模拟一种处理机调度算法
实验一___处理器调度(设计一个按时间片轮转法实现处理器调度的程序)
实验一处理器调度一、实验内容选择一个调度算法,实现处理器调度。
二、实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。
本实习模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。
三、实验题目第二题:设计一个按时间片轮转法实现处理器调度的程序。
[提示]:(1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。
进程控制块的格式为:其中,Q1,Q2,Q3,Q4,Q5。
指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址最后一个进程的指针指出第一个进程的进程控制块首地址。
要求运行时间——假设进程需要运行的单位时间数。
已运行时间——假设进程已经运行的单位时间数,初始值为“0”。
状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。
当一个进程运行结束后,它的状态为“结束”,用“E”表示。
(2) 每次运行所设计的处理器调度程序前,为每个进程任意确定它的“要求运行时间”。
(3) 把五个进程按顺序排成循环队列,用指针指出队列连接情况。
另用一标志单元记录轮到运行的进程。
例如,当前轮到P2执行,则有:标志单元K1K2K3K4K5PCB1 PCB2 PCB3 PCB4 PCB5(4)处理器调度总是选择标志单元指示的进程运行。
由于本实习是模拟处理器调度的功能,所以,对被选中的进程并不实际的启动运行,而是执行:已运行时间+1来模拟进程的一次运行,表示进程已经运行过一个单位的时间。
请同学注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片。
在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。
(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。
操作系统实验之处理机调度实验报告
操作系统实验之处理机调度实验报告一、实验目的处理机调度是操作系统中的核心功能之一,本次实验的主要目的是通过模拟不同的处理机调度算法,深入理解操作系统对处理机资源的分配和管理策略,比较不同调度算法的性能差异,并观察它们在不同负载情况下的表现。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 Python 38。
实验中使用了 Python 的相关库,如`numpy`、`matplotlib`等,用于数据生成、计算和图形绘制。
三、实验原理1、先来先服务(FCFS)调度算法先来先服务算法按照作业到达的先后顺序进行调度。
先到达的作业先被服务,直到完成或阻塞,然后再处理下一个到达的作业。
2、短作业优先(SJF)调度算法短作业优先算法选择预计运行时间最短的作业先执行。
这种算法可以有效地减少作业的平均等待时间,但可能导致长作业长时间等待。
3、时间片轮转(RR)调度算法时间片轮转算法将处理机的时间分成固定长度的时间片,每个作业轮流获得一个时间片的处理时间。
当时间片用完后,如果作业还未完成,则将其放入就绪队列的末尾等待下一轮调度。
4、优先级调度算法优先级调度算法为每个作业分配一个优先级,优先级高的作业先被执行。
优先级可以根据作业的性质、紧急程度等因素来确定。
四、实验内容与步骤1、数据生成首先,生成一组模拟的作业,包括作业的到达时间、预计运行时间和优先级等信息。
为了使实验结果更具代表性,生成了不同规模和特征的作业集合。
2、算法实现分别实现了先来先服务、短作业优先、时间片轮转和优先级调度这四种算法。
在实现过程中,严格按照算法的定义和规则进行处理机的分配和调度。
3、性能评估指标定义了以下性能评估指标来比较不同调度算法的效果:平均等待时间:作业在就绪队列中的等待时间的平均值。
平均周转时间:作业从到达系统到完成的时间间隔的平均值。
系统吞吐量:单位时间内完成的作业数量。
4、实验结果分析对每种调度算法进行多次实验,使用不同的作业集合,并记录相应的性能指标数据。
处理机调度实验报告
处理机调度实验报告处理机调度实验报告一、引言处理机调度是计算机操作系统中一个重要的概念,它涉及到如何合理地分配处理机资源以提高系统的运行效率。
本文将针对处理机调度进行实验,探讨不同调度算法对系统性能的影响。
二、实验目的本实验的目的是通过模拟不同的处理机调度算法,比较它们在不同负载下的性能表现,进而分析其优缺点,为实际操作系统的调度算法选择提供参考。
三、实验方法1. 实验环境本实验使用了一台配置较高的计算机作为实验环境,操作系统为Linux,处理器为Intel Core i7,内存为8GB。
2. 实验设置为了模拟不同的负载情况,我们使用了三个不同的测试程序:程序A、程序B和程序C。
程序A是一个计算密集型任务,程序B是一个I/O密集型任务,程序C是一个混合型任务。
3. 实验步骤首先,我们分别运行程序A、程序B和程序C,并记录它们的运行时间。
然后,我们使用不同的调度算法来调度这些任务,并记录它们的运行时间和系统资源利用率。
四、实验结果与分析1. 调度算法1:先来先服务(First-Come, First-Served,FCFS)FCFS算法按照任务到达的先后顺序进行调度,即先到先服务。
实验结果显示,在计算密集型任务下,FCFS算法表现较好,但在I/O密集型任务和混合型任务下,其性能明显下降。
这是因为在FCFS算法中,任务的执行顺序是固定的,无法根据任务的特性进行灵活调度。
2. 调度算法2:最短作业优先(Shortest Job First,SJF)SJF算法根据任务的执行时间进行调度,即执行时间最短的任务先执行。
实验结果显示,在计算密集型任务和混合型任务下,SJF算法表现较好,但在I/O密集型任务下,其性能较差。
这是因为在I/O密集型任务中,任务的执行时间不仅与计算量有关,还与I/O操作的耗时有关,因此SJF算法无法有效地进行调度。
3. 调度算法3:时间片轮转(Round Robin,RR)RR算法将处理机的运行时间划分为若干个时间片,每个任务在一个时间片内执行一定的时间,然后切换到下一个任务。
用C语言模拟Linux操作系统下处理机调度实验报告
实验二:处理机调度一、实验目的:1、了解Linux下Emacs编辑器的使用方法,掌握各种常用的键盘操作命令;2、理解并掌握处理机调度算法。
二、实验内容及要求:在采用多道系统的设计程序中,往往有若干进程同时处于就绪状态。
当就绪状态进程数大于处理机数时,就必须按照某种策略来决定哪些进程优先占用处理机。
本实验模拟在单处理机情况下处理机调度。
1、优先调度算法实现处理机的调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(按优先数的大小把进程连成队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针为"0"、要求运行时间、优先数、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"优先数"和"要求运行时间";3把给定的进程按优先数的大小连成队列,用一单元指出队首进程;4每模拟执行一次进程,优先数减一,要求运行时间减一;5如果要求运行的时间>=0,再将它加入队列(按优先数的大小插入,重置队首标志);如果要求运行的时间=0,那么把它的状态修改为结束,且推出队列;6若就绪队列不为空,重复上述,直到所有的进程都结束;7程序有显示和打印语句,每次运行后显示变化。
2、按时间片轮转法实现处理机调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(把进程连成循环队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针指出第一个进程的进程控制块首地址、已运行时间、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"要求运行时间";3用指针把给定的进程按顺序排成循环队列,用另一标志单元记录轮到的进程;4每模拟运行一次进程,已运行时间加一;5进程运行一次后,把该进程控制块的指针值送到标志单元,以指示下一个轮到的进程。
操作系统实验5 进程调度模拟程序设计
一、实验内容进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)或者时间片轮转法。
每个进程有一个进程控制块(PCB)表示。
进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。
进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
等待I/O的时间以时间片为单位进行计算,可随机产生,也可事先指定。
每个进程的状态可以是就绪R(Ready)、运行R(Run)、等待(Wait)或完成F(Finish)四种状态之一。
就绪进程获得CPU后都只能运行一个时间片。
用已占用CPU时间加1来表示。
如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。
每进行一次调度程序都打印一次运行进程、就绪队列、等待进程以及各个进程的PCB,以便进行检查。
重复以上过程,直到所要进程都完成为止。
用C或C++二、实验目的与要求在采用多道程序设计的设计中的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度工作。
三、实验环境Visual+C++6.0四、实验步骤1、实验准备知识处理器调度总是选对首进程运行。
采用动态改变优先数的办法,进程每运行一次优先数就减“1”。
由于本次实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行:优先数—1要求运行时间—1来模拟进程的一次运行。
