数字电路脉冲信号的产生与整形
脉冲信号产生和整形
![脉冲信号产生和整形](https://img.taocdn.com/s3/m/af7d8ecac5da50e2534d7f05.png)
施密特触发器
方案二:采用施密特触发器构成的温度控制系统
温度
vt 1
vO
冰箱
传感器
压缩机
1V/oC
实际温控波形 vt
0
vO
6V (6℃)
2V (2℃) t
0
t
脉冲信号产生和整形
施密特触发器 应用举例
思考题
试举出施密特触发器在实际生活中的应用 实例,并尽可能说明其原理。
脉冲信号产生和整形
单稳态触发器
什么是单稳态触发器?
例子——楼道灯控制系统 有两种状态:0态和1态,但只有一种状态能长久保持,
故名单稳态触发器。
单稳态触发器的特点: (1)有稳态和暂稳态两种状态; (2)平时处于稳态,在外部触发脉冲作用下,由稳态进入
暂稳态; (3)暂稳态维持一定时间后自动回到稳态。
脉冲信号产生和整形
单稳态触发器的分类
三角波: 锯齿波:
脉冲信号产生和整形
脉冲信号的基本参数
二、脉冲信号的参数
v
0
Tw
Vm t
Vm 幅值 T 脉冲周期
T f=1/T 频率
Tw 脉冲宽度 q=TW/T 占空比
脉冲信号产生和整形
施密特触发器
什么是施密特触发器? 施密特触发器是具有滞后特性的数字传输门。 施密特触发器特点:
(1)输出有两种状态(输出为数字信号); (2)输入采用电平触发; (3)对于正向和负向增长的输入信号,电路有不同的阈值 电平(VT+和VT-)。
脉冲信号产生和整形
施密特触发器
逻辑符号
1
vI
vO
1
vI
vO
同相传输
反相传输
施密特触发器的电压传输特性
数字电子技术基础第五版第九章-阎石、王红、清华大学
![数字电子技术基础第五版第九章-阎石、王红、清华大学](https://img.taocdn.com/s3/m/9a3b793259fafab069dc5022aaea998fcc2240d0.png)
10.3.2 集成单稳态触发器 电路结构与工作原理 (74 121)
《数字电子技术基础》第五版 微分型单稳
控制附加电路
《数字电子技术基础》第五版
使用外接电阻
使用内接电阻
《数字电子技术基础》第五版
《数字电子技术基础》第五版
10.4 多谐振荡器(自激振荡, 不需要外加触发信号) 10.4.1 对称式多谐振荡器 一、工作原理(TTL) (1)静态(未振荡) 时应是不稳定的
通过调整R、C改f(R不能太大) RC常数远大于Tpd ,因此周期主要计算RC环节
《数字电子技术基础》第五版
10.4.4 用施密特触发器构成的多谐振荡器
T
T1
+ T2
RC
ln VDD VDD
-VT -VT +
+
RC ln VDD VDD
-VT + -VT -
T
T1
+ T2
R2C
ln
VDD VDD
充电至VI 2 VTH时,VI 2 又引起正反馈 VI 2 VO VO1
电路迅速返回稳态VO 0,VO1 VDD, C放电至没有电压,恢复稳态。
2.性能参数计算 输出脉冲宽度 输出脉冲幅度 恢复时间 分辨时间
《数字电子技术基础》第五版
《数字电子技术基础》第五版
tw
RC lnV() -V(0) V() -V(t)
TD
0 X X 0 导通
1
2 3 VCC
1 3VCC
0
导通
1
2 3
VCC
1 3 VCC
不变
不变
1
2 3
VCC
1 3
VCC
1
第十章——脉冲波形的产生与整型
![第十章——脉冲波形的产生与整型](https://img.taocdn.com/s3/m/4aa623b0d1f34693daef3e67.png)
电路结构
vO
1
vO 1 D vI2 R G2
vI
vO1 G1 1 Cd vd Rd C 1
vO G2
G1 vI Cd
& vd Rd
C vC
D v I2 v C R VDD
(CMOS门,与非,负脉冲触发)
(CMOS门,或非,正脉冲触发)
1、CMOS或非门电路构成的微分型单稳态触发器 (1)电路结构 正脉冲触发 (2)工作原理分析 解决三个问题: ①什么是稳态? ②如何在外部触 发脉冲作用下,由 稳态进入暂态?
