焦炉煤气流量和发热量测定和计算方法

焦炉煤气流量和发热量测定和计算方法
焦炉煤气流量和发热量测定和计算方法

焦炉煤气流量和发热量测定方法

一、差压式焦炉煤气流量计组态计算公式

1、 基本知识

1.1气体密度温度压力补偿公式

)

15.273(325.10115

.293)(0t P P N +??+?

=ρρ (1)

简化得:

t

P

P N ++??=15.273893.20ρρ (2)

式中:

ρ------ 流量计设计工况密度,单位kg/m3 P 0----当地大气压力,单位KPa ; P ---- 表压力,单位KPa ; t ---- 温度,单位℃

N ρ------ 流量计处测量介质标况密度,

单位kg/m3。如果气体为已知组分的混合气体,则混合体的标况密度为各组分标况密度与体积百分数乘积之和。举例计算如下:

已知焦炉煤气组分(体积百分数,从天安化工焦炉煤气流量测量节流装置设计计算书中获得)和各组分的标况密度(20℃,101.325KPa ):

则,该焦炉煤气标况密度N ρ:

100

6.2166.19.246669.09.570838.0

7.03302.14.21646.1?+?+?+?+?=

N ρ+

100

3

.38296.12.81644.1?+?

438014.0=N ρkg/m 3

1.2 工况体积流量与标况体积流量的转换

v v

N N Q Z Z t P P Q ??+?+=15.27315

.293325.1010 (3)

式中:

P 0----当地大气压力,单位KPa ; P ---- 表压力,单位KPa ; t ---- 温度,单位℃ Q N -----标况流量,单位Nm 3/h Q V ---- 工况流量,单位m 3/h Z N ----标况压缩因子 Z V ----工况压缩因子

由于常规煤气输送和使用属于低压力范畴,压缩因子变化比较小,工业应用计算中忽略压缩因子的影响,则公式(3)可简化为:

v N Q t

P

P Q ?++?=15.273893.20 (4)

1.3 依据V 锥流量计计算书计算流量 1.3.1已知工况密度

V 锥流量计计算书为工作状况,温度25度,表压力25KPa ,简称工况。 ρ

p

K Q v ??= (5)

式中:

K---- 流量计流量系数,

Δp ----- 流量计前后差压,单位KPa ρ------ 流量计设计工况下密度,单位kg/m3 1.3.2已知标况密度 把(2)代入(5)得:

t

P

P p

K Q N v ++????

=15.273893.20

ρ (6)

简化得:

)

(893.2)

15.273(0P P t p K Q N v +??+???

=ρ (7)

2、 1米V 锥组态公式 2.1 已知工况密度

ρ

p

K Q v ??

= (8)

由工况流量转换成标况流量:

ρ

p

K t P P Q N ??

?++?=15.273893.20 (9) 式中:

P 0----当地大气压力,单位KPa ; P ---- 表压力,单位KPa ; t ---- 温度,单位℃ K---- 流量计流量系数,

Δp ----- 流量计前后差压,单位KPa ρ------ 流量计设计工况下密度,单位kg/m3 把V 锥计算书相关参数带入,得:

537

.07461.2047515.273893.20p

t P P Q N ??

?++?

= (10) 当地大气压力P 取100KPa ,并简化得:

)

(893.2)

15.273(0P P t p K Q N v +??+???

=ρ (12)

由工况流量转换成标况流量:

)

(893.2)

15.273(15.27315.293325.10100P P t p K t P P Q N N +??+???

?+?+=

ρ (13) 简化并当地大气压力P 0取100KPa 得:

)

15.273()

100(893.2t P p K Q N N +?+????

=ρ (14)

把V 锥计算书相关参数带入得:

)

15.273()

100(893.27461.20475t P p Q N N +?+????=ρ (15)

3、 0.9米V 锥组态公式 3.1 已知工况密度

ρ

p

K Q v ??

= (17)

由工况流量转换成标况流量:

ρ

p

K t P P Q N ??

?++?=15.273893.20 (18) 式中:

P 0----当地大气压力,单位KPa ; P ---- 表压力,单位KPa ; t ---- 温度,单位℃ K---- 流量计流量系数,

Δp ----- 流量计前后差压,单位KPa ρ------ 流量计设计工况下密度,单位kg/m3 把V 锥计算书相关参数带入,得:

537

.03852.1763915.273893.20p

t P P Q N ??

?++?

= (19) 当地大气压力P 取100KPa ,并简化得:

)

(893.2)

15.273(0P P t p K Q N v +??+???

=ρ (21)

由工况流量转换成标况流量:

)

(893.2)

15.273(15.27315.293325.10100P P t p K t P P Q N N +??+???

?+?+=

ρ (22) 简化并当地大气压力P 0取100KPa 得:

)

15.273()

100(893.2t P p K Q N N +?+????

