【经典】小学五年级数学竞赛奥数讲义例题一图文百度文库

合集下载

五年级上册数学竞赛试题-奥数经典例题一(含解析)

五年级上册数学竞赛试题-奥数经典例题一(含解析)

五年级奥数精典例题一例1:甲乙两车同时分别从两地相向而行。

甲车每小时行72千米,乙车每小时行64千米。

两车相遇时距全程的中点20千米。

两地之间相距多少千米?解答:20×2÷(72-64)=40÷8=5(小时)……相遇时间(72+64)×5=136×5=680(千米)答:两地之间相距680千米。

解析:在相同的时间内,甲的速度快,行的路程多,比全程的一半多20千米,而乙则比全程的一半少20千米,所以甲应该比乙多行20×2=40(千米)。

而甲1小时比乙多行72-64=8(千米),多少小时甲比乙多行40千米呢?40÷8=5(小时),这就是他们行驶的时间,即相遇时间。

例2:甲、乙、丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙从B地同时相向出发,丙遇到乙后2分钟遇到甲,A、B两地相距多远?解答:(50+70)×2=240(米)240÷(60一50)=24(分钟)(60+70)×24=3120(米)答:A、B两地相距3120米。

解析:丙与乙相遇时,甲与丙还相距一段路程,这段路程甲、丙还要行2分钟相遇,说明甲、丙还相距(50+70)X2=240(米)。

由于乙、丙相遇处在同一位置,所以240米也是甲、乙相距的路程,即甲、乙的路程差,根据路程差÷速度差=时间,列式240÷(60-50)=24(分),这也是乙、丙的相遇时间,就可求出全程。

例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。

每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。

小学五年级数学奥数教程((第1讲)

小学五年级数学奥数教程((第1讲)

小学五年级数学奥数教程(第1讲)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=26×3×29。

由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

五年级奥数教学课件

五年级奥数教学课件

小学五年级奥数40讲第1周平均数第2周等差数列第3周长方形、正方形的周长第4周长方形、正方形的面积第5周数数图形第6周尾数和余数第7周一般应用题(一)第8周一般应用题(二)第9周一般应用题(三)第10周同数阵第11周周期问题第12周盈亏问题第13周长方体和正方体(一)第14周长办体和正方体(二)第15周长方体和正方体(三)第16周倍数问题(一)第17周倍数问题(二)第18周组合图形面积(一)第19周组合图形面积(二)第20周数字趣味题第21周假设法解题第22周作图法解题第23周分解质因数(一)第24周分解质因数(二)第25周最大公约数第26周最小公倍数(一)第27周最小公倍数(二)第28周行程问题(一)第29周行程问题(二)第30周行程问题(三)第31周行程问题(四)第32周算式谜第33周包含与排除第34周置换问题第35周估值问题第36周火车行程问题第37周简单列举第38周最大最小问题第39周推理问题第40周杂题第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

五年级数学奥数讲解

五年级数学奥数讲解

第1讲平均数(一)一、知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数二、精讲精练【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?【例题2】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

【经典】小学五年级数学竞赛奥数讲义-例题

【经典】小学五年级数学竞赛奥数讲义-例题

【经典】小学五年级数学竞赛奥数讲义-例题一、拓展提优试题1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块2.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…3.如图,从A到B,有条不同的路线.(不能重复经过同一个点)4.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.5.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;6.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.7.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.8.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.9.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)10.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.13.观察下面数表中的规律,可知x=.14.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.【参考答案】一、拓展提优试题1.64≥≥),容易知道只有[解答]设长方体的长、宽、高分别为,,l m n(不妨设l m n一面染色的小正方体只有每个面上可能有一些。