进程运行一次后,若要求运行时间≠0,则再将它加入队列(按优先数大小插入,且置队首标志);若要求运行时间≠0,则把它的状态修改成“结束”,且结束队列。
操作系统课程设计报告-进程调度算法模拟
1.课程设计的目的《操作系统原理》课程设计我们专业实践性环节之一,是学习完《操作系统原理》课程后进行的一次较全面的综合练习。
其目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养学生的系统设计能力,并了解操作系统的发展动向和趋势。
2.课程设计的内容及要求先来先服务、短作业优先、时间片轮转、基于静态优先级的调度,基于高响应比优先的动态优先级调度算法实现,能够输出调度情况,并计算周转时间和平均周转时间。
要求使用链表,进程个数由用户提供,按照进程的实际个数生成PCB,程序能够让用户选择使用哪种调度算法,能够在Linux环境运行并验证结果。
程序要考虑用户界面的友好性和使用方便性。
进程基本信息可从文件读入,也可手动输入。
3、设计原理3.1先来先服务调度算法每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源创建进程,然后放入就绪队列3.2短作业优先调度算法短作业优先调度算法是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。
3.3时间片轮转调度算法系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。
时间片的大小从几ms到几百ms。
当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。
3.4静态优先级调度算法把处理机分配给优先级最高的进程,使之执行。
但在其执行期间,只要出现了另一个比其优先级更高的进程,调度程序就将处理机分配给新到的优先级最高的进程。
这样就可以保证紧迫性作业优先运行。
3.5最高响应比优先的动态优先级调度算法优先权调度算法是为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入最高优先权优先调度算法。
处理机调度算法的模拟
处理机调度算法的模拟在计算机操作系统中,处理机调度算法决定了在多个进程或任务同时存在的情况下,哪个任务将获得处理机的使用权,以及在多个任务之间如何切换。
处理机调度算法可以按照多个指标进行优化,例如响应时间、吞吐量、周转时间和等待时间等。
以下是几种常见的处理机调度算法:1.先来先服务(FCFS):先来先服务是最简单的调度算法之一,它按照任务到达的先后顺序分配处理机资源。
这种算法的优点是简单易实现,但是当存在长作业(任务)时,会导致其他短作业的等待时间过长。
2.短作业优先(SJF):短作业优先调度算法根据任务的估计执行时间来进行调度,优先执行估计执行时间短的任务。
这种算法可以减少任务的等待时间,但对于长作业来说,可能会导致饥饿现象。
3.优先级调度:优先级调度算法根据任务的优先级进行调度,优先级高的任务先获得处理机的使用权。
这种算法可以根据不同任务的紧急性和重要性来确保任务得到适当的优先级处理。
但是,如果优先级设置不合理,可能会导致一些任务永远得不到执行。
4.时间片轮转调度:时间片轮转调度算法是一种公平的调度算法,它将处理机的使用权按照时间片划分给不同的任务,每个任务只能执行一个时间片的任务。
如果任务在时间片结束之前没有完成,它将被放回到任务队列的末尾继续等待。
这种算法可以确保每个任务都有机会获得处理机的使用权,但是可能会存在上下文切换的开销。
以上只是几种常见的处理机调度算法,实际上还有许多其他算法以及它们的变体,例如最短剩余时间优先(SRTF)、多级反馈队列调度(MFQ)等。
每种调度算法都有不同的优缺点,选择适合的调度算法取决于系统的需求和资源限制。
为了模拟处理机调度算法,可以使用计算机模拟软件或编写自己的模拟程序。
模拟程序可以模拟任务的到达和执行过程,按照指定的调度算法进行任务的分配和切换,并统计不同指标(如响应时间、吞吐量等)来评估算法的性能。
在模拟处理机调度算法时,需要考虑以下几个方面:1.任务的到达过程:任务可以按照随机分布的方式到达,模拟任务的到达时间和资源需求。
进程调度模拟设计——先来先服务、强占式短进程优先算法
操作系统课程设计题目进程调度模拟设计——先来先服务、强占式短进程优先算法学院计算机科学与技术专业计算机科学与技术班级计算机0903姓名方传强指导教师杜薇2012 年 1 月11 日课程设计任务书学生姓名:方传强专业班级:计算机0903 指导教师:杜薇工作单位:计算机科学与技术学院题目: 进程调度模拟设计——先来先服务、强占式短进程优先算法初始条件:1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.模拟进程调度,能够处理以下的情形:⑴能够选择不同的调度算法(要求中给出的调度算法);⑵能够输入进程的基本信息,如进程名、到达时间和运行时间等;⑶根据选择的调度算法显示进程调度队列;⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。
2.设计报告内容应说明:⑴需求分析;⑵功能设计(数据结构及模块说明);⑶开发平台及源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他方法(如果有,简要说明该方法);v)对实验题的评价和改进意见,请你推荐设计题目。
时间安排:设计安排一周:周1、周2:完成程序分析及设计。
周2、周3:完成程序调试及测试。
周4、周5:验收、撰写课程设计报告。
(注意事项:严禁抄袭,一旦发现,一律按0分记)指导教师签名:年月日系主任(或责任教师)签名:年月日课程设计报告书1.课程设计的题目进程调度模拟设计——先来先服务、强占式短进程优先算法。
2.课程设计的目的此次课程设计的预备内容是阅读操作系统的处理机管理章节内容,并对进程调度的功能以及进程调度算法有深入的理解和掌握。
处理机调度的常用算法
处理机调度的常用算法包括以下几种:
1. 先来先服务调度算法(FCFS,First Come First Service):这是一种最简单的调度算法,按先后顺序进行调度。
既可用于作业调度,也可用于进程调度。
2. 短作业优先调度算法(SJF/SPF,Shortest Job First):该算法根据作业长短进行调度,有利于短作业(进程)的完成。
3. 高响应比优先调度算法(HRRN,Highest Response Raito Next):该算法综合考虑了作业长短和等待时间,能够适用于短作业较多的批处理系统中,但长作业的运行可能得不到保证。
4. 基于时间片的轮转调度算法(RR,Round Robin):该算法将系统中所有的就绪进程按照FCFS原则,排成一个队列。
每次调度时将CPU 分派给队首进程,让其执行一个时间片。
时间片的长度从几个ms到几百ms。
在一个时间片结束时,发生时钟中断。
调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前就绪的队首进程。
进程阻塞情况发生时,未用完时间片也要出让CPU。
这些算法各有优缺点,需要根据实际应用场景选择合适的算法。
5种进程调度算法实验报告
操作系统教程——进程调度算法院系计算机与软件学院班级08软件工程2班学号20081344066姓名何丽茗进程调度算法的模拟实现⏹实验目的1.本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
2.利用程序设计语言编写算法,模拟实现先到先服务算法FCFS、轮转调度算法RR、最短作业优先算法SJF、优先级调度算法PRIOR、最短剩余时间优先算法SRTF。
3.进行算法评价,计算平均等待时间和平均周转时间。
⏹实验内容及结果1.先来先服务算法2.轮转调度算法3. 优先级调度算法4. 最短时间优先算法5. 最短剩余时间优先算法实验总结在此次模拟过程中,将SRTF单独拿了出来用指针表示,而其余均用数组表示。
完整代码【Srtf.cpp代码如下:】//最短剩余时间优先算法的实现#include<stdio.h>#include<stdlib.h>#include<time.h>typedef struct{int remain_time; //进程剩余执行时间int arrive_time; //进程到达时间int Tp; //进入就绪队列的时间int Tc; //进入执行队列的时间int To; //进程执行结束的时间int number; //进程编号}Process_Block; //定义进程模块typedef struct _Queue{Process_Block PB;struct _Queue *next;}_Block,*Process; //定义一个进程模块队列中结点typedef struct{Process head; //队列头指针Process end; //队列尾指针}Process_Queue; //进程队列Process_Queue PQ; //定义一个全局队列变量int t; //全局时间Process Run_Now; //当前正在运行的进程,作为全局变量void InitQueue(Process_Queue PQ){PQ.head ->next = NULL;PQ.end ->next = PQ.head;}/*初始化队列*/int IsEmpty(Process_Queue PQ){if(PQ.end->next == PQ.head)return 1; //队列空的条件为头指针指向尾指针并且尾指针指向头指针return 0;}/*判定队列是否为空队列*/void EnQueue(Process_Queue PQ,Process P){Process temp =(Process)malloc(sizeof(_Block));temp = PQ.end;temp->next->next = P;PQ.end->next = P;}/*插入队列操作*/Process