基本初等函数(整理)

合集下载

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序。

提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。

2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂。

例1-1.已知41<a ,则化简42)14(-a 的结果是( )。

A 、a 41-- B 、14--a C 、14-a D 、a 41- 【答案】D【解析】a a a 41)41()14(4242-=-=-,故选D 。

变式1-1.化简3a a ⋅-的结果是( )。

A 、65a - B 、65a -- C 、65a - D 、52a -【答案】B【解析】∵0≤a ,则656565312131213)()()()()(a a a a a a a a a --=--=--=-⋅--=⋅-=⋅-,故选B 。

变式1-2.已知31=+-x x ,求下列各式的值:(1)2121-+xx ;(2)22-+x x ;(3)2323-+xx 。

【解析】(1)∵52)(2)()(1221212122122121=++=+⋅+=+----x x xxx x xx ,∴52121±=+-x x ,又由31=+-x x 得0>x ,∴52121=+-xx ;(2)72)(2122=-+=+--x x x x ; (3)]1))[((])())[(()()(12121221212122121213213212323-++=+⋅-+=+=+-------x x xx xxx x xx xx xx52)13(5=-=。

(二)指数函数的图像和性质1、定义:一般地,函数x a x f =)((0>a 且1≠a )叫做指数函数,其中x 是自变量。

基本初等函数

基本初等函数

基本初等函数包括以下几种:(1)常数函数y = c(c 为常数)(2)幂函数y = x^a(a 为非0 常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1)(5)三角函数:主要有以下6 个:正弦函数y =sin x余弦函数y =cos x正切函数y =tan x余切函数y =cot x正割函数y =sec x余割函数y =csc x此外,还有正矢、余矢等罕用的三角函数。

(6)反三角函数:主要有以下6 个:反正弦函数y = arcsin x反余弦函数y = arccos x反正切函数y = arctan x反余切函数y = arccot x反正割函数y = arcsec x反余割函数y = arccsc x初等函数是由基本初等函数经过有限次的有理运算和复合而成的函数。

基本初等函数和初等函数在其定义区间内均为连续函数幂函数简介形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。

因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。

特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q 次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。

(整理)基本初等函数.

(整理)基本初等函数.

函数的概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。

记作:y =f (x ),x ∈A 。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。

注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。

2.构成函数的三要素:定义域、对应关系和值域 3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。

5.映射一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”。

映射和函数的区别:映射是两个集合之间的对应关系,集合A 所有元素在B 中有元素对应,集合B 中的元素在A 中不一定有对应的元素。

但是函数,自变量x 所有的值在因变量y 里面都有对应,而因变量y 的所有元素在自变量x 中也有对应; 6.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 7.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。

(完整版),基本初等函数公式总结,推荐文档

(完整版),基本初等函数公式总结,推荐文档

( f g)dx f dx gdx kfdx k f dx
运算公式:
fg dx f dg fg g df
分部积分法计算法则




ln x
x
ex
sin x 、 cos x
两两组合,位置排在前面的选 f ,排列在后面的选 g
dx c dx
1 dx d ln x x
凑微分公式 1 dx 2d x x
导数公式
(c) 0 (0) 0
(x) 1 (x2 ) 2x
(log a
x)
1 x ln a
(ln x) 1 x
(sin x) cos x (cos x) sin x
1 0
1 x
1 x2
(a x ) a x ln a
( f g) ( f ) (g) ( fg) ( f )g f (g) (kf ) k( f )
0 dx c
1 dx x c
x
dx
1 2
x2
c
1 x2
dx 1 c x
不定积分公式
1 x
dx 2
x c
ax dx ax c
ln a
不定积分运算法则: 加减法,数乘
x
dx
2
3
x2
c
3
xa dx 1 xa1 c
a 1
1 x
dx
ln |
x | c
ex dx ex c sin x dx cos x c cos x dx sin x c
(x a ) ax a1
( x) 1 2x
(e x ) e x
f g
(
f
)g g2
f
(g)