【精选】小学五年级数学竞赛奥数讲义例题一图文百度文库

【精选】小学五年级数学竞赛奥数讲义例题一图文百度文库

【精选】小学五年级数学竞赛奥数讲义例题一图文百度文库一、拓展提优试题1.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.2.如图,从A到B,有条不同的路线.(不能重复经过同一个点)3.数一数,图中有多少个正方形?4.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.5.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)6.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.7.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;8.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.9.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)10.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.12.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.【参考答案】一、拓展提优试题1.解:方法一:据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132.故填:2829303132.2.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.3.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.4.解:根据题干分析可得:5个笔记本+5支笔=32元;则1个笔记本+1支笔=6.4(元),3个笔记本+3支笔+4支笔=30.4(元),所以4支笔=30.4﹣3×6.4=11.2(元),所以1支笔的价格是:11.2÷4=2.8(元),则每个笔记本的价钱是:6.4﹣2.8=3.6(元).答:每个笔记本3.6元,每支笔2.8元.故答案为:3.6;2.8.5.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.6.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.7.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.8.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.9.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.10.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.11.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.12.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.13.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11814.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。

五年级数学 奥数精品讲义1-34讲

五年级数学 奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)第一讲消去问题(一)在有些应用题里;给出了两个或者两个以上的未知数量间的关系;要求出这些未知数的数量.我们在解题时;可以通过比较条件;分析对应的未知数量变化的情况;想办法消去其中的一个未知量;从而把一道数量关系较复杂的题目变成比较简单的题目解答出来.这样的解题方法;我们通常把它叫做“消去法”.例题与方法在学习例题前;我们先进行一些基本数量关系的练习;为用消去法解题作好准备.(1)买1个皮球和1个足球共用去40元;买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克;1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵;照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯;一共用去172元;每个水瓶18元;每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯;共用去134元;第二次又买了同样的3个水瓶和16个差杯;共用去118元.水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元;买同样的6个篮球和3个足球共用去519元.篮球和足球的单价各是多少元?练习与思考1、 1袋黄豆和1袋绿豆共重50千克;同样的7袋黄豆和7袋绿豆共重()千克.2、买5条毛巾和5条枕巾共用去90元;买1条毛巾和1条枕巾要()元.3、买4本字典和4本笔记本共、用去了68元;买同样的9本字典和9本笔记本一共要()元.4、9筐苹果和9筐梨共重495千克;找这样计算;2筐苹果和2筐梨共重()千克.5、妈妈买了5米画布和3米白布;一共用去102元.花布每米15元;白布每米多少元?6、果园里有14行桃树和20行梨树;桃树和梨树一共有440棵.每行梨树15棵;每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉;一共重400千克;第二次又运来9袋大米和4袋面粉;一共重550千克.每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克;同样的3包味精和14包糖共重7300克.每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球;一共用去了984元;青山小学买了同样的16个足球和10个篮球;一共用去1240元.每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子;需要1600元.买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克;6头牛和5只羊一天共吃草130千克.每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克.求每袋大米和每袋面粉的重量.3..三头牛和8只羊每天共吃青草93千克;5头牛和15只羊每天吃青草165千克.一头牛和一只羊每天各吃青草多少千克?练习与思考1.3个皮球和5个足球共245元;同样的6个皮和10个足球共()元.2.5盒铅笔和9盒钢笔共190支;同样的2盒铅笔和6盒钢笔共100支.3盒铅笔和3盒钢笔共()支;1盒铅笔和1支钢笔共()支.3.