=ρ (23)

把V 锥计算书相关参数带入得:

)

15.273()

100(893.23852.17639t P p Q N N +?+????=ρ (24)

二、焦炉煤气发热量计算方法

1、GB/T11062-1998的相关规定:

1.1我国目前是用的计量参比条件和燃烧参比条件相同,均为101.325kPa ,20℃。 1.2已知组成的混合气体,在燃烧温度、计量温度和压力是的体积发热量计算公式:

2

2

102210)()],(,[~

T R p t H p t V t H ??

= (26) 式中: )],(,[~

2210p t V t H ----- 混合物的理想气体体积发热量(高位或低位)

; )(10t H ----- 混合物的理想摩尔发热量;

R----- 摩尔气体常数(R=8.314510J ·mol -1·K -1); T 2----- 绝对温度(T 2=t 1+273.15)

公式(26)是基本方法,还有一个可供选择的方法:

)],(,[~)],(,[~22101

2210p t V t H x p t V t H j N

j j ?=∑= (27)

式中: )],(,[~

2210p t V t H ----- 混合物的理想气体体积发热量(高位或低位);

)],(,[~

2210p t V t H j ----- 组分j 的理想气体体积发热量(高位或低位); j x ----- 组分j 的体积百分数。

有上述两种不同方法计算出的值,相差不大于0.01MJ ·m -3。 2、101.325kPa ,20℃焦炉煤气标况发热量的计算

2.1焦炉煤气的组成

从天安化工焦炉煤气流量测量节流装置设计计算书中获得焦炉煤气的组成如下:

2.2焦炉煤气各可燃组分的理想气体体积低位发热量(我国目前是用的计量参比条件和

燃烧参比条件相同,均为101.325kPa ,20℃,从相关国家标准中选用20/20℃数据)

2.3 101.325kPa ,20℃焦炉煤气标况发热量的计算

)]325.101,(,[~)]325.101,(,[~20200202002

2t V t H x t V t H H H ?=+)]325.101,(,[~20200

44t V t H x CH CH ?+)]325.101,(,[~202004

242t V t H x H C H C ?+)]325.101,(,[~20200

4t V t H x CO CO ? (29) 把焦炉煤气各可燃组分的理想体积低位发热量带入,得:

205.10)]325.101,(,[~

20200H x t V t H =+4367.33CH x +4201.55H C x +CO x 76.11 (30) 式中:

)]325.101,(,[~

20200t V t H -----计量参比条件和燃烧参比条件均为101.325kPa ,20℃时焦炉

煤气的地位发热量,3-?m MJ

j x ----- 组分j 的体积百分数,%。

三、天安化工标准孔板流量计计算公式 1、标准孔板流量计基本计算公式:

p P F F F CEd A q T Z G Vn Vn ?=12ε (31) 式中:

Vn q ----- 标准参比条件下的体积流量;

Vn A ----- 视体积流量计量单位而定的系数,小时体积流量时为0.011446;

C ----- 流出系数;取自计算书; E ----- 渐近速度系数;4

11β

-=

E ;

d ----- 孔板开孔直径;)(1[20120t t d d d -Λ+=;

G F -----相对密度系数;r G G F 1=

,G r 气体真实相对密度,2041

.1438014.0=r G ,G F =1.658; ε-----可膨胀性系数;取自计算书;

Z F -----超压缩系数;由于压力较低,取1;

T F -----流动温度系数;1

15.27315

.293t F T +=

1P -----孔板上游侧取压孔气流绝对静压,单位兆帕。a P p P +=11,P a 当地大气压力,单位为兆帕。

p ?-----气流流经孔板时产生的差压,单位帕。

把相关中间参数带入公式(31)得:

{}p

P p t t d

C

q a Vn ?+?+-?+-=-)(15.27315

.293658.1)]

20(106.161[11011446.011

216

204

ε

β{}p t P p t d C q a Vn ??++?-?+-=-1

12

16204

15.273)

(15.293)]20(106.161[10189775.0εβ

2、DN300节流装置流量计算公式:

{}p t P p t d C q a Vn ??++?-?+-=-1

12

16204

15.273)

(15.293)]20(106.161[10189775

.0εβ

从计算书中获得以下参数: C ----- 流出系数:0.606584;

β----- 开孔径比:0.56257; 20d ----- 20℃孔板开孔直径:173.82;

ε-----可膨胀性系数:0.994963;

1p -----孔板上游侧取压孔气流表压力,单位兆帕,0.025MPa ; P a ----- 当地大气压力,单位为兆帕,101.24MPa 。

p ?-----气流流经孔板时产生的差压,单位帕。

把上述相关参数带入公式得:

{}p t P p t d C q a Vn ??++?-?+-=-1

12

16204

15.273)

(15.293)]20(106.161[10189775

.0εβ

{}p

t P p t q a Vn ??++??