DeQueue(Process_Queue PQ){if(IsEmpty(PQ))return NULL;Process temp = PQ.head->next;PQ.head->next= temp ->next;if(PQ.end->next == temp)PQ.end->next = PQ.head;return temp;}/*出列操作*/Process ShortestProcess(Process_Queue PQ){if(IsEmpty(PQ)) //如果队列为空,返回{if(!Run_Now)return NULL;elsereturn Run_Now;}Process temp,shortest,prev;int min_time;if(Run_Now) //如果当前有进程正在执行,{shortest = Run_Now; //那么最短进程初始化为当前正在执行的进程,min_time = Run_Now->PB.remain_time;}else//如果当前没有进程执行,{shortest = PQ.head->next; //则最短进程初始化为队列中第一个进程min_time = PQ.head->next->PB.remain_time;}temp = PQ.head;prev = temp;while(temp->next)if(temp->next->PB.remain_time <min_time) //如果当前进程的剩余时间比min_time短,{shortest = temp->next; //则保存当前进程,min_time = shortest->PB.remain_time;prev=temp; //及其前驱}temp=temp->next;}if(shortest == PQ.end->next) //如果最短剩余时间进程是队列中最后一个进程,PQ.end->next = prev; //则需要修改尾指针指向其前驱prev->next = shortest->next; //修改指针将最短剩余时间进程插入到队头return shortest;}/*调度最短剩余时间的进程至队头*/void Run(){Run_Now->PB.remain_time--; //某一时间运行它的剩余时间减return;}/*运行函数*/void Wait(){return ;}int sum(int array[],int n){int i,sum=0;for(i=0;i<n;i++)sum+=array[i];return sum;}int main(){PQ.head = (Process)malloc(sizeof(_Block));PQ.end = (Process)malloc(sizeof(_Block));Run_Now = (Process)malloc(sizeof(_Block));Run_Now =NULL;InitQueue(PQ);int i,N,Total_Time=0; //Total_Time为所有进程的执行时间之和printf("请输入计算机中的进程数目:\n");scanf("%d",&N);Process *P,temp;P = (Process*)malloc(N*sizeof(Process));int *wt,*circle_t;wt =(int*)malloc(N*sizeof(int));circle_t =(int*)malloc(N*sizeof(int));for(i=0;i<N;i++){P[i] = (Process)malloc(sizeof(_Block));P[i]->PB.number =i+1;P[i]->next =NULL;wt[i] =0;circle_t[i] =0;printf("输入第%d个进程的到达时间及剩余执行时间:\n",i+1);scanf("%d %d",&P[i]->PB.arrive_time,&P[i]->PB.remain_time);}for(i=0;i<N;i++)Total_Time+=P[i]->PB.remain_time;printf("\n进程按顺序运行依次为:\n");i=0;int k=0;for(t=0;;t++){if(Run_Now) //如果当前有进程正在执行{Run();if(t == P[i]->PB.arrive_time) //如果当前时间正好有进程进入{if(P[i]->PB.remain_time < Run_Now->PB.remain_time){temp = P[i];P[i] = Run_Now;Run_Now = temp; //则调度它至运行队列中,Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}EnQueue(PQ,P[i]); //并将当前运行进程重新插入队列中P[i]->PB.Tp=t;k++;i=(i+1)>(N-1)?(N-1):(i+1);}if(Run_Now->PB.remain_time == 0) //如果当前进程运行结束,{Run_Now->PB.To=t; //进程运行结束的时间circle_t[Run_Now->PB.number-1] +=t-Run_Now->PB.arrive_time;free(Run_Now); //则将它所占资源释放掉,Run_Now =NULL; //并修改Run_Now为NULLRun_Now = ShortestProcess(PQ); //从就绪队列中调出最短剩余时间进程至队头,if(!Run_Now) //如果队列为空,转为等待状态{if(IsEmpty(PQ) && k >= N) break;Wait();continue;}else{Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}}}else//如果当前运行进程为空,那么{if(t == P[i]->PB.arrive_time) //如果正好这时有进程入队{k++;EnQueue(PQ,P[i]);Run_Now = DeQueue(PQ); //则直接被调入运行队列中Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;printf("%d ",Run_Now->PB.number);i=(i+1)>(N-1)?(N-1):(i+1);}else{Wait();continue;}}}printf("\n");printf("平均等待时间是:\n%f\n",((float)sum(wt,N))/N);printf("平均周转时间是:\n%f\n",((float)sum(circle_t,N))/N);return 0;}//////////////////////////////////////////////////////【Process.cpp代码如下:】#include<iostream>#include<string>using namespace std;class Process{public:string ProcessName; // 进程名字int Time; // 进程需要时间int leval; // 进程优先级int LeftTime; // 进程运行一段时间后还需要的时间};void Copy ( Process proc1, Process proc2); // 把proc2赋值给proc1 void Sort( Process pr[], int size) ; // 此排序后按优先级从大到小排列void sort1(Process pr[], int size) ; // 此排序后按需要的cpu时间从小到大排列void Fcfs( Process pr[], int num, int Timepice); // 先来先服务算法void TimeTurn( Process process[], int num, int Timepice); // 时间片轮转算法void Priority( Process process[], int num, int Timepice); // 优先级算法void main(){int a;cout<<endl;cout<<" 选择调度算法:"<<endl;cout<<" 1: FCFS 2: 时间片轮换 3: 优先级调度 4: 最短作业优先 5: 最短剩余时间优先"<<endl;cin>>a;const int Size =30;Process process[Size] ;int num;int TimePice;cout<<" 输入进程个数:"<<endl;cin>>num;cout<<" 输入此进程时间片大小: "<<endl;cin>>TimePice;for( int i=0; i< num; i++){string name;int CpuTime;int Leval;cout<<" 输入第"<< i+1<<" 个进程的名字、cpu时间和优先级:"<<endl;cin>>name;cin>> CpuTime>>Leval;process[i].ProcessName =name;process[i].Time =CpuTime;process[i].leval =Leval;cout<<endl;}for ( int k=0;k<num;k++)process[k].LeftTime=process[k].Time ;//对进程剩余时间初始化cout<<" ( 说明: 在本程序所列进程信息中,优先级一项是指进程运行后的优先级!! )";cout<<endl; cout<<endl;cout<<"进程名字"<<"共需占用CPU时间 "<<" 还需要占用时间 "<<" 优先级"<<" 状态"<<endl;if(a==1)Fcfs(process,num,TimePice);else if(a==2)TimeTurn( process, num, TimePice);else if(a==3){Sort( process, num);Priority( process , num, TimePice);}else// 