育才小学体育组第一次买了4个篮球和3个排球;共用去了141元;第二次买了5个篮球和4个排球;共用去180元.每个篮球和每个排球各多少元?4.3筐苹果和5筐梨共重138千克;5筐同样的苹果和3筐同样的共重134千克.;每筐苹果和每筐梨各重多少千克?5.某食堂第一次运进大米5袋;面粉7袋;共重1350千克;第二次运进大米3袋;面粉5袋;共重850千克.一袋大米和一袋面粉各重多少千克?6.3件上衣和7条裤子共430元;同样的7件上衣和3条裤子共470元.每件上衣和每条棵子各多少元?7.2千克水果糖和5千克饼干共64元;同样的3千克水果糖和4千克饼干共68元.每千克水果糖和每千克饼干各多少元?8.5包科技书和7包故事书共620本;6包科技书和3包故事书共420本.每包科技书比每包故事书少多少本?9.3个水瓶和8个茶杯共92元;5个水瓶和6个茶杯共102元.每个水瓶和每个茶杯各多少元?10.甲有5盒糖;乙有4盒糕共值44元.如果甲、乙两人对换一盒;则每人所有物品的价值相等.一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里;通常把应用题分为“一般应用题”和“典型应用题|”两大类.“典型应用题”有基本的数量关系、解题模式;较复杂的问题可以通过“转化”;向基本的问题靠拢.我们已经学过的“和差问题”、和“倍差问题”等等;都是“典型应用题”.“一般应用题|”没有各顶的数量关系;也没有可以以来的解题模式.解题时要具体问题具体分析;在认真审题;理解题意的基础上;理清一知条件与所求问题之间的数量关系;从而确定解题的方法.对于比较复杂的问题;可以借助线段图、示意图、直观演示等手段帮助分析.例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分;鱼尾重4千克;鱼头的重量等于鱼尾的重量加身一般的重量;而鱼身体、的重量等于鱼头的重量加上鱼尾的重量.这条鱼重多少千克?例2、一所小学的五年级有四个班;其中五(1)班和五(2)班共有81人;五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人;五(1)班比五(4)班多2人.这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼;甲钓了5条;乙钓了3条;吃鱼时;来了一位客人和甲、乙平均分吃这条鱼.吃完后来客付了8角钱作为餐费.问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土;小挖土机工作6小时;大挖土机工作8小时;一共挖土312方.已知小挖土机5小时的挖土量等于大挖土机2小时的完土量;两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜.分西瓜时;甲和丙都比乙多拿西瓜7.5千克.结果甲和丙各给乙1.5元钱.每千克西瓜多少元|?例 6、小红有一个储蓄筒;存放的都是硬币;其中2分币比5分币多22个.而按钱数算;5分币比2分币多4角.已知这些硬币中有36个1分币.问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分;其余每题12分;共100分.)1.有一段木头;不知它的长度.用一根绳子俩量它;绳子多15米;如果将绳子对折以后再来量;又不够04米.问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布;原约定各拿花布同样多.结果甲拿了6米;乙拿了14米.这样;乙就要给甲12元钱.每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克.分苹果时;甲和丙都比乙多拿7.8千克苹果;这样甲和丙各应给乙6元钱.每千克苹果多少钱?4.学校买了2张桌子和5把椅子;共付了330元 .每张桌子的价钱是每把椅子的3倍.每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班;不算甲班;期于三个班的总人数是131人;不算丁班;期于三个班的总人数是134人.已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人;甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米;共用去31.2元.已知1千克特特制面粉的价格是1千克大米的 2倍.李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等;已知1千克花生比1千克大豆贵12元;大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件;实际每天加工56个零件.这样;不仅提前3天完成原计划加工凌驾的任务;而求多加工了120个零件.这个车间实际加工了多少个零件?9.用8千克丝可以织6分米宽的绸4米;现在有10千克的丝;要织75分米宽的绸;可以织几米?|第四讲盈亏问题(一)盈亏问题又叫盈不足问题;是指把一定数量的物品平均分给固定的对象;如果按某种标准分;则分配后会有剩余(盈);按另一种标准分;又会不足(亏);求物品的数量和分配对象的数量.例如:小朋友分苹果;如果每人分2个;就多余16个;如果每人分5个;就缺少14个.小朋友有多少个?苹果有多少个?比较两次分的结果;第一次余16个;第二次少14个;两次相差1+14=30(个).这是因为第二次比第一次每人多分了5-2=3(个)苹果.相差30个;就说明有30÷3=10(个)小朋友.请小读者自己算出苹果的个数.例题与方法例1、将一些糖果分给幼儿园小班的小朋友;如果每人分3 粒;就会余下糖果17粒;如果每人分5粒;就会缺少糖果13粒.问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖;每人搬4块;其中5人要搬两次;如果么人搬5块;就有两人没有砖可搬.搬砖的学生有多少人?这批砖共有多少块?例3某校在植树活动中;把一批树苗分给各班;如果每班分18棵;就会有余下24棵;如果每班分20棵;正好分完.这个学校有多少个班?这批树苗共有多少棵?练习与思考1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒.问:有多少小朋友?有多少粒糖果?2.小朋友分糖果;每人分10粒正好分完;若每人呢分16粒;则有3个小朋友分不到糖果.问:有多少粒糖果?3.在桥上测量桥高.把绳长对折后垂到水面;还余4米;把绳长3折后垂到水面;还余1米.桥高多少米?绳长多少米?4.某校安排新生宿舍;如果每间住12人;就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍.这个学校有多少间?要安排多少个新生?5.在依次大扫除中;有一些同学被分配擦玻璃;他们当中如果有2人擦4块;其余的人各擦5块;就会多下12块玻璃没有人擦;如果么人擦6块;刚好擦完.擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数;减去3所的差的4倍;等于它的2倍加上36.