?-?+?-=-1

12

164

15.273)

(15.293994963.0)]20(106.161[82.17356257.01606584.00189775

.0

忽略温度对孔板直径的影响,则上式可简化为:

p t P p q a Vn ??++??=1

12

15.273)

(15.29382.1730120741.0

3、 DN500节流装置流量计算公式:

{}p t P p t d C q a Vn ??++?-?+-=-1

12

16204

15.273)

(15.293)]20(106.161[10189775

.0εβ

从计算书中获得以下参数: C ----- 流出系数:0.606105;

β----- 开孔径比:0.59495;

20d ----- 20℃孔板开孔直径:305.185;

ε-----可膨胀性系数:0.995218;

1p -----孔板上游侧取压孔气流表压力,单位兆帕,0.025MPa ; P a ----- 当地大气压力,单位为兆帕,101.24MPa 。

p ?-----气流流经孔板时产生的差压,单位帕。

把上述相关参数带入公式得:

{}p t P p t d C q a Vn ??++?-?+-=-1

12

16204

15.273)

(15.293)]20(106.161[10189775

.0εβ

{}p

t P p t q a Vn ??++??

?-?+?-=-1

12

164

15.273)

(15.293995218.0)]20(106.161[185.30559495.01606105.00189775

.0

忽略温度对孔板直径的影响,则上式可简化为:

p t P p q a Vn ??++??=1

1215.273)

(15.293185.3050122398.0

参考资料:

GB/T11062-1998 天然气发热量、密度、相对密度和沃泊指数的计算方法

GB/T18215-2000 城镇人工煤气主管道流量测量第1部分:采用标准孔板节流装置的方法 GB/T18603-2001天然气计量系统技术要求

GB/T21446-2008用标准孔板流量计测量天然气流量 龙固公司V 型内锥节流装置计算书 天安化工标准孔板设计计算书

焦炉煤气发热量计算

焦炉煤气发热量计算方法 1、GB/T11062-1998的相关规定: 1.1我国目前是用的计量参比条件和燃烧参比条件相同,均为101.325kPa ,20℃。 1.2已知组成的混合气体,在燃烧温度、计量温度和压力是的体积发热量计算公式: 2 2 102210)()],(,[~ T R p t H p t V t H ?? = (26) 式中: )],(,[~ 2210p t V t H ----- 混合物的理想气体体积发热量(高位或低位) ; )(10t H ----- 混合物的理想摩尔发热量; R----- 摩尔气体常数(R=8.314510J ·mol -1·K -1); T 2----- 绝对温度(T 2=t 1+273.15) 公式(26)是基本方法,还有一个可供选择的方法: )],(,[~)],(,[~22101 2210p t V t H x p t V t H j N j j ?=∑= (27) 式中: )],(,[~ 2210p t V t H ----- 混合物的理想气体体积发热量(高位或低位); )],(,[~ 2210p t V t H j ----- 组分j 的理想气体体积发热量(高位或低位); j x ----- 组分j 的体积百分数。 有上述两种不同方法计算出的值,相差不大于0.01MJ ·m -3。 2、101.325kPa ,20℃干焦炉干煤气标况发热量的计算 2.1焦炉干煤气的组成 从天安化工焦炉煤气流量测量节流装置设计计算书中获得焦炉煤气的组成如下:氮气2.4%、氧气0.7%、氢气57.9%、甲烷24.9%、乙烯2.6%、一氧化碳8.2%、二氧化碳3.3%. 2.2焦炉干煤气各可燃组分的理想气体体积低位发热量(30,~ -?m MJ H )(我国目前是用的计量参比条件和燃烧参比条件相同,均为101.325kPa ,20℃,从相关国家标准中选用20/20℃数据):氢气10.05MJ/Nm3、甲烷33.367 MJ/Nm3、乙烯55.01 MJ/Nm3、一

管道流量计算方式

管道流量计算方式 DN15、DN25、DN50管径的截面积分别为: DN15:152*3.14/4=176.625平方毫米,合0.0177平方分米。 DN25:252*3.14/4=490.625平方毫米,合0.0491平方分米。 DN50:502*3.14/4=1962.5平方毫米,合0.1963平方分米。 设管道流速为V=4米/秒,即V=40分米/秒,且1升=1立方分米,则管道的流量分别为(截面积乘以流速): DN15管道:流量Q=0.0177*40=0.708升/秒, 合2.55立方米/小时。 DN25管道:流量Q=0.0491*40=1.964升/秒, 合7.07立方米/小时。 DN50管道:流量Q=0.1963*40=7.852升/秒, 合28.27立方米/小时。 注:必须给定流速才能计算流量,上述是按照4米/秒计算的。 电缆载流量 电缆载流量: 电缆载流量是指一条电缆线路在输送电能时所通过的电流量,在热稳定条件下,当电缆导体达到长期允许工作温度时的电缆载流量称为电缆长期允许载流量。 电缆载流量口决 估算口诀 二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。 说明 (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为 2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。 计算电缆载流量选择电缆 (根据电流选择电缆) 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185……

