二次函数知识点总结及练习题

合集下载

二次函数知识点总结及练习题

二次函数知识点总结及练习题

二次函数考点1、二次函数的概念定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0, 而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)例1: 函数y=(m +2)x 22-m +2x -1是二次函数,则m= _______.例2:已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数.例3:函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 例4: 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2x1+x . A .1个 B .2个 C .3个 D .4个考点2、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0), 对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x1)(x-x2)(a ≠0),对称轴:直线x=22x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标).例1:抛物线822--=x x y 的顶点坐标为____________;对称轴是___________。

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目一.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.二.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . y=ax2 (a ≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0).例题精析:1. 二次函数的概念,二次函数y =ax 2 (a ≠0)的图象性质二次函数的一般式为y =ax 2+bx +c(a ≠0)。

强调a ≠0.而常数b 、c 可以为0,当b ,c 同时为0时,抛物线为y =ax 2(a ≠0)。

此时,抛物线顶点为(0,0),对称轴是y 轴,即直线x =0。

例:已知函数4m m 2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小? 解: (1)使4m m 2x)2m (y -++=是关于x 的二次函数,则m 2+m -4=2,且m +2≠0,即:m 2+m -4=2,m +2≠0,解得;m =2或m =-3,m ≠-2 (2)抛物线有最低点的条件是它开口向上,即m +2>0, (3)函数有最大值的条件是抛物线开口向下,即m +2<0。

二次函数全部知识点及典型例题(全)

二次函数全部知识点及典型例题(全)

二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。

二次函数知识点归纳及相关习题(含答案)