vI
同相ST传输特性
反相ST传输特性
10.2 施密特触发器
4、施密特触发器应用
1. 波形变换
vI
0
vO1 VOH
VT VT
t
vo
0
t
vI
VOL o
VT_ VT+
2. 波形整形
vI
vI VT+ VT– 0 vO VOH VOL 0
1
vO
vI vI VT+ VT–
t
1
vO
0 vO VOH VOL 0
(3)当VI 1 至VTH , 又返回第一个暂稳态。
二、电压波形
脉冲宽度计算: TW T1 T2 T1 : C放电,从VTH VDD 放至VTH T2 : C充电,从VTH VDD 充至VTH
V( ) V( 0) tw RC ln V( ) V( t )
【题10-1】 在图题10-1所示的电路中,已知R1=10kW,R2=30kW, 其中CMOS非门电路的电源电压VCC=6V。 ① 计算该电路的正向阈值电压VT+、负向阈值电压VT-和回差电压ΔVT。 ② 画出该电路的传输特性曲线。
7脉冲波形的产生与整形电路
![7脉冲波形的产生与整形电路](https://img.taocdn.com/s3/m/50f56ec8551810a6f4248618.png)
图
脉冲定时
EXIT
数模和模数转换器
7.3 施密特触发器
主要用途:把变化缓慢的信号波形变换为边沿 陡峭的矩形波。 特点: ⑴电路有两种稳定状态。两种稳定状态的维持 和转换完全取决于外加触发信号。触发方式:电平 触发。 ⑵电压传输特性特殊 ,电路有两个转换电平 (上限触发转换电平UT+和下限触发转换电平UT-)。 ⑶状态翻转时有正反馈过程,从而输出边沿陡 峭的矩形脉冲。
脉冲信号。
EXIT
数模和模数转换器
7.1 多谐振荡器
1.多谐振荡器没有稳定状态,只有两个暂稳态。
2.通过电容的充电和放电,使两个暂稳态相互交
替,从而产生自激振荡,无需外触发。
3.输出周期性的矩形脉冲信号,由于含有丰富的
谐波分量,故称作多谐振荡器。
EXIT
数模和模数转换器
7.1.1 矩形脉冲的主要参数 1. 常见的脉冲波形 脉冲波形是指突变的电流和电压的波形。
图7-1 常见的脉冲波形图 EXIT
数模和模数转换器
2. 矩形波及其参数
数字电路中用得最多的是矩形波。矩形波
有周期性与非周期性两种。
图7-2 非周期性和周期性矩形波 (a) 非周期性 (b) 周期性 EXIT
数模和模数转换器
图7-3 矩形波的主要参数
周期性矩形波的 周期用T表示,有时 也用频率f表示(f =1/ T)。 矩形波的另外几 个主要参数:
前面介绍的多谐振荡器的一个共同特点就是振 荡频率不稳定,容易受温度、电源电压波动和RC参
数误差的影响。
而在数字系统中,矩形脉冲信号常用作时钟信
号来控制和协调整个系统的工作。因此,控制信号
频率不稳定会直接影响到系统的工作,显然,前面
脉冲电路的产生和整形电路
![脉冲电路的产生和整形电路](https://img.taocdn.com/s3/m/2b7cfcf5f424ccbff121dd36a32d7375a417c6e9.png)
2
3.几种常见的脉冲波形
常见的波形有矩形波、锯齿波、钟形波、尖峰波、阶梯波等。
3
如何获得矩形脉冲信号? (1)利用整形电路对不符合要求的脉冲信号 进行整形;
(2)利用脉冲振荡器直接产生脉冲信号;
矩形脉冲的特性: 为了定量描述矩形脉冲的特性通常给出几个主要参数。
2)暂稳态: ui负脉冲到来时刻,因ui<VCC/3为0, uc 仍为0, ∴ uo由0变为1,放电管T截止,VCC经R对C充电,电路进入暂稳态。
3)暂稳态自动恢复到稳态:当uc充电到2VCC/3为1时, ui负脉冲已消 失ui =1, ∴输出uo=0,T导通,C放电,电路自动恢复到稳态。
VCC
ui
0 twH twL
t
电路
工作波形
接通VCC后,VCC经R1和R2对C充电。当uc上升到2VCC/3时,uo=0, T导通,C通过R2和T放电,uc下降。当uc下降到VCC/3时,uo又由0 变为1,T截止,VCC又经R1和R2对C充电。如此重复上述过程,在 输出端uo产生了连续的矩形脉冲。
2.电路组成、工作原理
振荡后,电路没有稳态,只有两个暂稳态在作交替变化, 是无稳态电路。
属于脉冲产生电路。
二.电路组成、工作原理
1、方法
①先构成施密特触发器; ②加R2在VI和VO之间,VI 和地之间接C;
2.电路组成、工作原理
VCC
uc
R1
84
2VCC/3
7
3
uo
VCC/3
R2
6 555
0
t
uc
2
5
uo
C
1
0.01μF
脉冲波形的产生与变换
![脉冲波形的产生与变换](https://img.taocdn.com/s3/m/842eea84a2161479171128a2.png)
脉冲波形的产生与变换脉冲信号是数字电路中最常用的工作信号。
脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。
这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。
这一类电路包括单稳态触发器和施密特触发器。
这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。
下面先来介绍由集成门构成的脉冲信号产生和整形电路。
9.1 多谐振荡器自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。
由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。
多谐振荡器通常由门电路和基本的RC电路组成。
多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。
9.1.1门电路组成的多谐振荡器多谐振荡器常由TTL门电路和CMOS门电路组成。
由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。
(1)由TTL门电路组成的多谐振荡器由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。
①简单环形多谐振荡器uo(a) (b)图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。
图9-1(a)为由三个非门构成的多谐振荡器。
若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。
图9-1(b)为各点波形图。
简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。
改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。
脉冲波形的产生与整形详解
![脉冲波形的产生与整形详解](https://img.taocdn.com/s3/m/e65e20f3240c844769eaee5e.png)
④CMOS型555在传输过渡时间里产生的尖 峰电流小,仅为2~3mA;而双极型555的尖峰电 流高达300~400mA。 ⑤CMOS型555的输人阻抗比双极型的要高 出几个数量级,高达1010Ω。 ⑥CMOS型555的驱动能力差,输出电流仅 为1~3mA,而双极型的输出驱动电流可达200mA.