管道水流量计算公式

管道水流量计算公式 A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。压力为城市供水的压力。 计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s) 计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14) 流量q,流速u,管径DN。开平方SQRT。 其实两个公式是一样的,只是表述不同而已。另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。 备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。 这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。 因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。 1. 以公制(mm)为基准,称 DN (metric unit) 2. 以英制(inch)为基准,称NB(inch unit) 3. DN (nominal diameter) NB (nominal bore) OD (outside diameter) 4. 【例】 镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 20 5. 外径与DN,NB的关系如下: ------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8 B.常用给水管材如下:

流量与管径计算书

流量与管径、压力、流速的一般关系 流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。

管网建模之基本公式篇 一、管渠沿程水头损失 谢才公式 圆管满流,沿程水头损失也可以用达西公式表示: h f——沿程水头损失(mm3/s) λ——Darcy-Weisbach水头损失系数(无量纲)

l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) C、λ与水流流态有关,一般采用经验公式或半经验公式计算。常用: 1.舍维列夫公式(适用:旧铸铁管和旧钢管满管紊流,水温100C0(给水管道计算)) 2.海曾-威廉公式 适用:较光滑圆管满流紊流(给水管道)

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/(SL)]^(1/2) 式中管道比阻S=10.3*n^2/(d^5.33)=10.3*0.012^2/(0.205^5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/(6.911*1800)]^(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为F: F=P*(3.14d^2 /4)=1764000*(3.14*0.205^2 /4)=58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Δp,管的半径r,长度L,以及流体的粘滞系数η有以下关系: Q=π×r^4×Δp/(8ηL) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + ρV2/2 = 常数,V2表示速度的平方。 流量=速度×面积,用符号表示 Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位

热值的综合计算

三.热量与热值综合计算 1.用天然气灶烧水,燃料0.5m3的天然气,使100kg的水从20℃升高到70℃。已知水的比热容c=4.2×103J(kg·℃),天然气的热值q=7.0×107J/m3。 求: (1)0.5m3的天然气完全燃料放出的热量Q 放 。 (2)水吸收的热量Q 吸 。 (3)燃气灶的效率η。 2.洒精是实验室里常用的燃料,现用酒精灯来加热水,若洒精完全燃烧产生的热量有50%被水吸收,现在把0.5kg 、20℃的水加热到100℃,需要燃烧多少克 酒精?[q 酒精=3×107J/(k g·℃),c 水 =4.2×103J/(k g·℃)] 3。太阳能热水器,水箱容积是200L.温度计测得自来水的温度为20℃,然后给热水器水箱送满水,中午时“温度传感器”显示水箱中的水温为45℃.请你求解下列问题: (1)水箱中水的质量; (2)水吸收的热量 (3)如果水吸收的这些热量,由燃烧煤气来提供,而煤气灶的效率为40%,求至少需要燃烧多少kg的煤气(煤气的热值为q=4.2×107J/kg) 4.某中学为学生供应开水,用锅炉将200kg的水从20℃加热到100℃,燃烧了4kg 的无烟煤.[水的比热容是4.2×103J/(kg?℃),无烟煤的热值是3.4×107J/kg]试求:(1)锅炉内200kg的水吸收的热量是多少焦耳? (2)4kg无烟煤完全燃烧放出的热量是多少焦耳? (3)此锅炉的效率是多少? 拔高题 已知某型号的载重车在一段平直的高速公路上匀速行驶10.08km,所用时间是 8min,消耗燃油3L(假设燃油完全燃烧),汽车发动机在这段时间内的功率为63kW.若燃油的密度是0.8×103kg/m3,热值为3.15×107J/kg,求: (1)汽车行驶速度是多少? (2)汽车行驶过程的牵引力是多大? (3)汽车发动机的效率是多少?

流量与管径压力流速之间关系计算公式

流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q???——断面水流量(m3/s) C???——Chezy糙率系数(m1/2/s) A???——断面面积(m2) R???——水力半径(m) S???——水力坡度(m/m) 根据需要也可以变换为其它表示方法:

Darcy-Weisbach公式 由于 这里: h f??——沿程水头损失(mm3/s) f ???——Darcy-Weisbach水头损失系数(无量纲) l????——管道长度(m) d????——管道内径(mm) v ????——管道流速(m/s) g ????——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件

管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征 区 适用条件水力公式、摩阻系数符号意义 水力光滑 区>10 雷诺数 h:管道沿程水头损 失 v:平均流速 紊流过渡 区10<<500 (1) (2)

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

燃气热值测度讲解

燃气热值测定 一、实验目的及要求, 燃气主要用于燃烧加热,因此燃气热值是燃气工程中要的参数。在燃气生产、供应及应用过程中,都需要经常测试燃气热值。 测试燃气热值方法有多种,本实验采用水流式热量计测定燃气热值。要求了解水流式热量计的基本构造及工作原理,掌握水流式热量计的正确操作方法,学会分析影响其测量精度的因素。 二、基本原理 在水流式热量计中,用连续流过热量计的水吸收燃气完全燃烧时所产生的热量,水吸收热量后温度升高。在稳定工况时,测出相同时间内燃气用量、流过热量计的水量及进、出口水混,即可计算出燃气的高位热值。在测试过程中,还应测出烟气中水蒸气冷凝产生的凝水量,计算出燃气的低位热值。 三、仪器设备及测试系统 1、水流式热量计(容克式); 2、湿式气体流量计:测燃气量,分度值不大于0.02L; 3、水银温度计:测水温度,量程0~50℃,分度值不大于0.1℃;其它温度计,量程为0~50℃,分度值不大于0.5℃。