二次函数知识点归纳及相关习题(含答案)
2

a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2

顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,

初三数学二次函数知识点总结及经典习题

初三数学二次函数知识点总结及经典习题

《二次函数》学问点总结一. 二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.这里须要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的构造特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二. 二次函数的图像和性质y=a(x-h)2x=h0)y 随x 的增大而减小最小值y =0a <0向下直线x=h(h ,0)①当x >h 时,y 随x 的增大而减小②当x <0时,y 随x 的增大而增大当x=h 时,y 有最大值,即最大值y =0 ④y=a(x-h)2+ka >0向上直线x=h(h ,k )①当x >h 时,y 随x 的增大而增大②当x <h 时,y 随x 的增大而减小当x=h 时,y 有最小值,即最小值y =k a <0向下直线x=h(h ,k )①当x >h 时,y 随x 的增大而减小②当x <h 时,y 随x 的增大而增大 当x=h 时,y 有最大值,即最大值y =k ⑤ y=ax 2+b x+c 可化为: y=a(x+)2ab 2+a >0向上直线x=-a b 2(-ab 2,ab ac 442-) ①当x >-a b 2时,y 随x 的增大而增大 ②当x <-a b 2时,y 随x 的增大而减小 当x=-ab 2时,y 有最小值,最小值y =ab ac 442-a <0向下直线x=-a b 2(-ab 2,ab ac 442-)①当x >-ab 2时,y 随x 的增大而减小 ②当x <-a b 2时,y 随x 的增大而增大当x=-ab 2时,y 有最大值,即 y 最大值=ab ac 442-三. 二次函数图象的平移 1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形态不变,将其顶点平移到()h k ,处,详细平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减(自变量),上加下减(常数项)”二次函数图像间的平移可看作是顶点间的平移,因此只要驾驭了顶点是如何平移的,就驾驭了二次函数图像间的平移. 四.二次函数()2y a x h k =-+及2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+及2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中.五.二次函数解析式的三种表示方法但并非全部的二次函数都可以写成交点式,只有抛物线及x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化,将顶点式、交点式去括号、合并同类项就可转化为一般式,把一般式配方、因式分解就可转化为顶点式、交点式.六.二次函数的图象及各项系数之间的关系1. 二次项系数a【a确定抛物线的开口方向,|a|确定抛物线开口的大小】⑴当0a>时,抛物线开口向上,a的值越大,开口越小,a的值越小,开口越大;⑵当0a<时,抛物线开口向下,a的值越大,开口越大,a的值越大,开口越大.注:|a|越大,抛物线的开口越小,|a|越小,抛物线开口越大抛物线的形态一样,即|a|一样.2.一次项系数b【由a和对称轴共同确定】对称轴在y轴的左侧,a,b同号;对称轴在y轴的右侧,a,b异号.(左同右异 b为0时,对称轴为y轴)3. 常数项c⑴当0c>时,抛物线及y轴的交点在x轴上方,即抛物线及y轴交点的纵坐标为正;⑵当0c=时,抛物线及y轴的交点为坐标原点,即抛物线及y轴交点的纵坐标为0;⑶当0c<时,抛物线及y轴的交点在x轴下方,即抛物线及y轴交点的纵坐标为负.总结起来,c确定了抛物线及y轴交点的位置.七.二次函数图象(抛物线)及x轴交点状况的推断:y=ax2+bx+c (a≠0,a、b、c都是常数)1.△=b²-4ac>0⇔抛物线及x轴有两个交点2.△=b²-4ac=0⇔抛物线及x轴有一个交点3.△=b²-4ac<0⇔抛物线及x轴没有交点①当0y>;a>时,图象落在x轴的上方,无论x为任何实数,都有0②当0y<.a<时,图象落在x轴的下方,无论x为任何实数,都有0八.二次函数及一元二次方程、一元二次不等式的解之间的关系:1.二次函数y=ax2+bx+c的图象及x轴交点的横坐标是一元二次方程ax2+bx+c=0的解.因此利用二次函数图象可求以x为未知数的一元二次方程ax2+bx+c=0的解(从图象上进展推断).2.二次函数y=ax2+bx+c在x轴上方的图象上的点的横坐标是一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标是一元二次不等式ax2+bx+c <0的解.九.二次函数的应用二次函数应用☆☆二次函数抛物线简洁的图形变换☆☆(1)顶点式【ky+=2)((a≠0)】-hxa(2)一般式【c+=2(a≠0)】y+bxax①平移:如将二次函数c=2向右平移m(m>0)个单位,再向下平移n(n+bxaxy+>0)个单位,得到n c bm am x b am ax n c m x b m x a -+-+--=-+-+-=222)2()()(y ②对称注:无论是平移、轴对称还是旋转,最好先把二次函数化成顶点式,然后再依据须要进展求解.二次函数对应练习试题一.选择题1.二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2.把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A.22(1)y x =-+B.22(1)y x =--C.221y x =-+D.221y x =-- 3.函数2y kx k =-和在同始终角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( ) A.1个 B.2个 C. 3个 D. 4个 5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及局部图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.方程的正根的个数为( )A.0个B.1个C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),及y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =--B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++ 二.填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______.10.已知抛物线y=-2(x+3)²+5,假如y 随x 的增大而减小,那么x 的取值范围是_______.11.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满意上述两条性质的函数的解析式是 (只写一个即可).12.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线及两坐标轴所围成的三角形面积为 .13. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= .14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 (π取3.14). 三.解答题:15.已知二次函数图象的对称轴是30x +=,图象经过(1,-6),且及y 轴的交点为(0,52-).(1)求这个二次函数的解析式;(2)当x 为何值时,这个函数的函数值为0?(3)当x 在什么范围内改变时,这个函数的函数值y 随x 的增大而增大?16.某种爆竹点燃后,其上上升度h (米)和时间t (秒)符合关系式 (0<t ≤2),其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以v 0=20米/秒的初速度上升, (1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,推断爆竹是上升,或是下降,并说明理由.17.如图,抛物线2y x bx c =+-经过直线3y x =-及坐标轴的两个交点A 、B ,此抛物线及x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。