最短作业算法,先按时间从小到大排序,再调用Fcfs算法即可{sort1(process,num);Fcfs(process,num,TimePice);}}void Copy ( Process proc1, Process proc2){proc1.leval =proc2.leval ;proc1.ProcessName =proc2.ProcessName ;proc1.Time =proc2.Time ;}void Sort( Process pr[], int size) //以进程优先级高低排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.leval<pr[j-1].leval){pr[j] = pr[j-1];j--;}pr[j] = temp;} // 直接插入排序后进程按优先级从小到大排列for( int d=size-1;d>size/2;d--){Process temp;temp=pr [d];pr [d] = pr [size-d-1];pr [size-d-1]=temp;} // 此排序后按优先级从大到小排列}/* 最短作业优先算法的实现*/void sort1 ( Process pr[], int size) // 以进程时间从低到高排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.Time < pr[j-1].Time ){pr[j] = pr[j-1];j--;}pr[j] = temp;}}/* 先来先服务算法的实现*/void Fcfs( Process process[], int num, int Timepice){ // process[] 是输入的进程,num是进程的数目,Timepice是时间片大小while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}else if(process[num-1].LeftTime==0){cout<<" 进程"<<process[num-1].ProcessName<< " 已经执行完毕!"<<endl;num--;}else{cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice; process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<""<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<""<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval<<" 等待"<<endl; ;}} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 时间片轮转调度算法实现*/void TimeTurn( Process process[], int num, int Timepice){while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}if( process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}else if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<""<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<""<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待"<<endl;}Process temp;temp = process[0];for( int j=0;j<num;j++)process[j] = process[j+1];process[num-1] = temp;} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 优先级调度算法的实现*/void Priority( Process process[], int num, int Timepice){while( true){if(num==0){cout<< "所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程" << process[0].ProcessName <<" 已经执行完毕! "<<endl; for( int m=0;m<num;m++)process[m] = process[m+1]; //一个进程执行完毕后从数组中删除num--; // 此时进程数目减少一个}if( num!=1 && process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕!"<<endl;num--;}if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl; // 输出其他进程for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval ;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待 "<<endl;}} // elseSort(process, num);cout<<endl;system(" pause");cout<<endl;} // while}。
实验一 处理机调度实验报告
实验一处理机调度实验报告一、实验目的处理机调度是操作系统中的一个重要组成部分,其目的是合理地分配处理机资源,以提高系统的性能和效率。
本次实验的主要目的是通过模拟处理机调度算法,深入理解不同调度算法的工作原理和性能特点,并能够对它们进行比较和分析。
二、实验环境本次实验使用了以下软件和工具:1、操作系统:Windows 102、编程语言:Python3、开发环境:PyCharm三、实验内容1、先来先服务(FCFS)调度算法先来先服务调度算法按照作业或进程到达的先后顺序进行调度。
即先到达的作业或进程先得到处理机的服务。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度运行时间短的作业或进程。
在实现过程中,需要对作业或进程的运行时间进行预测或已知。
3、高响应比优先(HRRN)调度算法高响应比优先调度算法综合考虑作业或进程的等待时间和运行时间。
响应比的计算公式为:响应比=(等待时间+要求服务时间)/要求服务时间。
4、时间片轮转(RR)调度算法时间片轮转调度算法将处理机的时间分成固定大小的时间片,每个作业或进程在一个时间片内运行,当时间片用完后,切换到下一个作业或进程。
四、实验步骤1、设计数据结构为了表示作业或进程,设计了一个包含作业或进程 ID、到达时间、运行时间和等待时间等属性的数据结构。
2、实现调度算法分别实现了上述四种调度算法。
在实现过程中,根据算法的特点进行相应的处理和计算。
3、模拟调度过程创建一组作业或进程,并按照不同的调度算法进行调度。
在调度过程中,更新作业或进程的状态和相关时间参数。
4、计算性能指标计算了平均周转时间和平均带权周转时间等性能指标,用于评估不同调度算法的性能。
五、实验结果与分析1、先来先服务(FCFS)调度算法平均周转时间:通过计算所有作业或进程的周转时间之和除以作业或进程的数量,得到平均周转时间。
在 FCFS 算法中,由于按照到达顺序进行调度,可能会导致长作业或进程长时间占用处理机,从而使平均周转时间较长。
操作系统第13讲:第4章 处理机调度调度算法.ppt
2019/10/31
18
4.6 实时系统调度方算法简介
四、时限调度算法
导语:基本思想是:按用户的时限要求顺序设置优先级,优先
●实时系统所处理的外部任务可分为周期性的与非周期性的两大类。非周期性 任务,存在有一个完成或开始进行处理时限;而周期性任务要求在周期T内 完成或开始进行处理。
2019/10/31
13
4.6 实时系统调度算法简介
一、实时系统的特点
1.有限等待和响应时间(决定性) 2.可靠性高 3.用户可以控制 4.系统纠错能力强,实时系统要求很高的可靠性。
导语:
●实时系统广泛用在移动通信、网络计算、航空航天等领域。os是实时系统中 最重要的部分之一,它负责在用户要求的时限内进行事件处理和控制。
●实时系统与其他系统的最大区别:处理和控制的正确性不仅取决于计算的逻 辑结果,而且取决于计算和处理结果产生的时间。因此,实时系统的调度, 即把给定的任务,按所要求的时限调配到相应的设备上处理完成。根据实 时系统对处理外部事件的时限要求,分为硬、软实时任务。 ◆硬实时任务要求系统必须完全满足任务的时限要求。 ◆软实时任务允许时限要求有一定的延迟,时限要求只是一个相对条件。
注意P90: 周转T、完成T、提交T、带权周转T等概念在公式中的含义。 ●分析结论:P3 执行的时间非常短,但等待时间过长,显然是不合理的。
2019/10/31
3
4.4 调度算法
二、短作业或短进程调度算法(SJF)
1. 适应范围:作业或进程 2. 原则:选取最短作业或进程进行执行 3. 优点:当短作业或短进程较多时,系统效率较高 4. 缺陷:对长作业不利,设有考虑优先级
操作系统实验一处理机调度算法的实现
操作系统实验一处理机调度算法的实现操作系统中的处理机调度算法是为了合理地分配和利用处理器资源,提高系统的性能和响应速度。
这些算法主要用于决定下一个要执行的进程或线程。
在本篇文章中,我们将介绍几种常见的处理机调度算法以及它们的实际应用。
首先,我们要了解什么是处理机调度算法。
处理机调度是指从就绪队列中选择一个进程,并分配处理机给它。
调度算法的目标是合理地选择进程,以达到最佳的系统性能指标。
这些指标可以包括响应时间、吞吐量、公平性等。
最简单的调度算法是先来先服务(FCFS)。