4、空气加湿器、燃气加湿器; 5、电子天平:称量水重;或天平:最大负荷10kg、分度值不大于5g; 6、大气压力计:分度值必须不大于10Pa; 7、盛水器:容积应为5~10L; 8、凝水量筒:容量为20ml,分度值不大于0.5ml; 9、燃气压力计:分度值必须不大于1mm; 10、秒表:分度值必须不大于0.1s; 11、水箱:容积应大于300L; 12、校正湿式气体流量计的标准容量瓶,其容量应与流量计指针转一周读数相等; (二)测试系统 测试系统见图14-1. 燃气经过压力调节器调整额定压力,经燃气加湿器进行加湿,在通过湿式气体流量计时,测量燃气压力、温度、流量,然后进入本生灯与空气进行混合后燃烧。类图气与热量计中水进行热交换,降温后排出。 水从自来水管进入水箱,稳压后流入热量计的恒位水箱,再通过进水调整水量后,进入热量计内,多余水经溢流管流入下水道。进入热量计的水与燃气燃烧产生的烟气进行热交换后,流入盛容器(在测试准备阶段流入下水道)。 空气经过空气加湿器进行加湿,相对湿度控制在80±

管道流量计算公式

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

煤气热值计算

燃气热值 燃烧一定体积或质量的燃气所能放出的热量称为燃气的发热量,也称为燃气的热值。其常用单位有千卡/标准立方米(kcal/Nm3)、千焦耳/标准立方米(KJ/Nm3)或兆卡/标准立方米(Mcal/Nm3)、兆焦耳/标准立方米(MJ/Nm3),以兆焦耳/标准立方米(MJ/Nm3)最为常用。 目录 1、燃气热值 ?简介 ?常用单位 ?分类 2、热值小知识 ?卡路里和焦耳的换算 ?热值比较 ?热值公式 3、煤气热值计算 1、燃气热值 简介 燃烧一定体积或质量的燃气完全燃烧所能放出的热量称为燃气的发热量,也称为燃气的热值。 完全燃烧是指燃烧产物为二氧化碳和水等不能再进行燃烧的稳定物质。 常用单位 其常用单位:有千卡/标准立方米(kcal/Nm3)、千焦耳/标准立方米(KJ/Nm3)或兆卡/标准立方米(Mcal/Nm3)、兆焦耳/标准立方米(MJ/Nm3),以兆焦耳/标准立方米(MJ/Nm3)最为常用。 分类

燃气热值分为高位热值和低位热值: 1)高位热值是指规定量的气体完全燃烧,所生成的水蒸汽完全冷凝成水而释放出的热量。 2)低位热值是指规定量的气体完全燃烧,燃烧产物的温度与天燃气初始温度相同,所生成的水蒸汽保持气相,而释放出的热量。 燃气的高、低位热值通常相差为10%左右。燃气燃烧时要产生水蒸气,这些水蒸气要冷却到燃烧前的燃气温度时,不但要放出温差间的热量,而且要放出水蒸气的冷凝热,所以,高位热值减去水蒸气的冷凝热就是低位热值。在实际燃烧时,水蒸气并没有冷凝,冷凝热得不到利用,这是影响通过实验的形式测定热值的重要因素。 日本和大多数北美国家习惯于使用燃气的高位热值,我国和大多数欧洲国家习惯于用低位热值。 燃气热值理论上可以用于所有的可燃气体,但实际上更多地用于人工煤气、天然气和管道液化石油气领域,是城市燃气分析中的重要指标。随着西气东输工程的快速拓展,燃气热值指标也正在成为重要的民生指标。 2、热值小知识 卡路里和焦耳的换算 1卡(cal)=4.1868焦耳(J)1大卡=4186.75焦耳(J) 1大卡=1000卡=4200焦耳=0.0042兆焦。 1度=1千瓦时。根据W=Pt=1千瓦*1小时=1000瓦*3600秒=3600000焦耳。 热值比较 1公斤液化气燃烧热值为:10800-11000大卡 1立方米天然气热值:8000-9000大卡 1度电的热值是:860大卡 1立方米的煤气热值:7110-7350大卡

管道的流量与管径、压力、流速

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h ——沿程水头损失(mm3/s) f f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准