二次函数知识点总结及练习题

二次函数知识点总结及练习题

二次函数知识点总结及练习题✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2. ✧ 二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.✧ 求抛物线的顶点、对称轴的方法 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=. 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,练习题一、选择题(每小题3分,共30分)1.下列函数中是二次函数的是( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -32.若二次函数y =x 2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值分别为( )A .0,5B .0,1C .-4,5D .-4,13.在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )A .y =(x +2)2+2B .y =(x -2)2-2C .y =(x -2)2+2D .y =(x +2)2-24.若(2,5),(4,5)是抛物线y =ax 2+bx +c 上的两个点,则它的对称轴是( )A .x =1B .x =2C .x =3D .x =45.若二次函数y =(m +1)x 2-mx +m 2-2m -3的图象经过原点,则m 的值必为( )A .-1或3B .-1C .3D .-3或16.抛物线y =x 2-2x +1与坐标轴的交点个数为( )A .无交点B .1个C .2个D .3个7.同一坐标系中,一次函数y =ax +1与二次函数y =x 2+a 的图象可能是( )8.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=09.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )10.(2014·泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:①ac<0;③3是方程ax2+(b-1)x +c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为() A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.二次函数y=x2+2x-4的图象的开口方向是,对称轴是__ ,顶点坐标是__ ___.12抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为_ __.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为_ ___.14.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行_____米才能停下来.15.隧道的截面是抛物线形,且抛物线的解析式为y=-18x2+3.25,一辆车高3 m,宽4 m,该车_ ___通过该隧道.(填“能”或“不能”)16.一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x 的增大而减小.这个函数解析式为__ ___.(写出一个即可)17.如图,二次函数y 1=ax 2+bx +c(a ≠0)与一次函数y 2=kx +m(k ≠0)的图象相交于点A(-2,4),B(8,2),则使y 1>y 2成立的x 的取值范围是__ ___.18.(2014·广安)如图,把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为__ __.答案:一、BDBCC CCBBB二、 11、向上 x=-1 (-1.5) 12. 8 13.y=-x 2+4x -314.20 15.不能 16.y =-x 2+5 17.<-2或x >8 18. 272。

二次函数知识点总结及练习

二次函数知识点总结及练习

二次函数知识点总结及练习知识点1:二次函数的概念(1)一般地,形如 (a,b,c 是常数, )的函数,叫做二次函数。

注意:①a ②最高次数为 ③代数式一定是 (2)二次函数的一般形式是 (a,b,c 是常数, ) 是二次项系数, 是一次项系数, 是常数项.练习:1.已知函数35)1(12-+-=+x x m y m 是二次函数,求m 的值。

2.若函数y=(m 2+2m-7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

知识点2:二次函数的图像和性质(1)y=ax 2的图像和性质:练习:1. y=-2x 2的对称轴是 ,顶点坐标是 ;当 时,y 的值随x 值的增大而减小 2.当m= 时,抛物线mm x m y +-=2)1(开口向下,对称轴为 ,当x<0时,y 随x 的增大而 ;当x>0时,y 随x 的增大而 .3.已知点(x 1,y 1),(x 2,y 2)在二次函数y=-2x 2图象上,当x 1>x 2>0时,则y 1与y 2的大小关系是 .4.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=5x 2的图象上,则则y 1与y 2,y 3的大小关系是 . (2)y=ax 2+c 的图像和性质:1.二次函数y=-2x 2+6图象的对称轴是 ,顶点坐标是 ,当 时,y 随x 的增大而增大. 2.已知y=ax 2+c 的图象上有A(-3,y 1),B(1,y 2),C(2,y 3)三点,且y 2<y 3<y 1,则a 的取值范围是 . 3.将二次函数y=2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为 .4.已知抛物线y=(m-1)x 2+m 2-2m-2的开口方向向下,且经过点(0,1). (1)求m 的值;(2)求此抛物线的顶点坐标及对称轴; (3)当x 为何值时,y 随x 的增大而增大?(3)y=a(x-h)2+k 的图像和性质:1.抛物线y=-12(x +4)2的顶点坐标为 ,当x >-4时,y 随x 的增大而 .2.抛物线y=-2(x-1)2-3的开口方向是 ,其顶点坐标是 ,对称轴是直线 ,当 时,函数值y 随自变量x 的值的增大而减小.3.若抛物线y=(x-m)2+(m +1)的顶点在第一象限,则m 的取值范围为 .4.已知A(1,y 1)、B(-12,y 2)、C(-2,y 3)在函数y=a(x +1)2+k(a>0)的图象上,则y 1、y 2、y 3的大小关系是 .(4)二次函数c bx ax y ++=2(a ≠0)的图像和性质练习:1.抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 , 函数值得最大值是 。