六类初等函数总结

六类初等函数总结

对数函数
常用对数:lg(x)=log10x(10 为底数)。 自然对数:ln(x)=logex(e 为底数)
底真同对数正,底真异对数负
当 0<a<1,0<b<1 时 y=logab>0;
当 0<a<1,b>1 时 y=logab<0
负数和 0 没有对数
当 a>1,b>1 时 y=logab>0
当 a>1,0<b<1 时 y=logab<0
函数 是反正弦 arcsin x,反余弦 arccos x,反正切 arctan x, 反余切 arccot x,反正割 arcsec x,反余割 arccsc x 这些函数的统称,各自表示 其正弦、余弦、正切、余切 ,
正割,余割为 x 的角 是指值不发生改变(即是常
数)的函数
详见三角函 数模块
详见反三角 函数模块
[-1,1]
[0,π]
减 非奇非偶
反正切函数
y=arc tan x
R
[-π/2,π/2] 增 奇函数
反余切函数 R
y=arc cot x
(0,π)
减 奇函数
转换公式
指数函数
函数
a>1
0<a<1
图像
定义域 值域 性质 运算 法则
表达 方式
性质
R (0,+∞) 过点(0,1) 在 R 上是增函数
R (0,+∞) 过点(0,1) 在 R 上是减函数
y=cot x
(k∈Z)

正割函数 y=sec x
x=kπ(k∈Z)
(kπ+π/2,0) (k∈Z)

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。

本文将详细介绍这些基本初等函数的定义、性质和图像。

二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。

性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。

图像:见附录图1。

三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。

性质:幂函数的性质取决于指数 \( n \) 的值。

当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。

图像:见附录图2。

四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

性质:指数函数的底数 \( a \) 决定了函数图像的形状。

当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。

图像:见附录图3。

五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。

性质:对数函数是指数函数的逆函数。

当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。

图像:见附录图4。

六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。

性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。

六大基本初等函数图像及性质

六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

基本初等函数归纳(表格)

基本初等函数归纳(表格)

一次二次三次反比例二次根式解析式图象定义域值域过定点单调性周期性对称性(奇偶性)指数对数sin cos tan 解析式图象定义域值域过定点单调性周期性对称性(奇偶性)一次 二次 三次 反比例 二次根式 解析式 Y=kx+b Y=x 2 Y=x 3 图象K>0, B>0K>0; b<0K<0, B>0 K<0; b<0定义域 R RR 值域 R24(,)4ac b ac-+∞;a<0,反之 R过定点 令x=0,y=B (0,B) 令y=0,x= (,0) Y=ax 2+bx+c 无定点(0,0)(1,1).... 无(0,0)(1,1) 单调性K>0, 在R 上递增 K<0, 在R 上递减A>0, 在(,)2ba-+∞递增 在(,)2ba-∞-递减 A<0, 反之在R 上单调递增K>0, 在(,0)-∞上递减 在(0,)+∞上递减 *不可以说在R 上递减 K<0, 反之在[0,)+∞上递增周期性 无无 无 无 无对称性(奇偶性)当b=0, 奇函数 当b ≠0,非奇非偶偶函数奇函数奇函数非奇非偶(定义域不对称)指数 对数 sin cos tan解析式 y=sinx y=cosx y=tanx 图象A>1A<1定义域 R{|0}x x > or (0,)+∞R R 值域 {}y |y 0> or(0,)+∞R[-1,1][-1,1]R 过定点 (0,1) (1,a)(1,0) (a,1)五点作图法中的五点 五点作图法中的五点 单调性A>1, 在R 上单调递增 A<1, 在R 上单调递减A>1,在(0,)+∞上单调递增 A<1,在(0,)+∞上单调递减在[2,2]22k k ππππ-++,增在3[2,2]22k k ππππ++,减在[2,2]k k πππ-,增 在[2,2]k k πππ+,减在(,)22k k ππππ-++,增*不可以说在R 上递增周期性 无 无 对称性(奇偶性)无无奇函数偶函数奇函数。

六大基本初等函数图像及性质

六大基本初等函数图像及性质

WORD 格式整理版六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x ,x是自变量,是常数;y 11. 幂函数的图像:y x2y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry xy x3x1y x2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减WORD 格式整理版1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。

且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。

函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时, n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除 x=0 以外的一切实数。

三、指数函数 ya x ( x 是自变量 , a 是常数且 a0 , a 1) ,定义域是 R ;[ 无界函数 ]1. 指数函数的图象 :ya xyyya x(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时, y 1单调性 在( ,)是增函数在(, )是减函数1 ) 当 a 1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x0 时 , y1,所以它的图形通过(0,1) 点。