供热管网各参数计算常用公式

供热管网各参数计算 常用公式

供热管网各参数常用计算公式 1比摩阻R (P/m )——集中供热手册P 196 R = 6.25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1.14+2×log K d )2 G —— 介质质量流量(t/h ) 或:R=d 22 λρν=6.88×10-3×25.525 .02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m ) K ——管内壁当量绝对粗糙度(m ) 2、管道压力降△P (MPa ) △P = 1.15R (L+∑Lg )×10-6 其中:L —— 管道长度(m ) ∑Lg ——管道附件当量长度(m ) 3、管道单位长度热损q (W/m ) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m.℃) λ2 —— 外层保温材料导热系数(W/m.℃) D 0 —— 管道外径(m ) D 1 —— 内保温层外径(m ) D 2 —— 外保温层外径(m ) α—— 外表面散热系数[α=1.163×(10+6?)] ?—— 环境平均风速。预算时可取α=11.63 Ln —— 自然对数底 4、末端温度T ed (℃) 2122011012121)16(D D D Ln D D Ln T αλλπ++-

T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m ) Lg —— 管道附件当量长度(m ) G —— 介质质量流量(t/h ) C —— 介质定容比热(kj / kg.℃) 5、保温结构外表面温度T s (℃) T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱和蒸汽)G C (t/h ) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg ) 7、保温材料使用温度下的导热系数λt (W/m.℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0.00017 硅酸铝纤维K=0.0002 8、管道直径选择d (mm ) 按质量流量计算:d = 594.5 ωρG 按体积流量计算:d = 18.8ωνG 按允许单位比摩阻计算:d = 0.0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h ) G v —— 介质体积流量(m 3/h ) ω —— 介质流速(m/s ) ρ —— 介质密度(kg/m 3)

水流量与压强差的准确计算公式

水流量与压强差的准确 计算公式 -CAL-FENGHAI.-(YICAI)-Company One1

水流量与压强差的准确计算公式 最佳答案 对于有压管流,水流量与压强差的准确计算公式和计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=d^ 或用s=d^计算(n为管内壁糙率,d为管内径,m),或查有关表格; 2、确定管道两端的作用水头差ΔH=ΔP/(ρg),),H 以m为单位;ΔP为管道两端的压强差(不是某一断面的压强),ΔP以Pa为单位,ρ——水的密度, ρ=1000kg/m^3;g=kg 3、计算流量Q: Q = (ΔH/sL)^(1/2) 4、流速V=4Q/^2) 式中: Q——流量,以m^3/s为单位; H——管道起端与末端的水头差,以m 为单位;L——管道起端至末端的长度,以 m为单位。^表示乘方运算,d^2 表示管径的平方;d^表示管径的方。是圆周率取至小数点后第4位。 或者先求管道断面平均流速,再求流量: 管道流速:V=C√(RJ)= C√(RΔP/L) 确定 流量: Q=^2/4)V 式中:V——管道断面平均流速;C——谢才系数,C=R^(1/6)/n,n管道糙率;R——水力半径;对于圆管R=d/4,d为管内径;J——水力坡降,即单位长度的水头损失,当管道水平布置时,也就是单位长度的压力损失,J=ΔP/L;ΔP——长为L 的管道上的压力损失;L——管道长度。 总公式:Q=√(ΔP/9800)x (d^)x3600 m^3/h 多晶炉:d=40,压差=4x10^5,L=200m 流量^3/h 单晶炉: d=94,压差=^5,L=200m 流量^3/h 如果流量为15 m^3/h 侧要求L=100,d= mm 侧要求L=200,d=60.7 mm 如果流量为 m^3/h 侧要求L=200,d=68 mm 2

煤气成分及热值计算

发生炉煤气成分分析及煤气热值计算关键词: 发生炉煤气成分分析热值 煤气的成分是根据化学分析或色谱分析的结果得到的,根据煤气中的可燃成分的体积百分比及单一可燃成分的热值,计算出煤气热值。发生炉煤气成分分析及热值计算对煤气发生炉运行炉况的的判断有着重要作用。 一般企业中,通常采用奥式气体分析器对发生炉煤气的成分进行分析。 这种气体分析装置,测定值比较准确,可以满足工业生产和控制要求,而且结构简单,操作方便。其测定原理是: 利用煤气中各组分的不同化学吸收特性,依次与相应的液相化学物质在不同的吸收瓶内反复地接触,以达到误差允许的化学平衡,然后作各组分的含量计算。 1、吸收剂的配置 所有的吸收剂药品,一定要在使用有效期内,否则会影响检测精度。 (1)C02吸收剂KOH 吸收瓶中33%的KOH溶液重量百分比,一定要在吸收瓶中放入液体石蜡, 以防止大气中CO2溶入和吸收水汽而变稀。 (2)CmHn吸收剂为酸性银镍盐溶液: 硫酸银及硫酸镍的浓硫酸溶液,其中各组分所占的重量百分比为: Ag2SO4— 0.65% NiSO4— 0.065% H2SO4— 99.285% (3)氧吸收剂是焦性没食子酸溶液:焦性没食子酸碱性溶液各组分的浓度