二次函数知识点及习题集(内容全部)

二次函数知识点及习题集(内容全部)

二次函数知识点1. 二次函数的解析式三种形式一般式 y=ax 2 +bx+c(a ≠0)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 交点式 12()()y a x x x x =--2. 二次函数图像与性质① 对称轴:2bx a=- 顶点坐标:24(,)24b ac b a a -- 与y 轴交点坐标(0,c )② 增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 ③ 二次函数图像画法:勾画草图关键点:○1开口方向 ○2对称轴 ○3顶点 ○4与x 轴交点 ○5与y 轴交点 ④ 图像平移步骤(1)配方 2()y a x h k =-+,确定顶点(h,k )(2)对x 轴 左加右减;对y 轴 上加下减 ⑤ 二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=⑥ 根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 3.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。

抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点3. 二次函数的应用如物体运动规律、销售问题、利润问题、几何图形变化问题等【典型例题】题型 1 二次函数的概念例1、二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4)《伴你成长》题型2 二次函数的性质例2 若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大解法2:求值法:将已知两点代入函数解析式,求出a ,b 的值 再把横坐标值代入求出y 1 与y 2 的值,进而比较它们的大小《伴你成长》题型3 二次函数的图像《伴你成长》题型4 二次函数图像性质(共存问题、符号问题)例3函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )点拨:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C .《伴你成长》题型5 二次函数的平移例4.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-题型6 二次函数应用销售利润类问题及其他例5 某商品的进价每件为50元,现在的售价为每件60元,每星期可卖出70件,市场调查反映:如果每件的售价每涨10元(售价每件不能高于140元),那么每星期少卖5件,设每件涨价x 元(x 为10的正整数倍),每周销售量为y 件 。

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。

里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。

22. y ax c的性质:上加下减。

23. y a x h的性质:左加右减。

24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。

二次函数知识总结及典型例题

二次函数知识总结及典型例题

二次函数:一般地,形如 c b a c bx ax y ,,(2++=是常数,)0≠a 的函数叫做二次函数.。

例1. 当m_______时,函数y=(m+1)2mmx --2x+1是二次函数?a----决定了抛物线的形状、开口方向、开口大小。

a 相同抛物线的形状相同,a越大开口越小,a 越大开口越小,a >0开口向上,a <0开口向下。

b----与a 共同决定了抛物线对称轴(x =2b a -)的位置。

对称轴为正,a 、b 异号,对称轴为负,a 、b 同号。

c----决定了抛物线与y 轴交点的位置,c >0与y 轴的正半轴相交,c <0与y 轴的负半轴相交。

例2.已知二次函数2y ax bx c =++的图象如图,则点()P a bc ,在第_____象限. 与y 轴的交点-----令x=0,则(0,c )△>0 与x 轴有两个交点(这两个交点关于对称轴对称) 与x 轴的交点-----令y=0,则ax 2+bx+c=0 △=0 与x 轴只有一个交点(或顶点在x 轴上)函数值恒为正----a >0, △<0△<0 与x 轴没交点函数值恒为负----a >0, △<0 例3. 抛物线322--=x xy 与x 轴分别交于A 、B 两点,与y 轴交于点C ,则AB 的长为 ,三角形ABC 的面积是 。

