统计学第六章抽样分布与参数估计
社会统计学(卢淑华)_第六章
第一节 统计推论
一、统计推论:根据局部资料对总体特征进行推断 特点: 1、局部资料的特性在某种程度上能反映总体的特征 2、抽样结果不能恰好等于总体的结果
二、理论基础:概率论 三、内容:
1、通过样本对总体的未知参数进行估计(参数估计) 2、通过样本对总体的某种假设进行检验(假设检验)
第二节 名词解释
二、评价估计值的标准
1、无偏性:x 的均值等于待估参数μ
如果 Qˆ 是总体参数Q的估计值,且Qˆ 分布的均值有 E Qˆ 称 Qˆ 是Q的无偏估计。
Q,则
2、有效性:
1)方法:如果两个估计值Qˆ1 x1 x2 xn 及 Qˆ 2 x1 x2 xn ,它
都满足无偏性,那么当 Qˆ1 的方差比 Qˆ 2 的方差小时,则Q1 较 Q 2 更
有效。
2)增加样本容量可以有效的增加一次抽样接近待估参数的概率。
x 样本均值
2
的方差:Dx n
样本方差
S 2 的方差
:D2 S
4
n 2 1
3、一致性: 一个数的估计值要求随样本容量n的增大而以较
大的概率去接近被估计参数的值。
把样本容量为n时的估计值记作 Qˆ n ,如果 n
第五节 正态总体的区间估计
一、置信度、置信区间
如果用Qˆ x1 x2 xn 作为未知参数Q的估计值,那么区间
包含参数Q之概率为1
的关系表达式为
Q Q,
——置信区间(反映估计的准确性)
1
置信度(置信概率)(置信区间估计的可靠性)
显著性水平(置信区间不可靠的概率)
置信区间与置信度的关系:
统计学第6章统计量及其抽样分布
整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布
设
X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:
统计学第六章抽样推断
尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
抽样分布与参数估计
▪ 某电视台欲在95%的置信度水平下,对电
视节目的收视率作为有效的估计,试考 虑样本量应当为多少?
▪ 问题:若确定估计绝对误差为5%,则样
本为385户,是否可行?
▪ 若考虑估计相对误差为10%,则样本量应
当为多少?
统计学原理
其他样本量估计的情况
▪ 估计样本比例时样本量的确定 ▪ 估计两个总体均值之差时样本量的确定 ▪ 估计两个总体比例之差时样本量的确定 ▪ 以上问题,均可通过参数估计的公式进行
o 比例估计时,方差为:p(1-p) o 可知,p(1-p)的最大值为0.25。
统计学原理
比例估计时的样本量推算
在校园内估计学生拥有手机的比例,希 望在95%的置信水平下,估计的绝对误 差不超过5个百分点(5%),求样本量
n
1.962
0.052
2
, 取
2
Max
0.25
则有n 385
统计学原理
助记方法
统计学原理
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差已知;
o 或非正态总体,大样本,方差已知。
z x ~ N (0,1) X n
置信区间:
(
x
za
2
X
n
,
x
za
2
X
n
)
注意:Z取a/2的原因在于此时置信 区间是最小的。
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差未知
统计学原理
计算结果
▪ 计算样本平均数:X=39.5 ▪ 计算样本标准差:s=7.7736 ▪ 令:总体标准差=样本标准差,计算抽样误差为
1.2956
统计学 第 6 章 抽样与参数估计
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
统计学课后答案(第3版)第6章抽样分布与参数估计习题答案
第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
概率论参数估计和抽样分布
概率论参数估计和抽样分布
一、极大似然估计MLE
极大似然估计(MLE)是一种用来近似概率分布参数的统计学方法。
它的基本原理是根据样本来估计一组参数,使单独参数的极大似然函数最大化,即最大前提下来达到样本可能性的最大化,这种方法可以让样本观测数据的期望值吻合该参数的假设值。
这种估计方法的优点是简单易行,它不需要指定模型的具体参数,而且参数的估计结果可以很容易地进行验证和分析。
它的缺点是需要多次计算,收敛速度慢,容易受噪声影响,而且模型假设受到限制,可能会有明显的偏离。
二、贝叶斯估计BE
贝叶斯估计(BE)是指在概率论估计中,采用以贝叶斯概率论的原理来估计模型参数的一种方法。
该方法将未知状态作为随机变量,根据贝叶斯公式及赋予先验分布,以最大后验概率的原则估计模型参数。
贝叶斯估计具有优点是可以用来估计模型参数的概率分布,而不仅仅是估计其期望值,可以将主观经验纳入参数估计过程中,也可以迅速得到模型参数的分布。
抽样与参数估计
第四章抽样与参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statistical inference)。