为: 焦性没食子酸10%, KOH为24%,其余为水;吸收瓶中试液表面的液体石蜡封蒙,防止自身氧化失效。 (4)CO吸收剂是铜氨络合液: 于1:1 盐酸中加氯化亚铜至饱和,并静置24 小时;? 碱性氯化铜溶液的组分重量百分比为: 氯化亚铜—12%,氯化铵—10%,浓氨水—36%,水—42%,搅拌至氯化亚铜完全溶解并呈蓝色透明。加入吸收瓶后用液体石蜡隔绝空气。? (5)硫酸溶液(10%)配制: 在10%硫酸溶液中加入2~3滴甲基红批示液。 2、吸收 抽取气样100ml 于采样瓶中,按顺序逐一吸收CO 2、CmHn、O 2、CO,再以配氧爆炸法测定H2和CH4含量。 (1)CO2的吸收 100ml气样在吸收后体积减少到VI。反应式为: CO2+2KOH=K2CO3+H2O CO2+KOH=KHCO3 (2)不饱和烃CmHn的吸收 吸收后样气的体积由V1减为V2,吸收反应: C2H4+H2S2O7二C2H5S2O7?H磺酸乙烯) C2H2+H2SO4二C2H4SO4硫酸乙烯)

燃气产品热值的计算

融汇产品热值的计算: 1、能源的热值: A、石油液化气的热值:22000Kcal/m3 B、石油液化气的热值:11440Kcal/Kg C、天然气的热值:8500Kcal/m3 D、沼气的热值:5500Kcal/m3 以上热值根据不同国家的实际情况略有微小差异。 2、千瓦数值转换为燃气值 例如30KW转换为热值数: 1kw=3.6x106焦耳=860Kcal 所以30KW=30x860=25800Kcal A、30KW转换成石油液化气多少立方 V石油液化气=25800/22000=1.172m3 B、30KW转换成石油液化气多少公斤 G石油液化气=25800/11440=2.25kg C、30KW转换成天然气多少立方 V天然气=25800/8500=3.03m3 D、30KW转换成沼气气多少立方 V沼气=25800/5500=4.69m3

空间面积取暖所需要热量计算: 一、对流方式计算方法: Q=Vx△txK V:指的是所需加热区域的体积 △t:指的是室内外温度差 K:指的是不同建筑物的保温系数 以下举例说明: a、一个需要采暖的加热区域热传 导系数K=4 b、被采暖空间的为:高3米x宽4 米x长12米=144立方的体积 c、室外温度为-5℃,室需要温度为 18℃,则温度差为23℃。 如果我们用以上公式计算: Q=Vx△txK=144x23x4=13248Kcal/h 由此可以计算出该面积每小时所消耗的能源: A、石油液化气的热值:22000Kcal/m3 Ma=13248Kcal/22000Kcal=0.602m3 即以上采暖空间为144㎡一小时消耗石油液化气为0.602 立方。

水表流量计算方法

水表流量计算方法水表的流速与水表两端的压力差有关,不能仅仅凭供水压力决定。相关的计算公式比较复杂,与压差、水 温( 水的粘稠度) ,管道内壁摩擦系数等因素相关,具体计算公式请参阅流体力学相关知识。 尽管GB/T778.1-2007 已经于2009年5月1日正式执行,但目前市面销售的表还是按照GB/T778.1-1996 的标准执行,对流量的相关规定如下: 4分(15mm)表有N0.6,N1,N1.5 三种流量,常见的是N1.5 常用流量为1.5 方/小时,最大流量为3方/小时 6分(20mm)表水表代号为N2.5常用流量为2.5方/小时,最大流量为5方/小时 1寸(25mm)表N3.5常用流量3.5,最大流量7 1.5寸(40mm) N10常用流量10最大流量20 2寸(50mm) N15 常用15最大30 对于短管道:(局部阻力和流速水头不能忽略不计) 流量Q=[( n /4)d A2 V(1+ 入L/d+ Z )] V(2gH)

式中:Q 流量,(m A3/s); n ------------------------ 圆周率;d 管内径(m), L 管道长度(m); g 重力加 速度(m/sA2); H 管道两端水头差(m),;入 ------------ 管道的沿程阻力系数(无单位);Z ---------------- 管道的局部阻力系数(无单位,有多个的要累加)。 使中部的截面积变为原来的一半,其他条件都不变,这就相当于增加了一个局部阻力系数Z ',流量变为:Q =[(n /4)dA2 V(1+入L/d+ Z +Z ' )]V(2gH)。流量比原来小了。流量减小的程度要看增加的Z '与原来沿程阻力和局部阻力的相对大小。当管很长(L很大),管径很小,原来管道局部阻力很大时,流量变化 就小。相反当管很短(L很小),管径很大,原来管道局部阻力很小时,流量变化就大。定量变化必须通过定量计算确定。