这个数是多少?7.体育老师和一个朋友一起上街买足球.他发现自己身边的钱;如果买10个“冠军”牌足球;还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球;结果多了13元.体育老师原来身边带了多少元?8.某小学生乘汽车去春游;如果每辆车坐65人;就会有15人不能乘车;如果每辆车多坐5人恰好多余了一辆车.一共有多少辆汽车?有多少个学生?第五讲盈亏问题(二)上一讲;我们讲了盈亏问题的一般情形;也就是在量词分配中恰好洋盈(多余);一次亏(不足).事实上;在许多问题里;也会出现两次都是盈(多余);或者两次都是亏(不足)的情况.例 1、学校将一批铅笔奖给三好学生;每人9支缺15支;每人7支就缺7支.问:三好学生有多少人;铅笔有多少支?例2、某小学的部分同学外出参观;如果每辆车坐55人就会余下30个座位;如果每辆车坐50人;就还可以坐10人.有多少辆车?去参观的学生多少人?例3、学校规定上午8时到校.王强上学去;如果每分钟走60米;可以提早10分钟到校;如果每分钟作呕50米可以提早8分钟到校.问:王强什么时候离开家?他家离学校多远?练习与思考(第1~4题13分;其余每题12分;共100分.)1.同学们打羽毛球;每两人一组.每组分6个羽毛球;少10个球;每组分4个羽毛球;少2个球.问:共、有多少个同学打球?有多少个羽毛球?2.学校将一批钢笔奖给三好学生;每人8支缺11支;每人7支缺7支.问:三好学生有多少人?钢笔有多少支?3.某小学的部分学生去春游;如果每辆车坐50人;就会余下30个座位;如果每辆车坐40个人;还可以坐10人.问有多少辆车?去春游的学生多少人?4.一筐苹果分给一个小组;每人5个剩16个;每人7个缺12个.这个小组有多少人?共有多少苹果?5.一些学生分练习本.其中两人每人分6本;其余每人分4本;就会多4本;如果有一人分10本;其余每人分6本;就会少18本.学生有多少人?练习本多少本?6.一个学生从家到学校;先用每分50米的速度走了2分;如果这样走下去;他会迟到8分;后来他改用每分60米的速度前进;结果早到学校5分.这个学生家到学校的路程是多少米?7.筑路对计划每天筑路720米;实际每天比原计划多筑802米;这样;在规定完成任务时间的前3天;就只剩下1160米未筑.这条路多长?8.老师给幼儿园小朋友分苹果.每2人3个苹果;多2个苹果;每3人5个苹果;少4个苹果.问:有多少小朋友?多少苹果?第六讲流水问题想一想:从南京长江逆流而上去长江三峡;与从长江三峡顺水而下回南京;哪个花的时间少?哪个花的时间多?为什么?原因很简单.在长江行船与在一个平静的湖这行船是不一样的;因为长江的水是一直从西向东(也就是从上游向下游)流着的;船的速度会受到江水的影响.而在平静的湖水中行船时;船的速度不会受到水流的影响.考虑船在水流速度的情况下行驶的问题;就是我们这一讲要讲的流水问题.船在顺水航行时(比方说;从长江三峡顺流而下到南京);船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶;同时整个水面又按照水的流动速度在前进;水推动着船向前;所以;船顺水时的航行速度应该等于船本身的速度与水流速度的和.也就是顺水速度=船速+水速比方说;船在静水中行驶10千米;水流速度是每小时5千米;那么;船顺水航行的速度就是每小时10+5=15(千米).同学们可以想一想;上面的问题中;如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶;情况恰好相反.本来船每小时行驶10千米;但由于水每小时又把它往回推了5千米;结果船每小时只向上游行驶了10—5=5(千米).也就是船在逆水中的速度等于船速度与水速之差.即逆水速度=船速—水速例1、一艘每小时行驶30千米的客轮;在一河水中顺水航行165千米;水速每小时3千米.问:这艘客轮需要航行多少小时?例2、一艘船顺水行320千米需要8小时;水流速度是每小时15千米;这艘船逆水每小时行多少千米?这艘船逆水行这段路程;需要多少小时?例3、甲船逆水航行360千米需要18小时;返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时;返回原地需要多少小时?练习与思考1.一只小船以每小时30千米的速度在176千米长的河中逆水而行;用了211小时.这只小船返回原处需要用多少小时?2.船在静水中的速度是每小时25千米;河水流速位每小时5千米;一只船往返甲、乙两港共花了9小时;两港相距多少千米?3.两地距280千米;一艘轮船在期间航行;顺流用去14小时;逆流用去20小时.求这艘轮船在静水中的速度和水流的速度.4.一架飞机所带的燃料;最多可以用6小时;飞机去是顺风;每小时可以飞1500千米;飞回时逆风;每小时可以飞1200千米.这架飞机最多飞出多少千米;就需要往回飞?5.乙船顺水航行2小时;行了120千米;返回原地用了4小时.甲船顺水航行同一段水路;用了3小时.甲船返回原地比去时多用多少小时?第七讲等差数列(1)1;2;3;4;5;6;7;8;…(2)2;4;6;8;10;12;14;16;…(3)1;4;9;16;25;36;49;…上面三组数都是数列.数列中称为项;第一个数叫第一项;又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列.后项与前项的差叫做这个等差数列的公差.如等差数列:4;7;10;13;16;19;22;25;28.首项是4;末项是28;共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1;5;9;13;17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置;小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形;最上面的一层有5根圆木;每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+…+97+98+99+100=?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4;7;10;……295;298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米;第10小时蜗牛爬了1.9米;第一小时蜗牛爬多少米?3.在树立俄;10;13;16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0.1+0.3+0.58.