这种算法按照进程到达的顺序来进行调度。
当一个进程完成后,下一个进程在队列头被选中执行。
FCFS算法的优点是实现简单,但缺点是不考虑进程的执行时间,导致平均等待时间较长。
FCFS主要用于批处理环境中,例如打印任务的排队。
另一种常见的调度算法是短作业优先(SJF)。
这种算法选择剩余执行时间最短的进程进行调度。
为了实现SJF算法,系统需要预测进程的执行时间,这可能是一个难题。
SJF算法的优点是能够最小化平均等待时间,但缺点是可能导致长作业的饥饿。
SJF算法主要用于交互式系统或具有预测性能的任务。
另一个常见的调度算法是轮转调度(RR)。
这种算法将处理机时间分成一定大小的时间片(时间片就是一段处理器运行的时间),每个进程在一个时间片内执行,然后进入队列尾部等待。
轮转调度算法的目的是实现公平性,每个进程都有机会被执行。
RR算法的优点是能够减少各个进程的响应时间,但缺点是可能造成高负载下的处理机浪费。
RR算法主要用于实时系统或多用户环境。
另一个调度算法是最高响应比优先(HRRN)。
响应比是指进程等待时间与预计执行时间的比率。
HRRN算法选择响应比最高的进程进行调度。
这种算法考虑了等待时间和执行时间的权衡,能够实现较好的性能。
但是,HRRN算法计算响应比需要实时监测和更新进程的等待时间和执行时间。
HRRN算法适用于交互式或多用户系统。
还有一种常见的调度算法是最短剩余时间优先(SRTF)。
基于时间片轮转法调度算法模拟
操作系统课程设计报告课程设计题目:基于时间片轮转法调度算法模拟姓名:学号:专业:计算机科学与技术班级:指导教师:小辉2013 年1月11日目录一.课程设计目的与内容 (1)二.任务分析 (2)三.概要分析 (3)四.详细设计 (4)五.运行结果 (6)六.总结 (7)七.附录 (8)八.评分表 (11)一.课程设计目的与内容1.课程设计目的(1)在单处理器情况下按时间片轮转算法实现处理器调度,输出运行动态变化过程。
(2)通过算法的实现加深了解处理器调度的工作。
2.课程设计内容输入实现处理器调度的几个进程信息,任意确定一组“要求运行时间”,启动所设计的处理器调度程序,显示逐次被选中进程的进程名以及进程控制块的动态变化过程。
二、任务分析时间片轮转的主要思想就是按顺序为每一个进程一次只分配一个时间片的时间。
算法要完成的功能就是将各个进程按照时间片轮转运行的动态过程显示出来。
时间片轮转算法的主要实现过程是首先为每一个进程创建一个进程控制块,定义数据结构,说明进程控制块所包含的内容,有进程名、进程所需运行时间、已运行时间和进程的状态以及指针的信息。
实现的过程即运用指针指向某一个进程,判断当前的进程是否是就绪状态“r”,如果是,则为该进程分配一个时间片,同时,已运行时间加一且要求运行的时间减一,如此循环执行,当某一个进程的所需要运行的时间减少至0时,则将该进程的状态设置为“e”。
然后,将指针指向下一个未运行完成的进程,重复判断,直至所有的进程都运行结束。
三、概要设计(1)所用数据结构及符号说明#include"stdio.h"#include"conio.h"#include"malloc.h"#include"string.h"#define NULL 0typedef struct PCB{char name[10]; //进程名struct PCB *next; //链指针int need_time; //要求运行时间int worked_time; //已运行时间char condition; //进程状态,只有“就绪”和“结束”两种状态int flag; //进程结束标志}PCB;PCB *front,*rear;int N; //N为进程数(2)主程序的流程图:(3)程序说明:处理器调度总是选择指针指示的进程运行。
CPU调度算法
一、设计目的通过CPU调度相关算法的实现,了解CPU调度的相关知识,通过实现CPU调度算法,理解CPU的管理,以及不同的CPU调度算法实现过程。
体会算法的重要性。
二、设计要求1、编写算法,实现FCFS、非抢占SJF、可抢占优先权调度2、针对模拟进程,利用CPU调度算法进行调度3、进行算法评估,计算平均周转时间和平均等待时间4、调度所需的进程参数由输入产生(手工输入或者随机数产生)5、输出调度结果6、输出算法评价指标三、设计说明1、采用数组、指针2、FCFS先来先服务调度算法是一种最简单的调度算法,当作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个最先进入该队列的作业3、非抢占SJF短作业优先调度算法,是指对短作业有限调度算法。
是从后备队列中选择一个估计运行时间最短的作业将他们调入内存。
4、可抢占优先权调度在这种方式下,系统把处理机分配给优先权最高的进程,使之执行。
但在其执行期间,只要出现另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理及分配给新到的优先权最高的进程。
四、程序流程图。
1、可抢占优先权调度算法2、FCFS3、非抢占SJF五、程序部分1、FCFS#include<>#include<>typedef struct PCB{char name[10];char state;int arrivetime;int starttime;int finishtime;int servicetime;float turnaroundtime;float weightedturnaroundtime;struct PCB *next;}pcb;int time;pcb *head=NULL,*p,*q;void run_fcfs(pcb *p1){time=p1->arrivetime>timep1->arrivetime:time;p1->starttime=time;printf("\n现在时间是%d,开始运行作业%s\n",time,p1->name);time+=p1->servicetime;p1->state="T";p1->finishtime=time;p1->turnaroundtime=p1->finishtime-p1->arrivetime;p1->weightedturnaroundtime=p1->turnaroundtime/p1->servicetime;printf(" 到达时间开始时间服务时间完成时间周转时间带权周转时间\n ");printf("%6d%10d%10d%8d%%\n",p1->arrivetime,p1->starttime,p1->servicetime,p1->finishtime,p1->turnaroundtime, p1->weightedturnaroundtime);}void fcfs(){int i,j;p=head;for(i=0;i<n;i++){if(p->state=='F'){q=p;run_fcfs(q);}p=p->next;}}void getInfo(){int num;printf("\n作业个数:");scanf("%d",&n);for(num=0;num<n;num++){p=(pcb*)malloc(sizeof(pcb));printf("依次输入:进程名到达时间服务时间\n");scanf("%s%d%d",&p->name,&p->arrivetime,&p->servicetime);if(head==NULL){head=p;q=p;time=p->arrivetime;}if(p->arrivetime<time)time=p->arrivetime;q->next=p;p->starttime=0;p->finishtime=0;p->turnaroundtime=0;p->weightedturnaroundtime=0;p->next=NULL;p->state='F';q=p;}}void main(){ system("graftabl 936");printf("先来先服务算法模拟");getInfo();p=head;fcfs();}2、非抢占SJF#include<>#include<>#define MAX 100struct jcb{char name[10];float arrivetime;float starttime;float finishtime;float servicetime;float zztime;float avezztime;};struct jcb a[MAX];void input(jcb *p,int N){ int i;printf("请分别输入\n\t进程名到达时间服务时间\n\n");for(i=0;i<=N-1;i++){printf("请输入第%d个进程信息:",i+1);scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetime);printf("\n");}}void Print(jcb *p, float arrivetime,float servicetime,float starttime,float finishtime,float zztime,float avezztime,int N){int k;printf("调度顺序:");printf("%s",p[0].name);for(k=1;k<N;k++){printf("-->%s",p[k].name);}printf("\n\n");printf("\t\t\t进程信息:\n");printf("\nname\tarrive\tservice\tstart\tfinish\tzz\tavezz\n");for(k=0;k<=N-1;k++){printf("%s\t%\t%\t%\t%\t%\t%\t\n",p[k].name,p[k].arrivetime,p[k].servicetime,p [k].starttime,p[k].finishtime,p[k].zztime,p[k].avezztime);}}void sort(jcb *p,int N){int