一般说来,在要求定时长、功耗小、负载轻的场 合宜选用CMOS型555;而在负载重、要求驱动电流 大、电压高的场合,宜选用双极型的555。
二、用门电路组成的施密特触发器
将两级反相器串接起来,同时通过分压电阻把输出端的 电压反馈到输入端,就构成了施密特触发器电路。 CMOS门,阈值电压
1 VTH VDD,且R1 R2 2
R2
vI
R1
1
v O1
1 G2
vO
' vO
v 'I
G1
6.3.3 用CMOS反相器构成的施密特触发器
6.3.4 图6.3.3电路的电压传输特性 (a)同相输出 (b)反相输出
单稳态触发器
单稳态触发器的工作特性具有如下的显著特点: (1)电路在无外加触发信号作用期间,处于稳态; (2)在外界触发脉冲作用下,能从稳态翻转到暂稳 态,在暂稳态维持一段时间以后,再自动返回 稳态; (3)暂稳态维持时间的长短取决于电路本身的参数 (阈值电压及外接R、C),与触发脉冲的宽度和 幅度无关。
§6.3
施密特触发器
Schmitt Trigger
施密特触发器(电路)是一种特殊的双稳态时序 电路,与一般双稳态电路比较,它具有两个明显的特点: 1.施密特触发器是一种优良的波形整形电路, 只要输入信号电平达到触发电平,输出信号就会从一 个稳态转变到另一个稳态,且通过电路内部的正反馈 过程可使输出电压的波形变得很陡。 2.对正向和负向增长的输入信号,电路有不同 的阈值电平,这是施密特触发器的滞后特性或回差特 性,提高了干扰能力,可有效滤除噪声。
脉冲信号的产生与整形
![脉冲信号的产生与整形](https://img.taocdn.com/s3/m/3008d46ab80d6c85ec3a87c24028915f804d8424.png)
1
2
电阻R1、R2的作用是保证两个反相器在静态时都能工作在线性放大区。对TTL反相器,常取R1=R2=R=0.7 kΩ~2kΩ,而对于CMOS门,则常取R1=R2=R=10kΩ~100kΩ;C1=C2=C是耦合电容,它们的容抗在石英晶体谐振频率f0时可以忽略不计;石英晶体构成选频环节。
01
振荡频率等于石英晶体的谐振频率f0。
多谐振荡器可以由门电路构成,也可以由555定时器构成。由门电路构成的多谐振荡器和基本RS触发器在结构上极为相似,只是用于反馈的耦合网络不同。RS触发器具有两个稳态,多谐振荡器没有稳态,所以又称为无稳电路。 在多谐振荡器中,由一个暂稳态过渡到另一个暂稳态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外加触发脉冲。多谐振荡器的振荡周期与电路的阻容元件有关。
ΔUT= UT+-UT-
回差电压(滞后电压):
前面介绍的施密特触发器的回差电压为: ΔUT=UT+-UT-=UT-(UT-UD)=UD= 0.7V 缺点是回差太小,且不能调整。
下限阈值电压
集成施密特触发器
4.3.2 由555定时器构成的施密特触发器
4.3.3 施密特触发器的应用
本节小结:
01
02
74121的输出脉冲宽度:
TR-A、TR-B是两个下降沿有效的触发信号输入端,TR+A、TR+B是两个上升沿有效的触发信号输入端。Q和是两个状态互补的输出端。Rext/Cext、Cext、Rin3个引出端是供外接定时元件使用的,外接定时电阻R(R=5kΩ~50kΩ)、电容C(无限制)的接法与74121相同。RD为直接复位输入端,低电平有效。 当定时电容C>1000pF时,74122的输出脉冲宽度: tp≈0.32RC
几种常用的脉冲波形的产生和整形电路
![几种常用的脉冲波形的产生和整形电路](https://img.taocdn.com/s3/m/869d0ec48662caaedd3383c4bb4cf7ec4afeb609.png)
锯齿波
边缘斜率匀速增加,常用于 信号发生器和音乐合成。
脉冲波形产生方式
1
基于定时器
利用微控制器或集成电路中的定时器来产生精确的脉冲波形。
2
基于电荷泵
利用电荷泵电路将电荷存储并释放,产生高频率的脉冲波形。
ห้องสมุดไป่ตู้
3
基于脉冲变换
利用放大和滤波电路将正弦波形转换为脉冲波形。
整形电路概述
整形电路用于将输入的不规则波形转换为规则的脉冲波形,提高信号质量和 准确性。
常见的整形电路类型
低通滤波器
去除高频噪声,保留低频成分。
施密特触发器
将输入的不稳定波形转换为稳定的方波输出。
微分器
输出与输入信号的斜率成正比的脉冲信号。
积分器
输出与输入信号积分值成正比的脉冲信号。
整形电路工作原理
