进程等待时间较长。
2. 短作业优先(SJF)调度算法短作业优先是一种非抢占式的算法,它的基本思想是根据每个进程需要处理的总时间长短来排序,先处理需要处理时间较短的作业,这种方法可以最小化平均等待时间。
但是,由于它需要知道每个进程的总执行时间,因此难以实现。
3. 时间片轮转(RR)调度算法时间片轮转是一种抢占式的算法,它的基本思想是将处理机分为时间片,每个进程都可以运行一个时间片,时间片到期后,如果还未结束,则该进程被挂起,另一个就绪进程插入,并重新分配一个时间片。
这种算法能够避免某些进程长时间占用资源,每个进程都能在一定时间内得到处理机的时间。
4. 优先级调度(Priority Scheduling)算法优先级调度是一种非抢占式的算法,它的基本思想是为每个进程设置不同的优先级,进程具有最高优先级的先被处理,如果存在两个相等的进程优先级,那么会使用先来先服务的方式进行处理。
缺点是可能导致低优先级的进程等待时间太长。
5. 多级反馈队列(MFQ)调度算法多级反馈队列是一种复杂的算法,它的基本思想是将所有进程按照其优先级分为多个队列,优先级相同的进程被分成同一个队列,不同队列之间根据时间片大小相差不同。
例如,第一队列的时间片为10ms,第二队列的时间片为20ms,第三队列的时间片为40ms,以此类推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。
struct proc //定义进程结构体
{
char name[5];
int num;
int pri;
};
void main()//主函数
{ char ch;
struct proc pr[n];//声明结构体数组
int i,k,j;
int count=n;
for(i=0;i<n;i++)//输入5个进程
函数描述:
struct proc/*定义结构体内部包含进程的信息*/
{
char name[5]; /*定义进程名*/
int num; /*定义运行时间*/
int pri; /*定义优先权*/
};
Void main()/*主函数:掌控整个程序的运行过程,是程序的主体部分*/
struct proc pr[n];/*声明结构体数组*/
4.处理机调度总是选队首进程运行。采用动态优先数算法,进程每运行一次优先数就减“1”,同时将运行时间减“1”。
5.若要求运行时间为零,则将其状态置为“结束”,且退出队列。
6.运行所设计程序,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程
实验过程与实验结果(可包括实验实施的步骤、算法描述、流程、结论等)
for(k=1;k<n;k++)
{for(j=0;j<n-1;j++)
if(pr[j].pri<pr[j+1].pri)
{
struct proc temp;
temp=pr[j];
pr[j]=pr[j+1];
pr[j+1]=temp;
}
}
while(pr[0].num!=0)//进程运行循环;
{
ch=getchar();
for(i=0;i<n;i++)/*for函数定义输入进程数*/
for(k=1;k<n;k++)/*for函数判断优先权大小并进行排序*/
while(pr[0].num!=0)/*while进程运行循环*/
附
实验代码:
#include<stdio.h>
#include<string>
#define n 5
{for(j=0;j<count-1;j++)
if(pr[j].pri<pr[j+1].pri)
{ห้องสมุดไป่ตู้
struct proc temp;
temp=pr[j];
pr[j]=pr[j+1];
pr[j+1]=temp;
}
}
}
}
试验结果:
1.执行结果
2.结果分析
当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。
{ printf("第%d个进程:\n",i+1);
printf("名称:");
scanf("%s",&pr[i].name);
printf("运行时间:");
scanf("%d",&pr[i].num);
printf("优先级:");
scanf("%d",&pr[i].pri);
}
//按进程优先级大小排序
天津理工大学
计算机与通信工程学院
实验报告
2011至2012学年第二学期
课程名称
操作系统
实验(1)
实验名称
处理机调度算法的实现
实验时间
2012年5月5日第1节至第6节
学号姓名
******
专业
主讲教师
辅导教师
软件环境
VC++6
硬件环境
PC机
实验目的
了解操作系统处理机调度的基本概念,处理机调度程序的功能,常用的处理机调度算法。C或C++编程方法与语句格式,提前初步编好实验程序。
实验内容(应包括实验题目、实验要求、实验任务等)
实验题目:处理机调度算法的实现
实验要求:学生应正确地设计有关的数据结构与各个功能模块,画出程序的流程图,编写程序,程序执行结果应正确。
实验任务:
1.设定系统中有五个进程,每一个进程用一个进程控制块表示。
2.输入每个进程的“优先数”和“要求运行时间”,
3.为了调度方便,将五个进程按给定的优先数从大到小连成就绪队列。用一单元指出队列首进程,用指针指出队列的连接情况。
实验步骤:
1.根据实验任务,先进行算法构思。因为是采取高优先权调度算法,因此在编写程序之前,先构思算法。具体算法见下面算法描述。
2.根据上一步骤写好的算法。
3.编写程序。
4.采用VC++进行程序的编写,并对编写的程序进行测试
(1)初始化进程信息。(2)将各个进程按优先数从高到低排列成就绪队列。(3)检查所有队列是否为空,若空则结束,否则将队首进程调入执行。(4)检查该运行进程是否运行完毕,若运行完毕,将此进程状态改为完成,插入另一个完成进程队列;否则,将该进程的优先数减1,然后重新对它进行排序,插入就绪队列适当位置后等待CPU。(5)重复步骤(3)、(4),直到就绪队列为空。
pr[0].pri=pr[0].pri-1;
pr[0].num=pr[0].num-1;
printf("此次执行的进程数据属性:\n");
printf("名称--%s,执行时间--%d,优先权--%d\n",pr[0].name,pr[0].num,pr[0].pri);
if(pr[0].num==0)
{
printf("进程%s结束!!\n",pr[0].name);
count=count-1;
printf("还有%d个进程在等待执行.....\n",count);
for(i=0;i<count;i++){pr[i]=pr[i+1];}//排除掉运行完的进程
}
for(k=1;k<count;k++)//再排序
算法描述:
将每个进程抽象成一个控制块PCB,PCB用一个结构体描述。
构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。