+0.7+0.9+0 11+0 13+0 15+…0 99的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级;各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12;求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4.9米;以后每秒落下的距离是都比前一秒多9.8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1;2;3;…;98;99;1002;3;4;…99;100;1013;4;5;…;100;101;102……100,101,102, …197,198,199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8;15;22;();36;…;(2)17;1;15;1;13;1;();();9;1;…;(3)45;1;43;3;41;5;();();37;9;…;(4)1;2;4;8;16;();64;…;(5)10;20;21;42;43;();();174;175;…;(6)1;2;3;5;8;13;21;();55.例1. 1;2;3;2;3;4;3;4;5;4;5;6;6;7;…从第一个数算起;前100个数的和是多少?.练习与思考(第1题30分;其余每题10分;共100分.)(1)找规律;在括号内填上合适的数.(1)1,3,9,27,( ),243;(2)2,7,12,17,22,( ),( ),37;(3)1,3,2,4,3,( ),4;(4)0,3,8,15,24,( ) ,.48;(5)6,3,8,5,10,7,12,9,( ),11;(6)2,3,5,( ),( ),17,23;(7)81,64,();36;();16;9;4;1;(8)21;26;19;24;();();15;20;(9)1;8;9;17;26;();69;(10)4;11;18;25;();39;46;2.一串数按下面规律排列:1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?4.在平面中任意作100条直线;这些直线最多能形成多少个交点?5.在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?6.序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 …算式3+11 1+13 2+15 3+17 …根据上面的规律;第40个序号的算式是什么?算式‘1+103“的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8在方格纸上画折线(如本讲例4图);小方格的边长是1;图中的1;2;3;4;…分别表示折线扩大第1;2;3;4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2;3;4;8;16;();64;128.(2)5;10;15;20;25;();35;40.(3)4;7;10;13;16;();22;25.(4)1;1;2;3;5;8;13;21;()(5)1024;512;256;();64;32;16;8;4.(6)2;5;11;20;32;();65;86.(7)1;3;2;4;3;5;();6;5.(8)1;4;9;16;25;();49;64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵;那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ … +22+24+262.1+2+3+4+5+6+ … +1996+1997+1998三、应用题(第1~4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9;那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米;用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张;其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2;4;8;16;32;64;…;1024;2048的和;方法如下:S= 2+4+8+16+32+64+ … +1024+204822S = 4+8+16+32+64+ … +1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 – 2 = 4094即数列2;4;8;16;32;64;…;1024;2048的和是4094.仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.1;3;9;27;81;243;…;177147;531441.第九讲加法原理在日常生活与实践中;我们经常会遇到分组、计数的问题.解答这一类问题;我们通常运用加法与那里与乘法原理这两个基本的计数原理.熟练掌握这两个原理;不仅可以顺利解答这类问题;而求可以为今后升入中学后学习排列组合等数学知识打下好的基础.什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海;可以乘火车;也可以乘汽车、轮船或者飞机.假如一天中南京到上海有4班火车、6班汽车;3班轮船、2班飞机.那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法;那么从南京到上海;乘火车有4种走法;乘汽车有6种走法;乘轮船有3种走法;乘坐飞机有2种走法.因为每一种走法都可以从南京到上海;因此;一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法.我们说;如果完成某一种工作可以有分类方法;一类方法中又有若干种不同的方法;那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和.即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和;m1,m2, … m n 表示每一类完成工作的方法的种数).这个规律就乘做加法原理.例1 书架上有10本故事书;3本历史书;12本科普读物.志远任意从书架上取一本书;有多少种不同的取法?例2一列火车从上上海到南京;中途要经过6个站;这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图);共有多少个正方形?例4 妈妈;爸爸;和小明三人去公园照相:共有多少种不同的照法?练习与思考1.从甲城到乙城;可乘汽车;火车或飞机.已知一天中汽车有2班;火车有4班;甲城到乙城共有()种不同的走法.2.一列火车从上海开往杭州;中途要经过4个站;沿途应为这列火车准备____种不同的车票.3.下面图形中共有____个正方形.4.图中共有_____个角.5.书架上共有7种不同的的故事书;中层6本不同的科技书;下层有4钟不同的历史书.如果从书架上任取一本书;有____种不同的取法.6.平面上有8个点(其中没有任何三个点在一条直线上);经过每两个点画一条直线;共可以画_____条直线.7.图中共有_____个三角形.8.图中共有____个正方形.9.从2;3;5;7;11;13;这六个数中;每次取出两个数分别作为一个分数的分子和分母;一共可以组成_____个真分数.10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的。