整形电路通过调整信号的幅度、频率或相位,将输入波形转换为所需的脉冲 波形。
应用案例和总结
几种常用的脉冲波形的产 生和整形电路
脉冲波形广泛应用于电子领域,本演讲将介绍常见的脉冲波形种类、产生方 式以及整形电路类型和工作原理。
脉冲波形概述
脉冲波形是一种非周期性的电信号,具有高幅度且持续时间短暂的特点。
常用脉冲波形种类
方波
具有快速上升和下降的边缘, 常用于数字电路和通信系统。
脉冲状波
持续时间非常短暂,常用于 雷达和高速数据传输。
数字电子技术第5单元脉冲信号产生和变换电路
![数字电子技术第5单元脉冲信号产生和变换电路](https://img.taocdn.com/s3/m/dfe97b2831126edb6f1a10fe.png)
• 该电路的暂稳态时间即定时时间为 T=(0.7~1.3)RC
2.由或非门构成的单稳态电路
• 图5-7是由或非门构成的单稳态电路。
• 平时第二个或非门(此处连接成非门状 态)的输入端通过电阻R成为高电平,所 以它的输出是低电平。 • 该低电平又送到第一个或非门的一个输 入端B上。
图5-7 由或非门构成的于将波 形变陡峭,以形成定宽、定幅的脉冲信号。
5.2 单稳态触发器
5.2.1 分立元件微分型单稳电路
• 图5-5是一种典型的分立元件集基耦合微 分型单稳电路。 • 该电路也是由两级反相器交叉耦合而成 的正反馈电路。
图5-5 分立元件集基耦合微分型单稳电路
• 它的一部分电路结构与多谐振荡器十分 相似,另一部分电路结构又和双稳电路十 分相似,再加上该电路也有一个微分触发 电路。 • 由此可见,它是由半个无稳态电路和半 个双稳态电路组合而成的,所以该电路有 一个稳态和一个暂稳态。
4.下降时间tf
• 下 降 时 间 是 指 脉 冲 后 沿 从 0.9Um 下 降 至 0.1Um时所需要的时间,用tf来表示。
5.脉冲宽度tW
• 脉冲宽度是指从脉冲前沿0.5Um处开始, 到脉冲后沿下降到0.5Um为止的宽度,又称 为半值脉冲宽度,用tW来表示。
• 有时也可以用上升沿与下降沿0.1Um之间 的宽度来表示脉冲宽度。
图5-1 由分立元器件多谐振荡器构成的低电压土壤 缺水告知电路
• 图5-2则是由集成块双稳态电路与多谐振 荡器构成的双闪灯电路。
• 该电路中的IC1-1与IC1-2、RP1等组成了 多谐振荡器,IC2构成了双稳态电路。
图5-2 由集成块双稳态电路与多谐振荡器构成的双闪灯电路
• 除了以上两种实际应用外,单稳态触发 器、双稳态触发器、多谐振荡器电路还广 泛应用于自动控制与调节系统、自动检测 系统、汽车电子、电子仪表及其他各种数 字电子电路等方面。
555定时器-脉冲的产生与整形电路解析
![555定时器-脉冲的产生与整形电路解析](https://img.taocdn.com/s3/m/46894657bfd5b9f3f90f76c66137ee06eff94ebb.png)
6.1 概述 6.2 施密特触发器 6.3 单稳态触发器 6.4 多谐振荡器 6.5 555定时器及其应用
上页 下页 返回
6.1 概 述
数字电路中,为了控制和协调整个系统的工作,常常需 要时钟脉冲信号。 获得时钟脉冲的方法有:
1. 利用多谐振荡器直接产生。 2. 通过整形电路变换而成。 整形电路又分为两类:施密特触发器和单稳态触发器。 整形电路可以使脉冲的边沿变陡峭,或形成规定的矩形脉冲。
G1
C uI2 R
+5V R1
T1
G2
上页 下页 返回
输入带微分环节的单稳态触发器
若uI脉冲宽度twI > tw则应通过 微分电路RPCP再输入到与非门1。
为保证稳态时uO1 = 0,要求:
RP CP≤twI RP≥RON
门3改善输出波形,起反 相和整形的作用。
MOS门输入阻抗高,外接电阻R和RP的大小不会影响其 稳态,它们不再受ROFF和RON的限制。
上页 下页 返回
R2
uI
R1
1 uO' 1
uI' G1
G2
uO
uO'
(4) 波形图
波形图
uI
UT+
UT–
O
t
uO
O
t
上页 下页 返回
6.2.2 集成施密特触发器 TTL集成施密特触发器有:74LS14,74132,7413等。
TTL集成施密特触发器性能表
型号 7414 74LS132 7413
tpd/ns 15 15 16.5
换成矩形脉冲信号 。
上页 下页 返回
3. 鉴幅电路
在一串幅度不相等的
2版-7章-数字电路与逻辑设计(第2版)-邬春明-清华大学出版社
![2版-7章-数字电路与逻辑设计(第2版)-邬春明-清华大学出版社](https://img.taocdn.com/s3/m/415f2898e518964bce847c97.png)