i,j;for(i=0;i<=N-1;i++)for(j=0;j<=i;j++)if(p[i].arrivetime<p[j].arrivetime){jcb temp;temp=p[i];p[i]=p[j];p[j]=temp;}}void deal(jcb *p, float arrivetime,float servicetime,float starttime,float finishtime,float &zztime,float &avezztime,int N){int k;for(k=0;k<=N-1;k++){if(k==0){p[k].starttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+p[k].servicetime;}else{p[k].starttime=p[k-1].finishtime;p[k].finishtime=p[k-1].finishtime+p[k].servicetime;}}for(k=0;k<=N-1;k++){p[k].zztime=p[k].finishtime-p[k].arrivetime;p[k].avezztime=p[k].zztime/p[k].servicetime;}}void jcbf(jcb *p,int N){ float arrivetime=0, servicetime=0, starttime=0, finishtime=0, zztime=0, avezztime=0;int m,n,next,k,i=0;float min;sort(p,N);for(m=0;m<N-1;m++){if(m==0)p[m].finishtime=p[m].arrivetime+p[m].servicetime;elsep[m].finishtime=p[m-1].finishtime+p[m].servicetime;for( n=m+1;n<=N-1;n++){if(p[n].arrivetime<=p[m].finishtime)i++;}min=p[m+1].servicetime;next=m+1;for(k=0;k<m+i;k++){if(p[k+1].servicetime<min){min=p[k+1].servicetime;next=k+1;}}{jcb temp;temp=p[m+1];p[m+1]=p[next];p[next]=temp;}deal(p,arrivetime,servicetime,starttime,finishtime,zztime,avezztime,N);Print(p,arrivetime,servicetime,starttime,finishtime,zztime,avezztime,N);}}int main(){int N,*b; char ch;while(1){system("CLS");system("graftabl 936");printf("\t\t\t------短作业优先调度算法------\n");printf("输入进程个数:");scanf("%d",&N);if(N>MAX){printf("\t!!输入的作业数目太大,请输入不大于%d的整数\n",MAX); printf("按Q或者q退出程序,按其他任意键继续测试...");ch=getch();if(ch=='Q'||ch=='q'){break;}else continue;}input(a,N);jcb *b=a;jcbf(b,N);printf("按Q或者q退出程序,按其他任意键继续测试...");ch=getch();if(ch=='Q'||ch=='q'){break;}}return 0;getch();}3、可抢占优先权调度算法#include<>#include<>#include<>#include<>#include<>#include<>typedef char string[10];struct task{string name;int arrTime;int serTime;int waiTime;int begTime;int finTime;int turTime;int wTuTime;int priority;int finish;}JCB[10];int num;void input(){int i;system("cls");printf("\n请输入作业数量:");scanf("%d",&num);for(i=0;i<num;i++){printf("\n请输入作业NO.%d:\n",i);printf("作业名称:");scanf("%s",JCB[i].name);printf("到达时间:");scanf("%d",&JCB[i].arrTime);printf("服务时间:");scanf("%d",&JCB[i].serTime);JCB[i].priority=0;JCB[i].finish=0;}}int HRN(int pre){int current=1,i,j;for(i=0;i<num;i++){JCB[i].waiTime=JCB[pre].finTime-JCB[i].arrTime;JCB[i].priority=(JCB[i].waiTime+JCB[i].serTime)/JCB[i].serTime;}for(i=0;i<num;i++){if(!JCB[i].finish){current=i;break;}}for(j=i;j<num;j++){if(!JCB[j].finish){if(JCB[current].arrTime<=JCB[pre].finTime){if(JCB[j].arrTime<=JCB[pre].finTime&&JCB[j].priority>JCB[current].priority) current=j;}else{if(JCB[j].arrTime<JCB[current].arrTime)current=j;if(JCB[j].arrTime==JCB[current].arrTime)if(JCB[j].priority>JCB[current].priority)current=j;}}}return current;}void runing(int i,int times,int pre,int staTime,int endTime){if(times=0){JCB[i].begTime=JCB[i].arrTime;JCB[i].finTime=JCB[i].begTime+JCB[i].serTime;JCB[i].turTime=JCB[i].serTime;JCB[i].wTuTime=;staTime=JCB[i].begTime;}else{if(JCB[i].arrTime>JCB[pre].finTime)JCB[i].begTime=JCB[i].arrTime;elseJCB[i].begTime=JCB[pre].finTime;JCB[i].finTime=JCB[i].begTime+JCB[i].serTime;JCB[i].turTime=JCB[i].finTime-JCB[i].arrTime;JCB[i].wTuTime=JCB[i].turTime/JCB[i].serTime;}if(times==num-1)endTime=JCB[i].finTime;JCB[i].finish=1;}void print(int i,int times){if(times==0){printf("名称到达时间服务时间开始时间完成时间周转时间带权周转时间\n");}printf("%3s%9d%9d%9d%9d%9d%9d\n",JCB[i].name,JCB[i].arrTime,JCB[i].serTime,JCB[ i].begTime,JCB[i].finTime,JCB[i].turTime,JCB[i].wTuTime);}void check(){int i;int staTime,endTime,sumTurTime=,sumWTuTime=,aveturTime,aveWTuTime;int current=0,times=0,pre=0;JCB[pre].finTime=0;for(i=0;i<num;i++){JCB[i].finish=0;}staTime,endTime,sumTurTime=,sumWTuTime=,aveturTime,aveWTuTime;current=0;times=0;pre=0;printf("-------------------------------------------\n");for(i=0;i<num;i++){JCB[i].finish=0;}staTime,endTime,sumTurTime=,sumWTuTime=,aveturTime,aveWTuTime;current=0;times=0;pre=0;printf("-------HRRN-------------------------------------\n");for(times=0;times<num;times++){current=HRN(pre);runing(current,times,pre,staTime,endTime);print(current,times);pre=current;}for(i=0;i<num;i++){sumTurTime+=JCB[i].turTime;sumWTuTime+=JCB[i].wTuTime;}aveturTime=sumTurTime/num;aveWTuTime=sumWTuTime/num;printf("<计与平均值>%9d%9d%9d%9d\n",NULL,sumTurTime,aveturTime,aveWTuTime);printf("-------------------------------------------------------\n");}void main(){char again;system("graftabl 936");do{system("cls");printf("请输入4组数据:");input();check();printf("Continue...(Y/N):");do{again=getch();}while(again!='Y'&&again!='y'&&again!='N'&&again!='n');}while(again=='Y'||again=='y');getch();}六、运行结果七、实验总结1、FCFS算法,即先来先服务,就是每次从就绪队列中选择一个最先进入队列的进程,把CPU分配给它,令它运行。