(整理)第一课时基本初等函数

(整理)第一课时基本初等函数

第二课时:基本初等函数 备课教师:许新新教学目标: 使学生熟练掌握指数函数,对数函数,幂函数的定义,图像性质; 教学重点:二次函数根的分布和最值得求法; 教学难点:二次函数根的分布和最值得求法; 教学过程: 1.指数函数1.1指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 表示;当n 是偶数时,正数a 的正的n 次方根用符表示,负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 【2.1.2】指数函数及其性质2对数函数2.1对数与对数运算 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b=.(3)常用对数与自然对数常用对数:lg N ,即10log N;自然对数:ln N ,即l o g e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈⑥换底公式:log log (0,1)log b a b NN b b a=>≠且2.2对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1()x fy -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 3幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.4.二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x a x b x c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0af (k )>0-b2a >k②x 1≤x 2<k ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0af (k )>0-b2a <k③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0a >0f (k 1)>0f (k 2)>0k 1<-b 2a <k2或⎩⎪⎨⎪⎧△=b 2-4ac ≥0a <0f (k 1)<0f (k 2)<0k 1<-b 2a <k2⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ ⎩⎪⎨⎪⎧a >0f (k 1)>0f (k 2)<0f (p 1)<0f (p 2)>0或⎩⎪⎨⎪⎧a <0f (k 1)<0f (k 2)>0f (p 1)>0f (p 2)<0此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) 最小值若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =-③若2bq a ->,则()m f q =b 2 0 b 2 0 a b x 2最大值若02b x a -≤,则()M f q = ②02b x a ->,则()M f p =(Ⅱ)当0a <时(开口向下) 最大值①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a =-③若2bq a ->,则()M f q =0 O b 2 0x 0 ab x 2 0x b 20 b 2 0a 2最小值①若02b x a -≤,则()m f q = ②02bx a ->,则()m f p =.ab x20x 0 O b 2 0x。

高一数学必修1第二章基本初等函数知识点整理

高一数学必修1第二章基本初等函数知识点整理

必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式: log 10a =,log 1aa =,logb a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.xxxxx x(q)0x xfxfx xx。

基本初等函数定义及性质知识点归纳

基本初等函数定义及性质知识点归纳

基本函数图像及性质一、基本函数图像及其性质:1、一次函数:(0)y kx b k 2、正比例函数:(0)y kx k 3、反比例函数:(0)k yxx4、二次函数:2(0)y axbx c a (1)、作图五要素:2124(,0),(,0),(0,),(),(,)()224b b ac bx x c x aaa 对称轴顶点(2)、函数与方程:2=4=00bac 两个交点一个交点没有交点(3)、根与系数关系:12b x x a,12c x x a5、指数函数:(0,1)xya aa 且(1)、图像与性质:(i )1()(0,1)xxya ya aa与且关于y 轴对称。

(ii )1a 时,a 越大,图像越陡。

(2)、应用:(i )比较大小:(ii )解不等式:1、回顾:(1)()mmmab ab(2)()m mma a bb2、基本公式:(1)mnm naaa(2)m m nna aa(3)()m nm na a3、特殊:(1)1(0)aa (2)11(0)aa a(3)1(;0)nnaa n a R n a 为奇数,为偶数,(4);0;0||nna n a a aaaa n 为奇其中,为偶例题1:(1)22232[()()]3x xyxy y xx y x y ;32235()()(5)x xy xy (2)11232170.027()(2)(21)79;20.52371037(2)0.1(2)392748(3)44(3);1122aaa例题2:(1)化简:212212)9124()144(a aa a(2)方程016217162xx的解是。

(3)已知32121xx,计算(1)1x x ;(2)37122xxx x例题3:(1)若4812710,310yx,则yx 210= 。

(2)设,0,,,xyzR z y x 且zyx14464,则()A.yxz111 B.yxz112 C.yxz121 D.yxz211(3)已知,123ba 则aba339= 。

高一数学第二章基本初等函数知识点整理

高一数学第二章基本初等函数知识点整理

高一数学第二章基本初等函数知识点整理高一数学第二章基本初等函数知识点整理高中学习数学重要的是基础的掌握,以下是第二章基本初等函数知识点,请大家仔细阅读。

一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中 1,且 *. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根可以合并成?( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:,0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1)(2) ; (3) .(二)指数函数及其性质数,记作: ( 底数,真数,对数式)说明:○1 注意底数的限制,且; ○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数 ;○2 自然对数:以无理数为底的对数的对数 . 对数式与指数式的互化 (二)对数的运算性质如果,且,,,那么:○1 ○2 - ; ○3 .注意:换底公式( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) . (二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:,都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:,且 .2、对数函数的性质: a1 0图象特征函数性质函数图象都在y轴右侧函数的定义域为(0,+) 图象关于原点和y轴不对称非奇非偶函数向y轴正负方向无限延伸函数的值域为R 函数图象都过定点(1,0) 自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 (三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3) 时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 第二章基本初等函数知识点就为大家分享到这里,希望可以帮助大家提高成绩。

(整理)基本初等函数性质及其图像.