这个调查例子是估计总体参数(某种意见的比例)的一个过程。
估计(estimation) 是统计推断的重要内容之一。
统计推断的另一个主要内容是本章第二节要介绍的假设检验(hypothesis testing) 。
因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布与总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样与抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取一部分元素(单位)进行调查,并根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Item unit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Sample size):样本中所含个体的数量一般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。
一、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每一个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样与不重复抽样。
而且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每一层内进行抽样③、整群抽样:将一组被调查者(群)作为一个抽样单位④、等距抽样:在样本框中每隔一定距离抽选一个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择一群特定数目、满足特定条件的被调查者2、抽样分布一般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(sampling distribution)。
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
第六章抽样与参数估计
(1)验证 E(x) X
(2)计算重复抽样及不重复抽样的抽样平均误差。 24
第2节 参数估计的基本方法
参数估计——以实际观察的样本数据所计算的统计量作为未 知总体参数的估计值。
一、点估计(Point estimate) 点估计也称定值估计,就是直接以样本统计量作为总体参数
29
大样本(n≥30)下总体均值的区间估计
区间估计就是根据样本求出总体未知参数的估计区间,并使其 可靠程度达到预定要求。
(1) 总体方差σ 2已知时
由于 α ,有
z
x
/
n
N(0,1) ,所以对于给定的置信度1-
P {z 2
x/nz2}1
即
Px z/2
7
抽样法的特点:随机原则 部分估计总体 存在误差并可以控制
抽样法的应用:对某些不可能进行全面调查 而又需要了解其 全面情况的社会经济现象, 必须应用抽样法。(破坏性试验、总体过大、 单位过于分散,实际调查不可能的)
8
第1节 抽样与抽样分布
一、有关抽样的基本概念
总体(母体)(Population) 样本(子样)(Sample) 总体指标(总体参数)(Population parameter) 样本指标(样本统计量)(Sample statistic)
2、某工厂共生产新型聚光灯2000只,随机抽选400只进行耐 用时间调查,结果平均寿命为4800小时,标准差为300小时。 求抽样误差。
3、从某校学生中随机抽选400名,发现戴眼镜的有80人。计 算求抽样误差。
第六章参数估计基础
1总体分布的形态和样本含量对样本均数的抽样分布会产生何种影响?
从正态分布的总体中随机抽样,样本均数呈正态分布;从非正态分布的总体中随机抽样,样本量n较小时,样本均数的分布仍呈非正态分布,当样本量n足够大时,样本均数的分布近似正态哦分布。
计算:σXbar=σ/√n.在实际应用中,总体标准差σ常常未知,需要用样本标准差S来估计。此时,均数标准误的估计值为SXbar=S/√n.由此式可见,若增加样本含量n可减小样本均数的抽样误差。
主要应用:1估计总体均数的置信区间。 2均数的假设检验。
样本频率的抽样分布和抽样误差:频率的标准误用符号σp表示,它反映了样本频率之间以及样本频率与总体概率之间的离散程度,也反映了样本频率抽样误差的大小。
1.点估计:直接用随机样本的样本均数Xbar作为总体均数μ的估计值或用样本频率p作为总体概率π的估计值的方法称为点估计。这是一种没有考虑抽样误差的简单估计方法。
2.区间估计:用已知样本统计量和标准误确定总体参数所在范围的方法称为区间估计。所估计的总体参数的范围通常称为参数的置信区间,,是一个开区间,这一估计可相信的程度称为置信度或置信水平。若标准差不变,置信度由95%提高到99%,置信区间便由窄变宽,估计的精度下降。
计算:σp=√(π(1-π)/n)。在实际应用中,总体概率π常常未知,需要用样本频率p来估计。因此频率标准误的估计值为Sp=√(p(1-p)/n-1)约等于 √(p(1-p)/n)。由此式可见,增加样本含量n可减小样本频率的抽样误差。