模拟处理机调度C++代码(附输出图示)
while(Num>100||Num<=0)
{
cout<<"进程个数必须大于0且小于等于100!请重新输入进程个数:";
cin>>Num;
}
cout<<endl<<"——进程的到达时间——"<<endl;
for(i=0;i<Num;i++)
{
cout<<endl<<"请输入第"<<i+1<<"个进程的到达时间:";
int ServiceTime_SJF[Max];//在SJF算法中使用到
int Num=0;
int NowTime=0;//记录当前时间
double SumWT=0,SumWWT=0;//SumWT用来计算总的周转时间,SumWWT用来计算总的帯权周转时间
int i;
int choice;//记录选择
ServiceTime_SJF[i]=data;
}
cout<<endl<<"——调度算法的选择(二选一)"<<endl;
cout<<endl<<"请选择要使用的算法(1-FCFS,2-SJF): ";
cin>>choice;
}
//******************************************************************
//短进程优先算法
//******************************************************************
操作系统进程调度模拟算法附源码
先来先服务(FCFS)
定义:按照进程到 达的先后顺序进行 调度
优点:实现简单, 适用于CPU繁忙型 进程
缺点:等待时间较 长,可能导致饥饿 现象
适用场景:适用于 CPU密集型进程, 不适用于I/O密集 型进程
最短作业优先(SJF)
定义:按照作业的估计运行时间进行排序,选择最短作业优先执行 优点:响应时间快,作业平均等待时间少 缺点:存在饥饿现象,长作业可能长时间得不到执行 适用场景:适用于作业量较大且作业到达时间间隔较长的情况
Part Five
模拟实验结果及分 析
实验环境及参数设置
处理器:Intel Core i78700K
操作系统:Linux
内存:16GB DDR4 硬盘:256GB SSD
实验结果展示
实验数据:模拟算法在不同情况下的运行结果 数据分析:对实验数据进行分析,得出结论 结果对比:将模拟算法与实际操作系统进行对比,分析差异 结果展示:以图表、表格等形式展示实验结果
优先级调度算法
定义:根据进 程的优先级进 行调度,优先 级高的进程优 先获得处理器
资源
分类:静态优 先级调度算法 和动态优先级
调度算法
静态优先级调 度算法:优先 级在进程创建 时就确定,且 在运行过程中
保持不变
动态优先级调 度算法:优先 级根据进程的 行为和需求动
态调整
轮转法(RR)
定义:轮转法是 一种简单且常用 的进程调度算法, 也称为循环调度
算法。
原理:按照进程 到达的先后顺序, 按照固定的时间 片进行循环调度。
特点:每个进程 分配一个固定时 间片,时间片用 完后自动切换到 下一个进程,如 果时间片未用完, 则一直运行直到
最高响应比调度算法代码
实验四模拟处理机HRRN调度算法一、实验目的:用c++设计HRRN调度算法程序。
二、实验内容:本实验随机输入的进程个数、进程名称、进程提交到系统的时间、进程运行所需时间。
通过模拟程序。
显示以下信息:1)处理机对进程的调度过程。
2)计算这N个进程的平均周转时间。
三、HRRN(最高响应比调度算法)原理最高响应比调度:在每次调度作业时,先计算后备队中每个作业的响应比,然后挑选响应比高者投入运行。
响应比R定义:R=(w+S)/S(R:响应比,W=等待时间,S=运行时间)响应比R= 周转时间/ 运行时间=(运行时间+ 等待时间)/ 运行时间= 1 +(等待时间/ 运行时间)四、示例如:输入进程个数:5进程名称到达系统时间所需服务时间A 0 3B 2 6C 4 4D 6 5E 8 2显示运行结果:进程名称到达系统时间所需服务时间开始时间结束时间A 0 3 0 3B 2 6 3 9C 4 4 9 13E 8 2 13 15D 6 5 15 20 5个进程的平均周转时间:(3+7+9+7+14)/5=8五、运行结果六、代码#include <stdio.h> #include <stdlib.h>typedef struct Node {char name[10];int into;int runtime;int start;int finish;int status;int hrrn;int sum;}Node;int select(Node node[],int n) {int i,flag=0;for(i=0;i<n;i++){if(0==node[i].status){flag=1;break;}}if(1==flag)return i;elsereturn -1;}int compute(Node node,int t){return (node.runtime+t-node.into)/node.runtime;}int main(){int n,i,j,max,t=0;Node node[100];printf("输入处理进程的个数:\n");scanf("%d",&n);getchar();printf("进程名称到达系统时间所需服务时间\n");for(i=0;i<n;i++){scanf("%s",node[i].name);scanf("%d",&node[i].into);scanf("%d",&node[i].runtime);getchar();node[i].status=0;if(0==i)node[i].hrrn=0;}while(1){int index;index=select(node,n);int flag=0;if(index==-1)break;max=0;for(i=0;i<n;i++){if(node[i].into<=t&&0==node[i].status){node[i].hrrn=compute(node[i],t);if(0==i)node[i].hrrn=0;if(node[i].hrrn>node[max].hrrn)max=i;flag=1;}}if(1==flag){node[max].start=t;t+=node[max].runtime;node[max].status=1;node[max].finish=t;node[max].sum=node[max].finish-node[max].into;}else{t++;}}for(i=0;i<n-1;i++){for(j=i;j<n-1;j++){if(node[j].finish>node[j+1].finish){Node temp=node[j];node[j]=node[j+1];node[j+1]=temp;}}}printf("进程名称到达系统时间所需服务时间开始时间结束时间\n");double sum=0;for(i=0;i<n;i++){printf("%s%12d%16d%12d%12d\n",node[i].name,node[i ].into,node[i].runtime,node[i].start,node[i].finish);sum+=node[i].sum;}printf("平均周转时间:%.2lf\n",sum/n);return 0;}。
处理机调度算法
处理机调度算法处理机调度算法(CPU Scheduling Algorithm)是操作系统中一个非常重要的概念,它指的是在多个进程需要占用系统处理器的情况下,如何高效地分配时间片,使得每个进程都能得到公平的处理机时间,系统能够充分利用处理器的资源。
算法分类常见的处理机调度算法主要有以下几种:1. 先来先服务(FCFS)调度算法先来先服务是最简单的处理机调度算法。
它的基本思想是,一个进程需要处理时,处理器按照进程提交的顺序进行调度。
即,先提交的进程先执行,等前一个进程执行完后,下一个进程才会被处理。
这种算法的优点是简单易行,缺点是可能导致一些进程等待时间较长。
2. 短作业优先(SJF)调度算法短作业优先是一种非抢占式的算法,它的基本思想是根据每个进程需要处理的总时间长短来排序,先处理需要处理时间较短的作业,这种方法可以最小化平均等待时间。
但是,由于它需要知道每个进程的总执行时间,因此难以实现。
3. 时间片轮转(RR)调度算法时间片轮转是一种抢占式的算法,它的基本思想是将处理机分为时间片,每个进程都可以运行一个时间片,时间片到期后,如果还未结束,则该进程被挂起,另一个就绪进程插入,并重新分配一个时间片。
这种算法能够避免某些进程长时间占用资源,每个进程都能在一定时间内得到处理机的时间。
4. 优先级调度(Priority Scheduling)算法优先级调度是一种非抢占式的算法,它的基本思想是为每个进程设置不同的优先级,进程具有最高优先级的先被处理,如果存在两个相等的进程优先级,那么会使用先来先服务的方式进行处理。
缺点是可能导致低优先级的进程等待时间太长。
5. 多级反馈队列(MFQ)调度算法多级反馈队列是一种复杂的算法,它的基本思想是将所有进程按照其优先级分为多个队列,优先级相同的进程被分成同一个队列,不同队列之间根据时间片大小相差不同。
例如,第一队列的时间片为10ms,第二队列的时间片为20ms,第三队列的时间片为40ms,以此类推。
实验一___处理器调度(设计一个按时间片轮转法实现处理器调度的程序)介绍
实验一处理器调度一、实验内容选择一个调度算法,实现处理器调度。