小学五年级数学竞赛奥数讲义例题一图文百度文库

小学五年级数学竞赛奥数讲义例题一图文百度文库

小学五年级数学竞赛奥数讲义例题一图文百度文库一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421542.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.3.如图所示,P为平行四边形ABDC外一点。

已知PCD∆的面积等于5平方厘米,PAB∆的面积等于11平方厘米。

则平行四边形ABCD的面积是CDBP4.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.5.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.7.用0、1、2、3、4这五个数字可以组成个不同的三位数.8.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.9.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.10.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.11.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.14.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP ,△CMQ ,△ENR 三个三角形是一样的,有KP =RN ,AP =ER ,RP =PQ , =,则=,=,由鸟头定理可知道3×KP ×AP =RP ×PQ , 综上可得:PR =2KP =RE ,那么由三角形AEK 是六边形面积的,且S △APK =S △AKE ,S △APK =S ABCDEF =47,所以阴影面积为47×3=141故答案为141.3.12[解答]作PF AB ⊥,由于//AB DC ,所以PF CD ⊥。

浙教版【经典】小学五年级上册数学奥数题带答案图文百度文库

浙教版【经典】小学五年级上册数学奥数题带答案图文百度文库

浙教版【经典】小学五年级上册数学奥数题带答案图文百度文库一、拓展提优试题1.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH2.观察下面数表中的规律,可知x=.3.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.4.用0、1、2、3、4这五个数字可以组成个不同的三位数.5.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.6.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.7.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.8.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)9.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.10.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.12.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.13.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.14.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.15.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).16.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.17.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.18.观察下表中的数的规律,可知第8行中,从左向右第5个数是.19.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?20.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.21.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .22.(12分)甲、乙两人从A 地步行去B 地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过 分钟才能追上乙. 23.已知13411a b -=,那么()20132065b a --=______。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

苏教版五年级奥数 第1讲 行程问题(1)讲义

苏教版五年级奥数 第1讲  行程问题(1)讲义

第20讲行程问题讲义专题简析行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1、甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米处相遇。