主要应用:1估计总体概率的置信区间 2频率指标的假设检验。
第6章抽样分布与参数估计
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
6.1.4 样本均值的抽样分布 1.大样本场合下的样本均值抽样分布
总体(Population)是指所研究的事物及其现象的全体,由该事物及 其现象的全部个体组成。
个体(Item Unit)是指构成总体的元素。 总体容量(Population Size)是指构成总体的全部个体的数量。
样本(Sample)是指从总体抽取的若干个体构成的集合。 抽样(Sampling)是指按照具体的抽样方法和抽样设计,从总体中抽 取若干个体的过程。 样本容量(Sample size)是指构成样本的全部个体的数量。
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
在反复抽取容量相同的独立同分布样本条件下,所得到的样本均值的 概率分布称为样本均值的抽样分布。在样本容量充分大的情况下,即大 样本场合,样本均值依据中心极限定理趋于正态分布。
所谓独立同分布样本为从无限总体中随机抽取的等概样本,或从有限 总体中以放回方式,随机抽取的等概样本。
所谓大样本是指能够满足中心极限定理要求,使样本均值趋于正态分 布的样本容量。在统计实践中一般称样本容量大于30即为大样本这只是 一个粗略的经验数值。
概率论与数理统计第六章样本及抽样分析
期望与方差:E(Y) = n, D(Y) = 2n
X1, X2,……, Xn 来自标准正态总体 X 的样本,那么
Y (X1 X2 )2 (X3 X4 )2 (X5 X6 )2
是否服从卡方分布?若 kY ~ χ2( n ),求 k,n
第六章 样本及抽样分析
… 19.675 2… 21.026 23.337 26.217 28.299
… 22.362 24.736 27.688 29.819
… 23.685 26.119 29.141 30.319
…
…
…
…
…
…
…
…
…
…
查表练习: 求下列各式中的 C 值
1. Y ~ 2(24), P(Y C ) 0.1 2. Y ~ 2(40), P(Y C ) 0.95
样本可看成 n 维随机变量(X1, X 2 ,, X n), 则有 P( x1, x2 ,, xn ) = P( x1)P( x2 ) P( xn )
或 f ( x1, x2 ,, xn ) = f ( x1) f ( x2 ) f ( xn )
身高总体
178.4 161.5 174.9 182.7 171.0 165.3 172.8 182.1 180.2 176.8 181.7 175.7 177.3 180.0 179.4 177.0 181.3 176.5 176.0 175.7 168.1 184.6 169.1 177.8 175.1 161.8 174.3 176.0 163.7 176.8 177.3 175.3 180.2 176.8 181.9 178.4 181.5 177.6 179.9 178.2 174.7 176.0 175.7 180.3 166.2 177.2 171.9 182.9 176.8 179.5 167.0 174.8 182.7 174.9 178.1 179.9 175.4 184.4 175.1 179.4 173.2 176.1 177.6 180.5 164.3 170.5 177.5 168.3 173.0 176.8 173.9 180.7 166.5 180.0 165.6 179.4 182.2 176.3 177.4 183.4 167.9 176.1 177.4 183.4 176.9 168.0 179.0 178.8 173.1 173.2 162.2 179.9 178.2 183.0 174.0 180.8 173.1 173.2 176.8 171.1 169.0 178.3 171.6 181.2 167.6 161.1 166.0 190.2 180.3 166.2 174.9 175.8 176.5 164.2 173.0 176.8 170.5 180.5 177.3 175.3 163.7 176.8 171.1 168.5 171.2 170.2 177.1 169.4 175.7 177.3 183.2 168.6 175.1 179.4 169.1 169.9 168.5 180.2 174.9 171.0 171.0 168.8 177.7 168.6 176.6 175.9 176.8 179.5 174.3 176.0
统计学课件第六章抽样调查PPT课件
特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件
统计学,刘照德06-1第六章 参数估计
第一节 点估计
点估计的求解方法主要有 : • 矩估计法 • 最大似然估计法
第一节 点估计
一 、矩估计法
• 矩估计法是一种常用的估计方法,其基本 思想是,用样本原点矩作为总体原点矩的 估计。
第一节 点估计