(整理)基本初等函数性质及其图像.

基本初等函数及其性质和图形1.幂函数函数称为幂函数。

如,,,都是幂函数。

没有统一的定义域,定义域由值确定。

如,。

但在内总是有定义的,且都经过(1,1)点。

当时,函数在上是单调增加的,当时,函数在内是单调减少的。

下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。

图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。

高等数学中常用的指数函数是时,即。

以与为例绘出图形,如图1-1-4。

图1-1-43.对数函数函数称为对数函数,其定义域,值域。

当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。

与互为反函数。

当时的对数函数称为自然对数,当时,称为常用对数。

以为例绘出图形,如图1-1-5。

图1-1-54.三角函数有,它们都是周期函数。

对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。

它们都是有界函数,周期都是,为奇函数,为偶函数。

图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。

周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。

在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。

图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的观点1、假如 x na, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时, a的 n 次方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.2、式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a0 .3 、 根 式 的 性 质 : ( n a )na ; 当 n 为 奇 数 时 , n a na ; 当 n 为 偶 数 时 ,na n|a |a (a 0) . a (a 0)(二)分数指数幂的观点mna m (a 0,m, n1、正数的正分数指数幂的意义是:a n N , 且 n1) .0 的正分数指数幂等于 0.mm1)m (a2、正数的负分数指数幂的意义是:a n( 1) nn ( 0, m, n N , 且 n 1). 0 的负aa分数指数幂没存心义.注意口诀: 底数取倒数,指数取相反数. 3、a 0=1 ( a 0) a p1/a p ( a 0; p N )4、指数幂的运算性质a r a sa r s (a 0, r , s R)( a r )s a rs (a 0, r , s R)( ab) r a r b r (a 0, b0, r R)5 、 0 的正分数指数幂等于 0,0 的负分数指数幂无心义。

二、指数函数的观点一般地,函数 xy a ( a 0, 且a 1) 叫做指数函数,此中 x是自变量,函数的定义域为R.注意:○1 指数函数的定义是一个形式定义;○2 注意指数函数的底数的取值范围不可以是负数、零和 1.三、指数函数的图象和性质 函数名称指数函数定义函数 ya x ( a 0 且 a 1) 叫做指数函数a 10 a 1y图象y 1Oya xya xy(0,1) y 1(0,1)xOx定义域 R值域 ( 0,+ ∞)过定点 图象过定点( 0,1 ),即当 x=0 时, y=1.奇偶性 非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y > 1(x < 0),y=1(x=0),y=1(x=0),变化状况0< y < 1(x < 0)0 < y < 1(x > 0)a 变化对在第一象限内, a 越大图象越高, 越凑近 在第一象限内, a 越小图象越高, 越凑近y 轴; a 越大图象越低, 越凑近 y 轴;a 越小图象越低, 越凑近图象影响 在第二象限内, 在第二象限内, x 轴. x 轴.注意:利用函数的单一性,联合图象还能够看出:( 1)在 [a , b] 上, f (x )a x (a 0且 a 1) 值域是 [ f (a), f ( b)] 或 [ f (b), f (a)] ( 2)若 x 0,则 f (x ) 1; f ( x) 取遍全部正数当且仅当 x R ( 3)对于指数函数 f (x ) a x (a 0 a 1),总有 f (1) a 且( 4)当 a 1 时,若 x 1 x 2 ,则 f (x 1 ) f ( x 2 )四、底数的平移对于任何一个存心义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