例4.抛物线y=ax2+bx+c 中,b =4a ,它的图象如图,有以下结论: ①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0其中正确的为( ) A .①② B .①④ C .①②③ D .①③⑤ 二次函数的增减性是以对称轴x =-ab 2为界分成性质不同的两部分,因此涉及到二次函数的增减性时通常先求出对称轴然后根据开口方向画出草图数形结合分析。

例5.二次函数y=ax 2+bx+c 的图象如图,若点A(1,y 1)、B(2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( ) (A) y 1<y 2 (B) y 1=y 2 (C) y 1>y 2 (D)不能确定二次函数知识总结及典型例题抛物线y =ax 2+bx+c(a ≠0) 的顶点坐标(-a b 2,ab ac 442-) (注:利用顶点坐标公式可以求二次函数的对称轴、最大(小)值;也可以将一般式:y =ax 2+bx+c 化成顶点式:y =a(x-顶点横坐标)2+顶点的纵坐标 例6. 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为( )A .0 5B .0. 1 C.-4. 5 D.-4. 1 一般式:y =ax 2+bx+c 已知三个点时顶点式:y =a(x-h)2+k 已知顶点坐标或对称轴、最大(小)值时 交点式:y=a(x-x 1)(x-x 2) 已知抛物线与x 轴的交点坐标时 例7.(1)已知二次函数的图象如图所示,求这个二次函数的表达式.(2)已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及对应练习题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 题型2 二次函数的性质例2 若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( )A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 题型3 二次函数图像性质(共存问题、符号问题)例3、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )例4 已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2B 3C 、4D 、5题型4 二次函数的平移例5.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-题型65 二次函数应用销售利润类问题例6 某商品的进价每件为50元,现在的售价为每件60元,每星期可卖出70件.如果每件的售价每涨10元(售价每件不能高于140元),那么每星期少卖5 B . C .⑴ 求y 与x 的函数关系式及自变量x 的取值范围。

⑵ 如何定价才能使每周的利润最大且每周销量较大?每周的最大利润是多少?【基础达标训练】 一、选择题1.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 2.二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .233.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()A .4个B .3个 C2个 D .1个 5. 二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( )A .21y y <B .21y y =C .21y y >D .不能确定 6.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =7.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x yB.()42412+-=x yC.()42412++-=x yD.321212+⎪⎭⎫ ⎝⎛-=x y二、填空题8.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是_____________9. 把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________10.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)11.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.12.若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 .图6(1) 图6(2)三、解答题13.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.14.心理学家发现,学生对概念接受能力y 与提出概念所用时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x <30)。

(完整版)二次函数知识点总结及典型例题,推荐文档

(完整版)二次函数知识点总结及典型例题,推荐文档

浙教版九年级上册二次函数知识点总结及典型例题知识点一、二次函数的概念和图像 1、二次函数的概念一般地,如果,特别注意a 不为零,那么y 叫做x的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

)0,,(2≠++=a c b a c bx ax y 是常数,2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

abx 2-=抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:c bx ax y ++=2当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】、已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0知识点二、二次函数的解析式二次函数的解析式有三种形式:口诀-----一般 两根 三顶点(1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线与x 轴有交点时,即对应的一元二次方程有实根c bx ax y ++=202=++c bx ax 和存在时,根据二次三项式的分解因式,二次函数可转化为1x 2x ))((212x x x x a c bx ax --=++c bx ax y ++=2两根式。

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习二次函数知识点总结和相关练习1)配方:1、将二次函数y2、将二次函数y141某2某7配成顶点式,并求对称轴和最值。

某2配成顶点式,并求顶点坐标和最值。

2)平移、对称、旋转变换:抓顶点和开口方向1、函数y某24某3关于某轴对称的函数的解析式为;关于Y轴对称的函数的解析式为2、将二次函数位,得到抛物的图像向下平移2个单位,再向右平移3个单,则3、若抛物线向左又向上各平移4个单位,再绕顶点旋转180°,得到新的图像的解析式是________.3)二次函数图像与系数a、b、c之间的关系:①a决定抛物线的形状和大小,a的正负决定开口方向。