二、实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。
本实习模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。
三、实验题目第二题:设计一个按时间片轮转法实现处理器调度的程序。
[提示]:(1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。
进程控制块的格式为:其中,Q1,Q2,Q3,Q4,Q5。
指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址最后一个进程的指针指出第一个进程的进程控制块首地址。
要求运行时间——假设进程需要运行的单位时间数。
已运行时间——假设进程已经运行的单位时间数,初始值为“0”。
状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。
当一个进程运行结束后,它的状态为“结束”,用“E”表示。
(2) 每次运行所设计的处理器调度程序前,为每个进程任意确定它的“要求运行时间”。
(3) 把五个进程按顺序排成循环队列,用指针指出队列连接情况。
另用一标志单元记录轮到运行的进程。
例如,当前轮到P2执行,则有:标志单元K1K2K3K4K5PCB1 PCB2 PCB3 PCB4 PCB5(4)处理器调度总是选择标志单元指示的进程运行。
由于本实习是模拟处理器调度的功能,所以,对被选中的进程并不实际的启动运行,而是执行:已运行时间+1来模拟进程的一次运行,表示进程已经运行过一个单位的时间。
请同学注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片。
在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。
(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告设计名称:模拟实现一种处理机调度算法学生姓名: xxx专业:计算机科学与技术班别: xxxxxxxx 学号: xxxxxx 指导老师: xxxxx日期: 2014 年 6 月 20 日初始条件:1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.模拟进程调度,能够处理以下的情形:⑴能够选择不同的调度算法(要求中给出的调度算法);⑵能够输入进程的基本信息,如进程名、优先级、到达时间和运行时间等;⑶根据选择的调度算法显示进程调度队列;⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。
2.设计报告内容应说明:⑴需求分析;⑵功能设计(数据结构及模块说明);⑶开发平台及源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他方法(如果有,简要说明该方法);进程调度模拟设计——先来先服务、优先级法1、背景:当计算机系统是多道程序设计系统时,通常会有多个进程或线程同时竞争CPU。
只要有两个或更多的进程处于就绪状态,这种情形就会发生。
如果只有一个CPU可用,那么就必须选择下一个要运行的进程。
在操作系统中,完成选择工作的这一部分称为调度程序,该程序使用的算法成为调度算法。
进程调度的核心问题是采用什么样的算法把处理机分配给进程,好的算法将提高资源利用率,减少处理机的空闲时间,避免有些作业长期得不到相应的情况发生等,从而设计出受欢迎的操作系统。
较常见的几种进程调度算法有:先来先服务调度算法;短作业优先调度算法;时间片轮转调度算法;优先级调度算法;高响应比优先算法和多级反馈队列调度算法等。
2.1设计目的无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。
另外,系统进程也同样需要使用处理机。
这就要求进程调度程序按一定的策略,动态地把处理机初始 就绪 等待 执行 终止 调度 完成等待某个事件发生而睡眠时间片到 因等待事件发生而唤醒 分配给处于就绪队列中的某一个进程,以使之执行。
本次课程设计的主要任务是用高级语言模拟进程调度的算法,包括先来先服务和优先级法。
通过输入进程的信息,模拟某种调度算法,得到进程调度的顺序,从而进一步分析进程的调度过程,并通过分析程序的运行,探讨各种调度算法的优劣。
2.2 设计内容及要求1)充分体现设计、实现过程;2)报告包括算法流程描述、数据结构代码描述、算法实现代码描述、模拟执行过程截图;3)单人完成课程设计,每人一份报告;4)报告双面打印;2.3 算法与设计的思想2.3.1 算法思想:·一个进程的生命期可以划分为一组状态,这些状态刻画了整个进程。
系统根据PCB结构中的状态值控制过程。
在进程的生命期内,一个进程至少具有5种基本状态,它们是:初始态、执行状态、等待状态、就绪状态和终止状态。
通过系统设计,实现进程相关数据结构的创建和查看功能;实现多种进程调度算法:先来先服务算法、优先级调度算法、时间片轮转法等;实现对执行进程的阻塞,对等待进程的唤醒等功能。
进程的转换过程如上·进程的先来先服务调度算法:首先定义进程结构体,用于记录进程的基本信息,包括进程名,优先级,进程到达时间,进程运行时间,然后将用户输入的进程信息保存到定义的结构数组中,并按进程到达的先后时间对数组进行排序,并记录它们的周转时间、带权周转时间、平均周转时间及平均带权周转时间。
·进程的优先级调度算法:同样先定义进程结构替,记录进程信息,将用户输入的进程信息保存在结构体数组中。
遍历数组,找出最先到达的进程,若有多个,则取优先级最高的一个,与数组中的第一个位置的进程互换位置,记录此进程执行完的时间,然后从第二个位置开始遍历数组,找到在第一个进程执行结束前到达的进程,若没有,则找到余下进程中到达时间最早的进程,找到优先级最高的一个,若并与数组的第二个位置的进程互换位置。
按同样的方法为余下的进程排序。
同样记录它们的周转时间,带权周转时间,并算出平均周转时间和平均带权周转时间。
2.3.2设计思想:a)每个进程有一个进程控制块(PCB)表示。
进程控制块可以包含如下信息:进程名、优先级数、到达时间、需要运行时间等等。
b)进程的信息,包括到达时间,优先数及需要的运行时间等都是事先人为地指定。
c)每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。
2、功能设计(数据结构及模块说明);3.1 系统流程如下:输入判断先来先服务优先级法是输出是否继续否结束3.2数据结构及模块说明:(1)输入模块能够满足输入进程基本信息的功能,尽可能提供友好的交互界面。
给用户很好的提示,使用户能够方便的操作。
(2)算法模块先来先服务算法:可以根据进程到达的先后顺序来确定进程的运行顺序,并算出进程的周转时间,平均周转时间等。
优先级法:根据进程的优先级和进程到达的时间来确定进程的调度顺序,并算出周转时间,带权周转时间等。
(3)输出模块根据算法得到的进程调度顺序以及算出的其他参数,将其输出。
3、开发平台及源程序的主要部分;4.1软硬件环境●硬件设备: PC机●软件设备:WINDOWSXP、Microsoft Visual C++ 6.04.2 源代码主要部分:(1)信息输入函数:void getInput(char *pname,int *priority,char *begintime,float *runtime) {printf("请输入进程名:");scanf("%s",pname);printf("请输入优先级");scanf("%d",priority);printf("请输入到达时间:");scanf("%s",begintime);printf("请输入¨运行时间(min):");scanf("%f",runtime);}(2)先来先服务的算法:void fcfs(struct process *pro,int n){int i,j;struct process p;for(i = 0;i < n;i ++){for(j = 0;j < n - i -1;j ++){if(!timecompare(pro[j],pro[j+1])){p = pro[j + 1];pro[j + 1] = pro[j];pro[j] = p;}}}}(3)优先级法的算法:void prior(struct process *pro,int n) {int i,j,pt,t,bt,m;bt = 0;int a[MAXPROCESS];struct process p;float curtime = 1500;for(i = 0;i < n;i ++){if(curtime > pro[i].btime){curtime = pro[i].btime;}}for(i = 0;i < n;i ++){t = 0;pt = 0;for(j = i;j < n;j++){if(pro[j].btime <= curtime){a[t++] = j;}}if(t == 0){curtime = 1500;for(j = i;j < n;j ++){if(curtime > pro[j].btime){curtime = pro[j].btime;}}for(j = i;j < n;j++){if(pro[j].btime <= curtime){a[t++] = j;}}}for(j = 0;j < t;j++){bt = a[j];if(pro[bt].priority > pt){pt = pro[bt].priority;m = bt;}}if(m != i){p = pro[m];pro[m] = pro[i];pro[i] = p;}curtime = curtime + pro[i].runtime;}}4、测试用例,运行结果与运行情况分析;5.1测试用例:①进程个数为4②进程名唯一③预计运行结果:先来先服务:c a d b优先级法:c a b d进程名进程到达时间运行时间优先级a 2:12 34 2b 3:10 31 3c 1:15 21 1d 2:13 11 25.2运行结果:。