时,TD 截止;当触发器输出Q=0, Q =1,TD 饱和,可为外接电容提供放电通道。
(5)输出缓冲器G4 。输出缓冲器 G4 是接在输出端的反相器,其作用是提高定时器
带负载能力,同时隔离负载对定时器的影响。
VCC
当uI1 UR1,uI2 UR2 时,比较器C1的输出uC1 =1,比较器C2的输出 uC2 =0,基本RS触发
器被置1,放电三极管TD截止,输出uO 为高电平;
当 uI1 UR1,uI2 UR2 时,比较器C1的输出uC1 =0,比较器C2的输出 uC2=0,基本RS触发 器被置1,放电三极管TD截止,输出uO为高电平;
(二)脉冲电路
利用脉冲信号产生器直接产生 对已有信号进行整形,使之满足系统的要求 脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变
换和整形的电路。
二、555定时器
VC比C 较器 RD
基本RS触发器
8
UCO
uI1
(TH )
u I2
( TR )
U R1 5 6
2 U
R2
5kΩ
+
C
-
1
5kΩ
+
(一)用门电路构成施密特触发器
R1和R2构成 分压环节
G1和G2为两级串接 的反相器
R2
G1
uI
R1
1
uA
G2
1
uO
u O1
输入电压uI通过R1、 R2的分压来控制G1、
G2门的状态
1.同相输出施密特触发器的电压传输特性和逻辑符号:
uo
UT
UOH
1
uI
数字电路习题-第八章
![数字电路习题-第八章](https://img.taocdn.com/s3/m/4c3e4500f12d2af90242e6ca.png)
例题 8.1 分析例题 8.1 图(a)所示脉冲电路的工作原理,设门电路均为TTL电路,其阈值 电压为UTH;设二极管的导通电压为UD。说明电路的功能,画出电路的电压传输特性。
G1
1
G2
uI
&
uO UOH
&
D
uO
UOL
G3 G3
O UTH-UD UTH
uI
(a)
(b)
例题 8.1 图
引脚名称 TR TH R
表 8.1 5 5 5 集成定时器引 脚 名 称 及 功 能
功能
引脚名称
低电平触发
OUT
高电平触发
D
复位端
CO
功能 输出端 放电端 控制电压端
555 集成定时器的功能如表 8.2 所示。
TH(6) ×
>2 UDD/3 <2 UDD/3 <2 UDD/3
TR(2) × ×
> UDD/3 < UDD/3
三、考核题型与考核重点
1. 概念与简答 题型 1 为填空、判断和选择; 题型 2 为叙述基本概念与特点。 建议分配的分数为 2~4 分。 2. 综合与设计 题型 1 根据已知脉冲电路,分析其工作原理,画出电路中各关键点的信号波形以及输出波 形的参数计算等; 题型 2 根据需要选择合理的脉冲电路; 题型 3 分析在应用系统中脉冲电路的作用。 建议分配的分数为 5~10 分。
进行,uC逐渐升高,当uC≥uI时,uO由高电平变为低电平,⑦引脚导通。 电容放电,电 容 C经 过 ⑦引脚放电,放电时间常数τ放=R2C,随着放电过程的进行,uC逐
渐下降,当下降到uC≤uI/2 时,uO由低电平变为高电平,⑦引脚截止。 电容再次充电,电 路 重 复 上 述 过 程 ,进 入 下 一 个 周 期 ,电 路 输 出 周 期 性 的 矩 形 脉 冲 。
数字电路第8章脉冲波形的产生与整形概要
![数字电路第8章脉冲波形的产生与整形概要](https://img.taocdn.com/s3/m/316d52e35a8102d276a22fde.png)
T T 1 T 2 0 .7 (R 1 R 2 )C
占空比为
DT1 R1 T R1 R2
第8章 脉冲波形的产生与整形
4)
用两个多谐振荡器可以组成如图8-7(a)所示的模拟声 响电路。适当选择定时元件,使振荡器A的振荡频率 fA=1Hz , 振荡器B的振荡频率 fB= 1kHz。由于低频振荡 器A的输出接至高频振荡器B的复位端(4脚),当Uo1输出高 电平时,B振荡器才能振荡,Uo1输出低电平时, B振荡器 被复位,停止振荡,因此使扬声器发出 1kHz的间歇声响。 其工作波形如图 8-7(b)所示。
到,电路就一直处于Uo=0 的稳定状态。
第8章 脉冲波形的产生与整形
② 暂稳态:外加触发信号Ui的下降沿到达时,由于
U21 3UC、 C U6(UC)0,RS触发器Q端置 1,因此Uo=1, V1截止,UCC开始通过电阻R向电容C充电。随着电容C充 电的进行,UC不断上升,趋向值UC(∞)=UCC。