②a、b共同决定对称轴:同左异右③c决定抛物线与y轴交点位置④b24ac的正负决定抛物线与某轴的交点个数⑤伟达定理:某1某2ba,某1某2ca一、1、二次函数ya某2某a21的图像可能是()22、二次函数ya某b某c图像如图所示,则直线ya某b与反比例函数yac某在同一直角坐标系内大致图像为()3、一次函数ya某b和二次函数ya某b某c,那么他们在同一直角坐标系内的大致图像是()二1、二次函数图象如图所示,则下列结论:①abc0②abc1③abc0④4a2bc0⑤ca12、二次函数ya某2b某c图象如图,则下例结论不正确的是()A.a0B.abc0C.abc0Db24ac03、二次函数ya某22某3图象与轴有一个交点在0、1之间,a范围是()A、a>13B、0-13且a04、二次函数ya某2b某c图象如图,则下例结论正确的是()A、ac0B、当某1时,y0C、方程a某2b某c0(a0)有两个大于1的实根D、存在一个大于1的实数某0,使某时,y随某增大而增大。

三、函数增减性:1、已知A( 343某0时,y随某的增大而减少,当某某0,y1)B(12,y2)C(34,y3)在函数y某212某3图像上,比较yyy12的大小关系2、二次函数y3(某1)2k的图像上有三点A(2,则yy1)B(2,y2)C(5y3) 1yy23的大小关系四、二次函数与方程、不等式之间的联系21、ya某a某3某1的图像与某轴有且只有一个交点,则a交点坐标为2、二次函数yk某6某3的图像与某轴有交点,则k的取值范围()A、k3B、k3且k0C、k3D、k3且k03、二次函数y某2某2的图像如图,则y1时某的范围24、二次函数ya某b某c图象与某轴交点横坐标分别是与某1,某2则(1)y0时22某的范围(2)y0时,某=5、根据表格求a某b某c0的一个解某的范围()6.17某6.18D、6.18某6.19A、6某6.17B、6.17某6.18C、6、用图像法解不等式某24某307、函数y(m6)某22(m1)某m1图象与某轴总有交点(1)求m的取值范围(2)若图象与某轴有2个交点,且交点的横坐标的倒数和等于4,求m值五、求函数解析式1、正方形ABCD,E在BC上,F在AC上,且AE=AF,AB=4,设EC=某,ABC的面积为y则y与某之间函数解析式为2、矩形周长为12cm,则它的面积是S与边长某之间函数关系式为3、二次函数图象过坐标原点,顶点(1,-2),求这个二次函数的解析式4、二次函数过原点和(12,14),且图象与某轴的另一个交点到原点距离为1,则二次函数解析式六、二次函数实际应用(最值问题)1、如图,用一段长为24米的篱笆围成一个一边靠墙的矩形ABCD,设AB边长为某米,菜园的面积为ym2,(1)求与之间的函数关系式(2)如果要围成45m2的菜园,则AB长是多少米?(3)某为何值时,花圃面积最大?2、某商店购进单价为16元的日用品,若每件20元价格售出,每天可售出360件,若每件25元的价格售出,每天可卖出210件,假设每天销售件数y是销售单价某的一次函数(1)试求y与某的函数关系式(2)问销售价定位多少元时,每天获利最多为多少?3、正方形ABCD中,AB=2,E是AD边上一点(不与A、D 重合),BE的垂直平分线交AB于M,交DC于N.(1)设AE=某,四边形ADNM的面积为S,写出S与某的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大面积是多少?4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?【变式训练】某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AEMN.准备在形如Rt△AEH的四个全等三角形内种植红色花草,在形如Rt△AEH的四个全等三角形内种植黄色花草,在正方形MNPQ内种植紫色花草,每种花草的价格如下表:品种价格(元/米2)红色花草60黄色花草80紫色花草120设AE的长为某米,正方形EFGH的面积为S平方米,买花草所需的费用为W元,解答下列问题:(1)S与某之间的函数关系式为S;(2)求W与某之间的函数关系式,并求所需的最低费用是多少元;(3)当买花草所需的费用最低时,求EM的长.A红EQ黄P紫MNFHDGCB扩展阅读:二次函数知识点归纳及相关习题(含答案)二次函数知识点归纳及相关习题第一部分二次函数基础知识相关概念及定义b,c是常数,a0)的函数,叫做二二次函数的概念:一般地,形如ya某2b某c(a,c可以为零.二次次函数。