求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米。

求A、B两城之间的距离?3.下午放学时,小红从学校回家,每分钟走100米,同时,妈妈也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习1.兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?例3、甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

五年级数学奥数辅导讲义一

五年级数学奥数辅导讲义一

五年级数学奥数辅导讲义一第一课时整数与小数四则混合运算示例:在以下五个0.5之间,添加适当的运算符号+、-×、÷和括号,使以下等式为真。

0.50.50.50.50.5=2【思路导航】:我们可以很难解决上述问题,但通常很难做到,也很难找到解决问题的规律。

这个问题可以通过逆向思考来解决。

解:(0.5+0.5)÷0.5-0.5+0.5=2(0.5+0.5)÷0.5+0.50.5=2(0.5+0.5+0.5-0.5)÷0.5=2(0.5+0.5)÷(0.5×0.5)×0.5=2注:上述问题中使用的分析方法是从公式的最后一个数字逐步向前推断。

这种方法称为反向外推。

倒转问题是解决数学问题的一种常用方法,特别是在条件很难启动的情况下,这种方法可以帮助我们找到问题的突破口。

试试:在下面的式子里添上运算符号,使等式成立。

⑴0.50.50.50.50.5=0⑵0.50.50.50.50.5=1⑶0.50.50.50.50.5=3⑷0.50.50.50.50.5=4⑸0.50.50.50.50.5=5平均第二学时数(I)解决平均数问题的关键是根据已知条件确定“总数”和“份数”。

它们之间具有下列数量关系:平均份数=总份数÷总份数=平均份数×份数=总份数÷平均份数例1:某商店将4千克水果糖和6千克奶糖混合成什锦糖,已知水果糖每千克4.2元,奶糖每千克5.6元,那么什锦糖每千克多少元?溶液(4.2)×4+5.6×6)÷(4+6)=50.4÷10=5.04元答什锦糖每千克5.04元。

例2:公共汽车在a和B之间来回行驶,行驶速度为30公里/小时,返回速度为60公里/小时。

找出汽车的平均往返速度。

解设甲、乙两地的路程是120千米。

120×2÷(120÷30+120÷60)=240÷(4+2)=40(千米)两地之间的平均速度是每小时40公里。

人教版【精选】小学奥数-五年级-奥数题及答案图文百度文库

人教版【精选】小学奥数-五年级-奥数题及答案图文百度文库

人教版【精选】小学奥数-五年级-奥数题及答案图文百度文库一、拓展提优试题1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.3.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.4.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A5.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.10.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.11.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.12.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.2.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.3.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.4.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,最后得到的图形是A,故答案为:A.5.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.8.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.9.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:16010.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.11.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.12.解:设3小时顺流行驶单趟用时间为x小时,则逆流行驶单趟用的时间为(3﹣x)小时,故:x:(3﹣x)=4:88x=4×(3﹣x)8x=12﹣4x12x=12x=1逆流行驶单趟用的时间:3﹣1=2(小时),两船航行方向相同的时间为:2﹣1=1(小时),答:在3个小时中,有1小时两船同向都在逆向航行.13.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11814.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.15.解:220﹣83×2=220﹣166=54(元)54÷(2+7)=54÷9=6(元)答:网球每个6元.。