电路处于某一暂稳态,电容C上电压UC略低于
,Uo
输出高电平,V1截止,电源UCC通过R1、R2 给电容C充电。 随输着出充电电压的Uo进就行一U直C逐保渐持增高高电,平但不只变要,13这U就CC是U第C 一23个U暂CC稳,
态。
第8章 脉冲波形的产生与整形
于
2 3
当电容C上的电压UC略微超过
2 3
U6 U23i的U触CC 发期负间脉,冲R消S失触后发,器U状2回态到保高持电不平变,,在因U此2 ,13UUoCC、 一直保持高电平不变,电路维持在暂稳态。但当电容C上
的电压上升到
U6
2 3
UCC
时,RS触发器置 0,电路输出Uo
=0,V1导通,此时暂稳态便结束,电路将返回到初始的
脉冲信号产生电路及应用
![脉冲信号产生电路及应用](https://img.taocdn.com/s3/m/4bac454f03020740be1e650e52ea551810a6c98d.png)
9.1.4 石英晶体振荡器
石英晶体振荡器是一个高稳定度的振荡 器,它可以产生几十k~几十MHz的频率。
其稳定度 f f fs 在 105 ~ 1010 以上
其外形:
fs
石英晶体振荡器具有两个谐振频率,一个是 串行谐振频率fs,另一个是并行谐振频率fp 。
QQQ
QL0QL
QQQ
1HQHQ
AL×AL11 AL0AL22 HB1HB QL0QL 1HQHQ
功能 保持
AL×AL11 A×LAL22 HBL0HBL QL0QL 1HQHQ (处于稳态)
AHLAH1L11 AHL1AHL22 ×HBLHBL QL0QL 1HQHQ
HLHL1 H↓LHL H1LHL LL HH
VTH —门电路的 阈值电压
阈值电压可以 看成是门电路 输入高、低电 平的转折点。
9.1.3 用施密特触发器构成多谐振荡器 施密特电路的特点是具有两个阈值电压: VT+、VT-, VT+相当于输入高电平, VT- 相当于输入低电平。
施密特反相器输入/输出波形,逻辑符号, 传输特性
施密特与非门构成多谐振荡器:
H↓H HL1HL 1HLHL LL HH 用A端下降沿触发
H↓H H↓H 1HHLHHL LL HH
HLH0L HL×HL
× HH ↑HHHH H0LHL ↑HHHH
LL
HH 用B端上升沿触发
LL HLHL HH
LL LL HH
LL LL
单稳L态L 触发器延时电路应用方式
74××122是可重触发的单稳触发器,74××123 是双可重触发单稳触发器。可重触发表示在单稳电 路输出脉冲产生过程中,如果再来一个触发脉冲, 则电路重新开始一个完整的单稳电路产生过程,输
数电实验考试题
![数电实验考试题](https://img.taocdn.com/s3/m/21e8dff064ce0508763231126edb6f1aff007188.png)
04
实验四:数模转换与模数转 换
实验目的
掌握数模转换器(DAC)和模数转换 器(ADC)的工作原理。
学会使用数模转换器和模数转换器进 行信号的转换。
了解数模转换器和模数转换器在现实 生活中的应用。
实验设备
DAC芯片(如: DAC0832)
信号发生器
ADC芯片(如: ADC0809)
示波器
实验步骤
数模转换器(DAC)实验步骤 1. 将DAC芯片连接到电脑,通过软件设置需要转换的数字信号。
2. 将数字信号通过DAC芯片转换为模拟信号。
实验步骤
01
02
03
3. 使用示波器观察DAC 输出的模拟信号波形,
并记录下来。
4. 分析DAC输出的模拟 信号,并与原始数字信 号进行比较,评估转换
精度。
模数转换器(ADC)实验 步骤
实验设备
数字逻辑电路实验箱
逻辑门电路(与门、或门、 非门)
02
01 03
信号源
示波器
04
05
实验导线若干
实验步骤
实验前准备
检查实验设备是否齐全,确保实验 环境安全。
搭建电路
根据实验要求,选择合适的逻辑门 电路,使用实验导线连接信号源和 示波器。
测试与门
设置信号源产生一组高低电平信号 ,通过与门电路,观察示波器显示 的输出信号,记录结果。
实验步骤
步骤二:设计电路
根据逻辑功能,选择合适的逻辑门电路(如AND、 OR、NOT等)。
使用逻辑门电路构建电路图,实现所需的逻辑功 能。
实验步骤
01
注意合理安排门电路的连接方式,尽量减少使用的门电路数量。
02
步骤三:搭建与测试
数字电子技术 第10章 脉冲波形的产生电路
![数字电子技术 第10章 脉冲波形的产生电路](https://img.taocdn.com/s3/m/f4894a7f5acfa1c7aa00cccd.png)