• 设k个参数 ( , , ),求 k个参数 ˆ (ˆ ,ˆ ,ˆ ) 矩估计 需要建立k个方程,方法是:设总体 的一个样本观测值是 (x , x ,, x ) ,其l阶原点 1 A x 矩 ,总体观测量X的l阶原点矩 n ml E( X l ) ml ( ) ,用样本原点矩Al作为总体 原点矩ml的估计,得出k个方程Al =ml(θ )(l =1,…,k),解此方程组得出的 即为参数 的矩 估计。
对于给定的抽样方法 ,不同的抽样,就有不同的 ˆ , ˆ) 估计区间 ( 1 2
在用同样方法构造的总体参数的多个估计区间 中,包含总体参数真值的区间所占的比例称为 置信水平,表示为 (1 - 。 2.为是未包含总体参数的区间所占的比例。 •
3. 常用的置信水平值有 99%, 95%, 90%
第一节点估计??????????222221???xexdxemxem??????2221??????aa??????21221??aaa????????????????niiniixxnxxnx12122211?????二最大似然估计法?最大似然方法的基本思想是固定样本观测值在可能的取值中挑选使似然函数达到最大从而概率p达到最大的作为参数的估计
1 2
ˆ) P(
ˆ 的抽样分布 1
B A
ˆ2 的抽样分布
ˆ
第一节 点估计
• 3.一致性 依 设 为 的一个估计量,若当 n 时, ,则称 为 的一致估计量。此即 概率收敛于 随着样本容量n的增大,点估计量 越来越接近 被估总体参数 。
第六章 抽样分布及总体平均数的估计
• 对总体参数的一种看法 总体参数包括总体均值、比例、方差等 分析之前必需陈述
三 假设检验的基本原理
2、什么是假设检验?
1)概念 事先对总体参数或分布形式作出某种假设, 然后利用样本 信息来判断原假设是否成立。 2) 类型 参数假设检验 非参数假设检验 3)特点 采用逻辑上的反证法 依据统计上的小概率原理
二 总体平均数的估计
(3)区间估计(interval estimation)
根据估计量以一定可靠程度推断总体参数所在的区间 范围,用数轴上一段距离表示未知参数可能落入的范围, 虽不具体指出总体参数等于什么,但能指出未知总体参数 落入某一区间的概率有多大。
(4)置信区间(confidence interval)
一 抽样分布与平均数抽样分布
3、样本平均数与总体平均数离差的形态
(2)总体方差未知 总体正态,样本平均数与总体平均数的离差统 计量呈 t 分布; 总体非正态,但满足n>30这一条件,样本平均 数与总体平均数的离差统计量 近似t 分布。
t分布
t 分布(t-distribution)是统计分析中应用较多 的一种随机变量函数的分布,是统计学者高赛特 1908年以笔名“Student”发表的论文中推导出来 的一种分布,又叫学生氏分布。这种分布是一种 左右对称,峰态比较高狭,分布形状随样本容量 n-1的变化而变化的一组分布。
二 总体平均数的估计
4 总体方差σ2未知时,总体平均数μ的估计 用样本的无偏方差作为总体方差的估计值,样本 平均数的分布为t分布,应查t值表,包括以下两 种情况:
(1)总体的分布为正态时,可不管n值大小。 (2)总体分布为非正态,只有n>30,才能用概率对其样本 分布进行解释。
06参数估计与假设检验(医学统计学)
三、总体均数的区间估计
(一) 已知
95%可信区间:
一般情况
其中 为标准正态分布的双侧界值。
(二) 未知
Confidence interval
通常未知,这时可以用其估计量S 代替,但
已不再服从标准正态分布,而是服从
著名的t 分布。
William Gosset
图6-1 不同自由度的 t 分布图
t分布
四、两总体均数差的区间估计
实际中,有时需要计算两个总体均数差值的可信 区间,例如通过计算两种降压药物平均降压的差 值比较两种药物的差别,其双侧 100(1 )%可信 区间的计算公式为 ( X1 X 2 ) t /2, SX1X2 其中, n1 n2 2 为自由度,SX1X2 为两样本均数之 差的标准误。
样本率来代替总体率,其估计值为:
p(1 p)
Sp
n
二、参数估计
点估计: 是使用单一的数值直接作为总体参数的估 计值,如用估计相应的,用估计相应的。该法表 达简单,但未考虑抽样误差的影响,无法评价参 数估计的准确程度。
区间估计(interval estimation)是指按预先给定的概 率,计算出一个区间,使它能够包含未知的总体 均数。事先给定的概率称为可信度,计算得到的 区间称为可信区间(confidence interval,CI)。
n
250
六、两总体率差值的区间估计
在大样本情况下,可采用正态近似法对两总体率 差值进行可信区间估计,其计算公式为:
( p1 p2 ) z S /2 )( n1
1 n2
),pc =
X1 n1
X2 n2
X1和X2分别表示两组中某事件发生的例数。
例6-7 某医院口腔科医生用极固宁治疗牙本质过 敏症,以双氟涂料作对照,进行了1年的追踪观察 ,结果见表6-1所示,试估计两组有效率差别95% 的可信区间。
应用统计学第6章 抽样分布与参数估计
μx
6. 3抽样分布
多大是足够的大?