浙教版【精选】小学五年级数学竞赛奥数讲义-例题

浙教版【精选】小学五年级数学竞赛奥数讲义-例题

浙教版【精选】小学五年级数学竞赛奥数讲义-例题一、拓展提优试题1.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.2.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?3.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.4.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.5.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.6.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.8.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.9.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.12.观察下表中的数的规律,可知第8行中,从左向右第5个数是.13.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.14.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.2.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)=[2×1+11+4×3﹣10]÷3=[2+11+12﹣10]÷3=15÷3=5(人)2×4+(5﹣2)×3+11=8+3×3+11=8+9+11=28(件)答:一共有28件礼物.3.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.4.解:设哥哥跑了X分钟,则有:(X+30)×80﹣110X=900,80x+2400﹣110x=900,2400﹣30x=900,X=50;110×50=5500(米);答:哥哥跑了5500米.故答案为:5500.5.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.6.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.7.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.8.设大合x盒,小盒y盒,依题意有方程:85.6x+46.8(9﹣x)=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.9.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201610.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12011.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.12.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.13.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.14.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.515.解:220﹣83×2=220﹣166=54(元)54÷(2+7)=54÷9=6(元)答:网球每个6元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【经典】小学五年级数学竞赛奥数讲义例题一图文百度文库一、拓展提优试题
1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.
3.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
4.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.
5.先将从1开始的自然数排成一列:
123456789101112131415…
然后按一定规律分组:
1,23,456,7891,01112,131415,…
在分组后的数中,有一个十位数,这个十位数是.
6.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.
7.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).
将剩下的纸片展开、平铺,得到的图形是A
8.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;
9.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.
10.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.11.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.
12.用0、1、2、3、4这五个数字可以组成个不同的三位数.
13.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.
14.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了
分钟.
15.(7分)如图,按此规律,图4中的小方块应为个.
【参考答案】
一、拓展提优试题
1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.510
0.5小时 2.55 3.5小时1011
1小时 2.564小时1012
1.5小时57 4.5小时1
2.513
2小时585小时12.514
2.5小时7.59 5.5小时1515
观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)
法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.
故答案为:330.
2.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,
根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,
=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,
综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S
△APK =S

△AKE
S△APK=S ABCDEF=47,所以阴影面积为47×3=141
故答案为141.
3.64
≥≥),容易知道只有[解答]设长方体的长、宽、高分别为,,
l m n(不妨设l m n
n=(否一面染色的小正方体只有每个面上可能有一些。

要使得其最多,那么2
则内部有太多的小正方体都是所有面没有染色的)。

由于12060lmn lm =⇒=。

此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。

要使得()2644l m ⨯-+最大,那么就是要使l m +最小。

考虑到60lm =,容易知道当
10,6l m ==时,l m +最小。

所以只有一面染色的小正方体最多有
()264410664⨯-⨯+=
4.【分析】设x 年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x 年后的年龄×4=小翔爸爸x 年后的年龄+小翔妈妈x 年后的年龄,列出方程解答即可.
解:设x 年后,爸爸、妈妈的年龄和是小翔的6倍, (5+x )×6=48+42+2x 30+6x =90+2x 4x =60 x =15
答:15年后,爸爸、妈妈的年龄和是小翔的6倍. 故答案为:15. 5.解:方法一:
据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;
方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132. 故填:2829303132.
6.解:设除数为b ,商和余数都是c ,这个算式就可以表示为: 47÷b =c …c ,即 b ×c +c =47, c ×( b +1 )=47,
所以c 一定是47的因数,47的因数只有1和47;
c 为47肯定不符合条件,所以c =1,即除数是46,余数是1. 故答案为:46,1.
7.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作, 最后得到的图形是A , 故答案为:A .
8.解:根据分析,AD =BE +EC =5+4=9,
AB=1+4=5,S△EFC=×EC×FC=×4×4=8;
S△ABE=×AB×BE=×5×5=12.5;
S△ADF=×AD×DF=×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.
S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:20.
9.解:行驶300米,甲车比乙车快2小时;
那么甲比乙快1小时,需要都行驶150米;
300﹣150=150(千米);
故答案为:150
10.解:假设全打中,
乙得了:(208﹣64)÷2=72(分),
乙脱靶:(20×10﹣72)÷(20+12),
=128÷32,
=4(发);
打中:10﹣4=6(发);
答:乙打中6发.
故答案为:6.
11.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,
所以S△DOC=240÷4=60(平方厘米),
又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,
所以S△ECF=S△DOC=×60=20(平方厘米),
所以阴影部分的面积是 20平方厘米.
故答案为:20.
12.解:4×4×3,
=16×3,
=48(种);
答:这五个数字可以组成 48个不同的三位数.
故答案为:48.
13.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与
5,
所以差最小的是:9和5,
所以这两个数分别是:
9×3=27
5×3=15
27﹣15=12
答:这两个数的差最小是12.
故答案为:12.
14.解:6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:每人打了140分钟.
故答案为:140.
15.解:因为图1中小方块的个数为1+2×3=7个,
图2中小方块的个数为1+(1+2)+3×4=16个,
图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,
所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,
故答案为:50.。

相关文档
最新文档