第10章脉冲波形的产生与整形电路内容提要:本章主要介绍多谐振荡器、单稳态触发器和施密特触发器的电路结构、工作原理及其应用。
它们的电路结构形式主要有三种:门电路外接RC电路、集成电路外接RC电路和555定时器外接RC电路。
10.1概述导读:在这一节中,你将学习:⏹多谐振荡器的概念⏹单稳态触发器的概念⏹施密特触发器的概念在数字系统中,经常需要各种宽度和幅值的矩形脉冲。
如时钟脉冲、各种时序逻辑电路的输入或控制信号等。
有些脉冲信号在传送过程中会受到干扰而使波形变坏,因此还需要整形。
获得矩形脉冲的方法通常有两种:一种是用脉冲产生电路直接产生,产生脉冲信号的电路称为振荡器;另一种是对已有的信号进行整形,然后将它变换成所需要的脉冲信号。
典型的矩形脉冲产生电路有双稳态触发电路、单稳态触发电路和多谐振荡电路三种类型。
(1)双稳态触发电路又称为触发器,它具有两个稳定状态,两个稳定状态之间的转换都需要在外加触发脉冲的作用下才能完成。
(2)单稳态触发电路又称为单稳态触发器。
它只有一个稳定状态,另一个是暂时稳定状态(简称“暂稳态”),在外加触发信号作用下,可从稳定状态转换到暂稳态,暂稳态维持一段时间后,电路自动返回到稳态,暂稳态的持续时间取决于电路的参数。
(3)多谐振荡器能够自激产生连续矩形脉冲,它没有稳定状态,只有两个暂稳态。
其状态转换不需要外加触发信号触发,而完全由电路自身完成。
若对该输出波形进行数学分析,可得到许多各种不同频率的谐波,故称“多谐”。
脉冲整形电路能够将其它形状的信号,如正弦波、三角波和一些不规则的波形变换成矩形脉冲。
施密特触发器就是常用的整形电路,它利用其著名的回差电压特性来实现。
自测练习1.获得矩形脉冲的方法通常有两种:一种是();另一种是()。
2.触发器有()个稳定状态,分别是()和()。
3.单稳态触发器有()个稳定状态。
4.多谐振荡器有()个稳定状态。
10.2 多谐振荡器导读:在这一节中,你将学习:⏹ 门电路构成多谐振荡器的工作原理 ⏹ 石英晶体多谐振荡器电路及其优点 ⏹ 秒脉冲信号产生电路的构成方法多谐振荡器是一种无稳态电路,它不需外加触发信号,在电源接通后,就可自动产生一定频率和幅度的矩形波或方波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
t
t3
t
t
ui
1 uo1 R
A 2 uo2
C
(a)
ui'
& 3
ui
uo1 R
1
A 2 uo2 4
( b) C
uo4
1
1&
ui'
1
3 0
ui
01
10
uo1 R
1
A 2 uo2
1C
1
0 0
1
4 uo4
0
1
0
5.4.2 单稳态触发器的应用
单稳的应用多种多样,如:整形、延时控制、
定时顺序控制等等。例如“ 延时控制 ”:
§5.2 单脉冲的产生
+VC
C
S
F
按钮按放一次,便产生一个单脉冲。
但是,由于按钮 S 机械动作经常伴有抖动现象, 使得输出的方波很不理想,毛刺很大。这样的方波 用到数字系统中很容易引起误动作。因此,这个电 路没有实用价值。
Q
Q
&
&
+5V
工作原理:
不按按钮时,Q=0; 按下按钮时,锁定器翻转,Q=1; 松开按钮后,回到Q=0。
时钟
A B CD
CP QA QB QC QD
74LS194 ( 1 )
CLR
+ 5V
移位输入
R
S0 S1
R2 C2
EFG H
CP QA QB QC QD
74LS194 ( 1 )
CLR R
S0 S1
R1 C1
R1、C1 、 R2、 C2用于调节 延长的时间。
DW2
Q2
A
Q1 DW1 B A
用波形图表示如下:
& uo1 & uo2 &
uo3
1
2
3
uo1 uo2
A RS
1
2
3
100 R
uo
C
工作原理 uo
0
uo1
0
uo2
0
uA
UT 0U
0 1
uo1
uo2 100 A RS 1 10
1
2
t
0 1
1 0
R
3 uo
C
t
t
t
uo
0
uo1
0
uo2
0
uA
UT
0
T
uo1
uo2
A RS
1
2
100 R
3 uo
t
C
输出信号的周期 t 近似为:
可见:按钮动作一次,Q端就输出 一个正脉冲。
S
Q
改进的单脉
冲发生电路
Q
§5.3 多谐振荡器
多谐振荡器,它可以由分立元件构成,也 可以由集成电路构成,本节只讨论由集成电路 构成多谐振荡器。
5.3.1 环形振荡器
利用逻辑门电路的传输延迟时间,将奇数 个与非门首尾相接,就可以构成一个简单的环 形振荡器:
2
uR2
R2
为获得稳定的振荡频率, 可 在振荡电路中串接石英晶 体,组成石英晶体振荡器, 如图( c )所示。
uo1 C1
uo2 C2
R1
1
2
R2
( b)
R1
R2
C1
1
2
uo
石英晶体 C2 ( c)
X
X>0感性
0
f
X<0容性
石英晶体的等效电路 石英晶体的阻抗与频率特性
石英晶体的化学成分是SiO2 ,晶格结构为各向异性,是 一种具有压电效应的晶体。由石英晶体的阻抗与频率特 性曲线可见石英晶体的 选频特性很好。
5.5.1 555定时器的工作原理
首先介绍555定时器的内部电路结构。
555定时器的内部电路包括以下几部分 :
(1) 一个由三个相等电阻组成的分压器; (2)两个电压比较器: A1、A2 ; (3)一个 RS 触发器; (4)一个反相器和一个晶体管T。
CP A B C D E F G
H t0
Q1 Q2
移位寄存 器串行输
入为1
H灯上升 沿触发Q1
Q1的下降 沿触发Q2
循环重 新开始
t1
t2
移位寄存 器清零
t3
§5.5 555定时器及其应用
555定时器的特点:是将模拟电路和数字电路集成 于 一体的电子器件。它使用方便,带负载能力较 强,目前得到了非常广泛的应用。
压电效应: 在晶体切片的两个对应面上加上交变电压时,晶体会出现 机械变形振动并产生交变电场,这种现象就是压电效应。 当外加电压的频率与晶体的固有频率相同时,其机械变形 的幅度和交变电场幅度就都达最大,发生压电谐振。 晶体的固有频率:取决於晶体的几何尺寸。
石英晶体振荡器常用 作数 字系统的基准信号。
& uo1 & uo2 &
uo3
1
2
3
工作原理:
设 uo3 的初始 状态为 0:
01
& uo1 & uo2 &
1 10
2 01
3
用波形图来表示uo3 ,则为: uo3
0 10 uo3
1 0
t 0 优点: 电路结构简单,所用元件少。 缺点: 频率太高,并且不可调整。
改进方法:在原电路的基础上添加 RC 延时电路,便 可以克服上图的不足。
2. 电路振荡频率的稳定 性较 差,容易受温度、元件性能、 电源波动等因素的影响。
uo1 C1
uo2 C2
为便于起振,将两个电 阻 改接成如图( b)示。
只要适当选择它们的大小,
R1
1
2
R2
使两个与非门的静态工作 点均处于转移特性的中点,
( b)
起振便比较容易。
uo1
C1 C2
uo2
1
uR1
( a ) R1
自动返回
稳定状态
稳定状态
学习的重点:为什么会自动返回?需多少时间?
5.4.1 积分型单稳态触发器的工作原理源自ui1 uo1 R
A 2 uo2
ui
C
0
uo1
t1
t
在 ui 脉冲到来以前,uo1是高
电平,uo2是高电平。
0
t
ui 正
uo1 负跳变
uA
跳变
uA 不
uo2负
UT
突变
跳变
0
t
uo2
C放电
uA下降直到UT
第五章 脉冲信号的产生与整形
§5.1 §5.2 §5.3 §5.4 §5.5
概述 单脉冲的产生 多谐振荡器 单稳态触发器 555定时器及其应用
§5.1 概述
数字电路区别于模拟电路的主要特点之 一是: 它的工作信号是离散时间的脉冲信号。
最常用的脉冲信号是方波(矩形波)。如何产 生方波以及对不理想的方波如何整形,是本 章讨论的重点。
R1
R2
C1
1
2
石英晶体 C2
uo
其振荡频率主要取决于石英晶体的固有频率
§5.4 单稳态触发器
单稳态触发器简称“单稳” 。
单稳的突出特点是: 输出端只有一个稳定状态, 另一个状态则是暂稳态。加入触发信号后,它可 以由稳定状态转入暂稳态,但是, 经过一定时 间以后,它又会自动返回原来的 稳定状态。
暂稳态 外部触发
T = 2.2 RC
t
t
5.3.2 RC 耦合式振荡器 uo1
uR1 uo1 uR2
0
t
1
C1 R1
C2
2
R2
uo2 uR2
UT
t
0
微分电路
uo1
C1 C2
uo2
uo2
t
0
1
2
uR1
uR2
uR1
R1 R2
UT 0
t
uo1
C1 C2
uo2
1
uR1
( a ) R1
2
uR2
R2
该电路有两个缺点:
1. 不容易起振;
uo2上跳; uA继续下降
0
t
讨论:对 uA 的放电快慢有无约束?
ui
ui
1 uo1 R
A 2 uo2
0
C
uo1
t1 t2
t
回答: 有! …...
原因:若C 的放电太慢,在 t1 ~
0
uA
t3 期间, 变 量 uA>UT , 在图中所示的情况下, uo2
UT 0
的上升边将由ui的下降边 uo2
控制,故必须改进电路!