二次函数知识点及重点题练习答案解析

二次函数知识点及重点题练习答案解析
在第一象限内,图象都下凹.
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,

二次函数知识点总结与相关典型题目

二次函数知识点总结与相关典型题目

二次函数知识点总结及相关典型题目第一部分 二次函数基础知识 ✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. ➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. ➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); ➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2ax y =的性质✧✧✧ ✧✧✧ 二次函数2y ax c =+的性质✧ ✧ ✧ ✧✧✧ ✧ ✧✧ 二次函数()2y a x h =-的性质:✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c=++的三要素:开口方向、对称轴、顶点.➢ a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小 ➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点➢y 轴与抛物线c bx ax y ++=2得交点为(0,c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: ➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数考点1、二次函数的概念定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0, 而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)例1: 函数y=(m +2)x 22-m +2x -1是二次函数,则m= _______.例2:已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数.例3:函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 例4: 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2x1+x . A .1个 B .2个 C .3个 D .4个考点2、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0), 对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x1)(x-x2)(a ≠0),对称轴:直线x=22x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标).例1:抛物线822--=x x y 的顶点坐标为____________;对称轴是___________。

例2:二次函数y=-4(1+2x )(x-3)的一般形式是_______ 例3:已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;例4:抛物线y=x 2-4x+3与x 轴的交点坐标是______. 例5:把方程x(x+2)=5(x-2)化为一元二次方程的一般形式后a=____,b=_____,c=_____. 考点3、用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴或最值,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.例1:一个二次函数的图象顶点坐标为(-5,1),形状与抛物线y=2x 2相同,这个函数解析式为______________.例2:已知抛物线的顶点坐标是(-2,1),且过点(1,-2),求抛物线的解析式。

例3:已知二次函数的图像经过(0,1),(2,1)和(3,4),求该二次函数的解析式。

例4:已知二次函数的图像与x 轴的2个交点为(1,0),(2,0),并且过(3,4),求该二次函数的解析式。

考点4.二次函数的图象1、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.注:二次函数的图象可以通过抛物线的平移得到3、二次函数c bx ax y ++=2的图像的画法因为二次函数的图像是抛物线,是轴对称图形,所以作图时步骤是: (1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.典型例题:例1:函数y=x 2的顶点坐标为_______.若点(a ,4)在其图象上,则a 的值是________.例2:若点A (3,m )是抛物线y=-x 2上一点,则m= ________.例3:函数y=x 2与y=-x 2的图象关于________对称,也可以认为y=-x 2,是函数y=x 2的图象绕___________旋转得到.例4:若二次函数y=ax 2(a ≠0),图象过点P (2,-8),则函数表达式为_________.例5:.函数y=x 2的图象的对称轴为______,与对称轴的交点为_______,是函数的顶点.例7:若a >1,点(-a -1,y1)、(a ,y2)、(a +1,y3)都在函数y=x 2的图象上,判断y1、y2、y3的大小关系?1、开口方向:当a>0时,函数开口方向向上; 当a<0时,函数开口方向向下;2、增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少; 3、最大或最小值:当a>0时,函数有最小值,并且当x=ab2- , y 最小 =a b ac 442-当a<0时,函数有最大值,并且当x=ab2- , y 最大 =a b ac 442-典型例题:例1:抛物线的顶点在y 轴上,则m 的值为______________。