6. 3抽样分布
例子
假设总体的平均数μ = 8 且标准差σ = 3. 假 设选中容量n = 36随机样本。
样本平均数介于7.8和8.2之间的概率是多少?
第6章 6. 3抽样分布
例子
(续)
结论:
即使总体非正态分布, 中心极限定理可以应用 (n > 30)
6.2 抽样误差
样本统计量和对应的总体参数之间的差异,称之为抽 样误差。
抽样误差的产生是由于抽样的非全面性和随机性所引 起的,是偶然性误差。
非抽样误差
抽样框误差 系统性误差 测量误差 登记误差
6. 3抽样分布
6. 3抽样分布
6.3.1 样本均值的抽样分布
6. 3抽样分布
1.样本均值的均值
样)
6. 3抽样分布
p的抽样分布
近乎正态分布分布,如果:
n 5
P( ps)
抽样分布
.3
且
.2
.1
n(1 ) 5
0 0 . 2 .4 .6
p
81
μ 其中 p
π
且
π(1 π)
σp
n
(其中 π = 总体比例)
6. 3抽样分布
比例的Z值
使用公式将p标准化为Z值:
p
Z
σp
p (1 )
n
在判断样本中,我们得到预先选好的专家就主题 发表的意见。
6.1 抽样理由和抽样方法
样本类型:概率样本
在概率样本中, 样本中条目的选择基于已知的概率。
概率样本
简单 随机样本
系统样本
分层样本 群样本
6.1 抽样理由和抽样方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=10
n= 4
x 5
n =16x 2.5= 50 X总体分布
x 50
X
抽样分布
6 - 16
统计学
(补修)
中心极限定理
(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽
样分布近似服从均值为μ、方差为σ2/n的正态分布
一个任意分
x
n
布的总体
当样本容量足够
大时(n 30) ,
样本均值的抽样
分布逐渐趋于正
态分布
6 - 17
x
X
统计学
(补修)
样本方差的抽样分布
6 - 18
统计学
(补修)
样本方差的分布
设总体服从正态分布N ~ (μ,σ2 ), X1,X2,… ,Xn为来自该正态总体的样本,则样本方差 s2 的分布为
(n 1)s2
3. 配额抽样:选择一群特定数目、满足特定条件的被调 6 - 8查者
统计学
(补修)
样本均值的抽样分布
6 -9
统计学
(补修)
抽样分布
(概念要点)
1. 所有样本指标(如均值、比例、方差等) 所形成的分布称为抽样分布
2. 是一种理论概率分布 3. 随机变量是 样本统计量
样本均值, 样本比例等
4. 结果来自容量相同的所有可能样本
6 -6
统计学
(补修)
总体、个体和样本
(概念要点)
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素 样本(Sample):从总体中所抽取的部分个体 样本容量(Sample size):样本中所含个体的数量
6 -7
统计学
(补修)
抽样方法
(概念要点)
6 -4
统计学
(补修)
学习目标
1. 了解抽样和抽样分布的基本概念 2. 理解抽样分布与总体分布的关系 3. 了解点估计的概念和估计量的优良标准
4. 掌握总体均值、总体比例和总体方差的区 间估计
6 -5
统计学
(补修)
第一节 抽样与抽样分布
一. 总体、个体和样本 二. 关于抽样方法 三. 样本均值的分布与中心极限定理 四. 样本方差的分布 五. 两个样本方差比的分布 六. T 统计量的分布
1. 概率抽样:根据已知的概率选取样本
简单随机抽样:完全随机地抽选样本 分层抽样:总体分成不同的“层”,然后在每一层内进行抽 样 整群抽样:将一组被调查者(群)作为一个抽样单位 等距抽样:在样本框中每隔一定距离抽选一个被调查者
2. 非概率抽样:不是完全按随机原则选取样本
非随机抽样:由调查人员自由选取被调查者 判断抽样:通过某些条件过滤来选择被调查者
(补修)
均值的标准误