基本初等函数16个公式

基本初等函数16个公式

基本初等函数16个公式
1. 线性函数:y = ax + b,其中a和b是常数,表示一条直线。

2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,表示二次曲线。

3.指数函数:y=a^x,其中a是常数,表示以a为底的指数曲线。

4. 对数函数:y = log_a(x),其中a是常数,表示以a为底的对数曲线。

5. 正弦函数:y = a sin(bx + c),其中a、b和c是常数,表示正弦曲线。

6. 余弦函数:y = a cos(bx + c),其中a、b和c是常数,表示余弦曲线。

7. 正切函数:y = a tan(bx + c),其中a、b和c是常数,表示正切曲线。

8. 反正弦函数:y = arcsin(x),表示正弦曲线的反函数。

9. 反余弦函数:y = arccos(x),表示余弦曲线的反函数。

10. 反正切函数:y = arctan(x),表示正切曲线的反函数。

11.绝对值函数:y=,x,表示一条以原点为对称中心的V型曲线。

12.幂函数:y=x^a,其中a是常数,表示幂曲线。

13.开方函数:y=√x,表示以原点为起点的开方曲线。

14.反比例函数:y=k/x,其中k是常数,表示一个双曲线。

15.零点函数:y=0,表示一条平行于x轴的直线。

16.恒等函数:y=x,表示一条直线,过原点,斜率为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 初等函数图象及性质
1.1.1 幂函数
1函数(μ是常数)叫做幂函数。

2幂函数的定义域,要看μ是什么数而定。

但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。

3最常见的幂函数图象如下图所示:[如图]
4①α>0时,图像都过(0,0)、(1,1)点,在区间(0,+∞)上是增函数;
注意α>1与0<α<1的图像与性质的区别.
②α<0时,图像都过(1,1)点,在区间(0,+∞)上是减函数;在第一象限内,图像向上无限接近y轴,向右无限接近x轴.
③当x>1时,指数大的图像在上方.
1.1.2 指数函数与对数函数
1.指数函数
1函数(a是常数且a>0,a≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。

2因为对于任何实数值x,总有,又,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。

若a>1,指数函数是单调增加的。

若0<a<1,指数函数是单调减少的。

a>1 0<a<1


性质
(1)定义域:R
(2)值域:(0,+∞)
(3)过点(0,1)
(4)在R上增函数(4)在R上减函数
①m n m n
a a a+
⋅=;②()m n mn
a a
=;③()n n n
ab a b
=(这时m,n是有理数)
分数指数幂:n
m
n m
n n
n m n
m n n
a
a a
a
a a a a 1
,1,,1====-
-。

2.对数函数
由此可知 ,今后常用关系式 ,
如:
指数函数的反函数,记作 (a 是常数且a>0,≠ a1),叫做对数函数。

它的定义域是区间(0,+∞ )。

对数函数的图形与指数函数的图形关于直线y = x 对称(图1-22)。

的图形总在y 轴上方,且通过点(1,0)。

若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )
内函数值为正。

若0<a<1,对数函数是单调减少的,在开区间(0,1)内函数值为正,而在区间(1,+∞ )
内函数值为负。

[如图]
对数函数的图象和性质 a >1
0<a <1
图 象
性 质
定义域:(0,+∞) 值域:R
过点(1,0),即当x =1时,y =0 x ∈(0,1)时y <0 x ∈(1,+∞)时y >0 x ∈(0,1)时y >0 x ∈(1,+∞)时y <0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
重要公式:
⑴负数与零没有对数; ⑵log a 1=0,log a a =1
⑶对数恒等式N a
N
a =log
(4) log a a b =b 运算法则
若a >0,a ≠1,M >0,N >0,则 (1)log a (MN )=log a M +log a N ;
(2)log a M
N =log a M -log a N ;
(3)1
log log ;log log n
n a a a a M n M M M n
==
对数换底公式:
log a N =log m N
log m a (a >0,a ≠1,m >0 ,m ≠1,N >0)
1.1.3 三角函数与反三角函数 1.三角函数
,奇函数、有界函数、周期函数 ;
,偶函数、有界函数、周期函数 ;

的一切实数,奇函数、
周期函数

的一切实数,奇函数、
周期函数


; ;
正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞ ),值域都是必区间[-1,1]。

正弦函数是奇函数,余弦函数是偶函数。

正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。

[如图]
;。

双曲函数与反双曲函数
双曲正弦:,奇函数,单调增函数;
双曲余弦:,偶函数,时,单调减,时,单调增;
双曲正切:,奇函数,单调增函数。

函数的图形见书P27~P28。

下面公式成立


,。

反双曲正弦
反双曲余弦,
反双曲正切
函数图形的变换
平移
①由的图形,作的图形。

图形右移,,图形左移。

如:由图形作的图形。

由的图形作的图形。

②由的图形作的图形。

,图形上移,,图形下移。

如:由的图形作的图形。

翻转
①由图形作的图形。

(以轴为对称轴翻)
如:由的图形作的图形。

②由图形作的图形。

(以轴为对称轴翻)
如:由的图形作的图形。

迭加与放缩(略)。

相关文档
最新文档