例2:按要求求出下列二次函数的解析式: (1)形状与y=-31x 2+2的图象形状相同,但开口方向不同,顶点坐标是(0,-3)的抛物线的解析式;(2)与抛物线y=51x 2-2关于x 轴对称的抛物线的解析式; (3)对称轴是y 轴,顶点的纵坐标是-27,且经过(1,1)点的抛物线的解析式。

例3: 已知函数y=21x 2+2x+1 (1)写出抛物线的开口方向,顶点坐标、对称轴及最值; (2)求抛物线与x 轴、y 轴的交点;(3)观察图象:x 为何值时,y 随x 的增大而增大;(4)观察图象:当x 为何值时,y>0时,当x 为何值时,y=0;当x 为何值时,y<0。

例4:已知二次函数y=(k-2)x 2+2kx+3k ,根据下列给出的条件求出相应的k 的值。

(1)抛物线的顶点在x 轴上; (2)抛物线的顶点在y 轴上; (3)抛物线的顶点在y=4x 上。

考点7.抛物线的三要素:开口方向、对称轴、顶点坐标。

①a 的符号决定抛物线的开口方向②对称轴平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x . ③顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 例1: 函数在同一坐标系中的图象大致是图中的( )例2: 抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 例3:二次函数2)1(2++=x y 的最小值是( ). A .2 B .1 C .-3 D .32例4:抛物线n x y ++=2)m (2(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --, 例5:函数y=ax +1与y=ax 2+bx +1(a ≠0)的图象可能是( )考点8.抛物线c bx ax y ++=2中a 、b 、c 的作用 1、a 决定抛物线的开口方向和开口大小a 的符号决定抛物线的开口方向:当a>0时,函数开口方向向上; 当a<0时,函数开口方向向下;a 的大小决定抛物线的开口大小:当a 越大时,开口越小; 当a 越小时,开口越大;a 相等,抛物线的开口大小、形状相同.2、a 和b 共同决定抛物线的对称轴位置。

(x=ab2-) 左同右异:①如果对称轴在Y 轴左侧,则a 、b 符号相同。

②如果对称轴在Y 轴右侧,则a 、b 符号相反。

注意点:①0=b 时,对称轴为y 轴; ②0>ab(即a 、b 同号)时,对称轴在y 轴左侧; B . C . D .1111xo yyo x yo xxoy③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. 3、c 的大小决定抛物线于y 轴的交点位置。

(于y=kx+b 中的b 作用相同)当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):注意:①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 例1: 已知抛物线c bx ax y ++=2经过原点和第一、二、三象限,则( ) A. a>0,b<0,c=0 B. a<0,b<0,c=0 C. a<0,b<0,c<0 D. a>0,b>0,c=0例2:在同一直角坐标系中,直线y=ax+b 和抛物线)0(2≠++=c c bx ax y 的图象只可能是图中的( )例3: 在同一直角坐标系中,函数ax x y b ax y +=+=22b 和的图象只可能是图中的( )例4:抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( ) A 、y=x 2-x-2 B 、y=121212++-x C 、y=121212+--x x D 、y=22++-x x 例6:已知二次函数y =ax2+bx +c(a ≠0)的图象如图所示,给出以下结论:①a >0.②该函数的图象关于直线1x =对称.③当13x x =-=或时,函数y 的值都等于0.其中正确结论的个数是( ) A .3 B .2 C .1 D .0O考点9、抛物线的平移方法:左加右减,上加下减抛物线的平移实质是顶点的平移,因为顶点决定抛物线的位置,所以,抛物线平移时首先化为顶点式向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2例1:在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y例2:将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为A .1B .2C .3D .4例3:在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+- C .22y x x =-++ D .22y x x =++ 例4:把抛物线y=-x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++ 考点10、二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 的最大值和最小值的求法二次函数是否有最值,由a 的符号确定。

相关文档
最新文档