燃气计算

华白数计算来源:《燃气燃烧与应用》2003-11-12 公式说明: 公式: 参数说明:W——华白数,或称热负荷指数; H——燃气热值(KJ/Nm3),按照各国习惯,有些取用高热值,有些取用低热值; S——燃气相对密度(设空气的S=1)。 ·含有氧气的混合气体爆炸极限来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明: 公式: 参数说明:L T——包含有空气的混合气体的整体爆炸极限(体积%);L nA——该混合气体的无空气基爆炸极限(体积%); y AiR——空气在该混合气体中的容积成分(%)。 ·含有惰性气体的混合气体的爆 炸极限 来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明: 公式: 参数说明:L——含有惰性气体的可燃气体的爆炸极限(体积%); L c——该燃气的可燃基(扣除了惰性气体含量后、重新调整计算出的各燃气容积成分)的爆炸极限值(体积%); y N——含有惰性气体的燃气中,惰性气体的容积成分(%)。 ·只含有可燃气体的混合气体的 爆炸极限 来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明:

公式: 参数说明:L——混合气体的爆炸(下上)限(体积%); L1、L2……L n——混合气体中各可燃气体的爆炸下(上)限(体积%);y1、y2……y n——混合气体中各可燃气体的容积成分(%)。 ·液态碳氢化合物的容积膨胀来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明: 公式: 参数说明:(1)、对于单一液体 v1——温度为t1(℃)的液体体积; v2——温度为t2(℃)的液体体积; β——t1至t2温度范围内的容积膨胀系数平均值。(2)、对于混合液体v’11、v’2——温度为t1、t2时混合液体的体积; k1、k2……k n——温度为t1时混合液体各组分的容积成分; β1、β2……βn——各组分由t1至t2温度范围内容积膨胀系数平均值。 ·液化石油气的气相和液相组成 之间的换算 来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明: 公式: 参数说明:(1)、已知液相分子组成,需确定气相组成时(2)、已知气相分子组成,需确定液相组成时P’i——混合液体任一组分饱和蒸气压; P——混合液体的蒸气压; y i——该组分在气相中的分子成分(等于容积成分); x i——该组分在液相中的分子成分。 ·相平衡常数来源:《燃气输配》中国建筑工业出 版社 2003-6-30 公式说明:

给水管道流量计算公式

给水管道流量计算公式 建筑物内的生活用水在一昼夜内是不均匀的, 一般用自动流量记录仪来测定 建筑物每小时用水量,绘制出一昼夜的逐时用水量曲线变化图,从而得到小时变 化系数K h K h = Q h / Q c 式中 Q h — Qc — 这个小时变化系数,经过人们大量测定后,定出一个标准值而列于设计资料 中,作为已知资料来使用。当知道建筑物服务人数 N 、每日每人的最高用水量标 准q 及小时变化系数,便可得到最大小时流量: Q h = K h Q c = K h Nq / 24 若以L/s 单位计算则 (L/S ) 这样求得的平均秒流量,仅用作城市或大型住宅小区室外给水管网的设计流 量。因为这种情况下,人数众多,生活、工作条件不一,住宅、商业等不同性质 建筑混杂,用水变化趋于缓和,认为在一小时内用水量时均匀的, 故取最大小时 平均秒流量作为设计依据,基本上是符合客观实际的。 人们的生活用水是通过各种卫生器具来消耗的,龙头一开就是 0.1 — 0.2L/S , 如果把每人每日的用水量标准除以龙头的出水量, 就会发现每日的生活用水量是 集中在一天中很短时间内消耗的。 对于一幢或少数几栋建筑物来说, 人数少、建 筑性质单纯,人们生活、工作性质相同,用水不均匀性就显著增加,就不能认为 在最大小时内用水量是均匀的,要考虑一小时内用水变化,找出小时内的最大秒 (例如5分钟的平均秒流量)的用水量,以反映室内用水高峰的特点。 室内给水管网的设计中,管道通过的设计流量是确定给水管径和管道水头损 失的依据,故流量计算正确与否,直接关系到最不利配水点所需水压、 水量的保 证、基建设备的投资和运行费用。 室内给水管道的设计流量与建筑物的性质、 人数、人们活动的情况、水的使 用方法、合适的卫生器具设置数、卫生器具给水流率、气候等因素有关。世界各 国在这方面进行了不少的研究,制定出室内给水管道流量的计算方法。 室内给水管道流量计算方法主要有概率理论法、平方根法和经验法。 1、 美国亨脱的概率理论法(略 ....... ) 2、 我国室内生活给水管道的流量计算公式 根据我国《室内给水排水和热水供应设计规范》,室内生活给水管道设计流 量的计算公式规定如下: (1)住宅、集体宿舍、旅馆、医院、幼儿园、办公楼、学校等 q 0.2 a 阳 + KN 式中q —计算管段的给水设计秒流量 (L/S ); N —计算管段的卫生器具给水当量总数; 昼夜中最大小时用水量; 昼夜中平均小时用水量; (m3h ) (公式1) Q s 二Q h *1000/3600 (公式2)

相关文档
最新文档