1. 所有可能的样本均值的标准差,测度所 有样本均值的离散程度
2. 小于总体标准差
3. 计算公式为
x
n
6 - 21
统计学
(补修)
两个样本方差比的抽样分布
6 - 22
统计学
(补修)
两个样本方差比的抽样分布
设X1,X2,… ,Xn1是来自正态总体N~(μ1,σ12 )的 一个样本, Y1,Y2,… ,Yn2是来自正态总体 N~(μ2,σ22 ) 的 一 个 样 本 , 且 Xi(i=1,2,… , n1) , Yi(i=1,2, …,n2)相互独立,则
4
2.5 3.0 3.5 4.0
.3 P ( x ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
6 - 13
统计学
(补修)
所有样本均值的均值和方差
n
x
xi
i 1
M
1.0 1.5 4.0 16
2.5
n
(xi x )2
2 x
i 1
M
(1.0 2.5)2 (4.0 2.5)2
统计学
(补修)
第六章 抽样与参数估计
6 -1
统计学 参数估计在统计方法中的地位 (补修)
统计方法
描述统计
推断统计
参数估计
假设检验
6 -2
统计学
(补修)
统计推断的过程
总体
6 -3
样
样本统计量
本
例如:样本均
值、比例、方
差
统计学
(补修)
第六章 抽样与参数估计
第一节 抽样与抽样分布 第二节 参数估计基本方法 第三节 总体均值和总体比例的区间估计 第四节 两个总体均值及两个总体比例之差的估计 第五节 正态总体方差及两正态总体方差比的区间估计
2
0.625
16
n
式中:M为样本数目
比较及结论:1. 样本均值的均值(数学期望)等于总体均值
6 - 14
2. 样本均值的方差等于总体方差的1/n
统计学 样本均值的分布与总体分布的比较 (补修)
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
6 - 15
.3 P ( x )
抽样分布
.2
6 - 10
统计学
(补修)
样本均值的抽样分布
(一个例子)
【例】设一个总体,含有4个元素(个体),即总体单 位数N=4。4 个个体分别为X1=1、X2=2、X3=3 、X4=4 。总体的均值、方差及分布如下
均值和方差
总体分布
N
Xi
.3
i1 2.5
N
.2
N
(Xi )2
.1 0
2 i1
1.25
2
~
2 (n 1)
将2(n – 1)称为自由度为(n-1)的卡方分布
6 - 19
统计学
(补修)
总体
6 - 20
卡方 (2) 分布
选择容量为n 的 简单随机样本 计算样本方差S2
计算卡方值
2 = (n-1)S2/σ2
计算出所有的
2值
不同容量样本的抽样分布
n=1 n=4 n=10 n=20
2
统计学
3,2
3,3
3,4
6 - 12
4
4,1
4,2
4,3
4,4
统计学
(补修)
样本均值的抽样分布
(一个例子)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
16个样本的均值(x)
第一个
第二个观察值
观察值 1
2
3
4
1
1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3
2.0 2.5 3.0 3.5
1
6 - 11
N
234
统计学
(补修)
样本均值的抽样分布
(一个例子)
现从总体中抽取n=2的简单随机样本,在重复 抽样条件下,共有42=16个样本。所有样本的结果 如下表
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
x 2.5
2 x
0.625
统计学
(补修)
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体的所 有容量为n的样本的均值X也服从正态分布,X 的
数学期望为μ,方差为σ2/n。即X~N(μ,σ2/n)