粉末冶金(MPIF Standard35)
INDEX - MPIF STANDARD 35 PUBLICATIONS
INDEX – MPIF STANDARD 35 PUBLICATIONSComprehensive Alphabetical Listing & Guide toMaterial Systems & Designation Codes Used in theFamily of MPIF Standard 35 PublicationsIndex Listing as of November 2009The MPIF Standard 35 family of publications comprises four separate publications dealing with materials for: conventional PM structural parts, PM self-lubricating bearings, powder forged (PF) steel and metal injection molded parts (MIM). The same materials may appear in more than one publication or section of the standard depending upon their common use, e.g. some structural materials may also be used in bearing applications and vice versa and stainless steel materials may be manufactured by more than one PM process, such as conventional PM or MIM, dependent upon part design and use.The following index provides the user with a reference tool and a color-coded KEY to more easily locate the specific Standard 35 publication for the information on the standardized material needed for a specific application.In this comprehensive index, a ll MPIF standardized material designation codes are listed alphabetically, followed by the name of the specific material system section of the standard where the chemical composition and/or mechanical property data can be found. Additional information is provided as to product usage within the ferrous and nonferrous material systems.To stay in compliance, users of MPIF standards are cautioned to refer to the latest edition of any standard. This index will be revised periodically upon publication of any new standard edition or when new, individual standards are approved and posted on the MPIF Web site.MIM Materials Standards for Metal Injection Molded PartsPF Materials Standards for P/F Steel PartsSLB Materials Standards for PM Self-Lubricating BearingsSP Materials Standards for PM Structural PartsFerrous Nonferrous Material Section ControlledDesignation Code Material System Key Structural SS Expansion Magnetics Bearings Structural Bearings C-0000Copper and Copper Alloys SP XCFTG-3806-K Diluted Bronze Bearings SLB X CNZ-1818Copper and Copper Alloys SP XCNZP-1816Copper and Copper Alloys SP XCT-1000Copper and Copper Alloys SP XCT-1000-K Bronze Bearings SLB X CTG-1001-K Bronze Bearings SLB X CTG-1004-K Bronze Bearings SLB XCZ-1000Copper and Copper Alloys SP XCZ-2000Copper and Copper Alloys SP XCZ-3000Copper and Copper Alloys SP XCZP-1002Copper and Copper Alloys SP XCZP-2002Copper and Copper Alloys SP XCZP-3002Copper and Copper Alloys SP XF-0000Iron and Carbon Steel SP XF-0000-K Iron and Iron-Carbon Bearings SLB XF-0005Iron and Carbon Steel SP XF-0005-K Iron and Iron-Carbon Bearings SLB XF-0008Iron and Carbon Steel SP XF-0008-K Iron and Iron-Carbon Bearings SLB XFC-0200Iron-Copper and Copper Steel SP XFC-0200-K Iron-Copper Bearings SLB XFC-0205Iron-Copper and Copper Steel SP XFC-0205-K Iron-Copper-Carbon Bearings SLB XFC-0208Iron-Copper and Copper Steel SP XFC-0208-K Iron-Copper-Carbon Bearings SLB XFC-0505Iron-Copper and Copper Steel SP XFC-0508Iron-Copper and Copper Steel SP XFC-0508-K Iron-Copper-Carbon Bearings SLB XFC-0808Iron-Copper and Copper Steel SP XFC-1000Iron-Copper and Copper Steel SP XFC-1000-K Iron-Copper Bearings SLB XFC-2000-K Iron-Copper Bearings SLB XFC-2008-K Iron-Copper-Carbon Bearings SLB XFCTG-3604-K Diluted Bronze Bearings SLB XFD-0200Diffusion-Alloyed Steel SP XFD-0205Diffusion-Alloyed Steel SP XFD-0208Diffusion-Alloyed Steel SP XFD-0400Diffusion-Alloyed Steel SP XFD-0405Diffusion-Alloyed Steel SP XFD-0408Diffusion-Alloyed Steel SP XFDCT-1802-K Diffusion-Alloyed Iron-Bronze Bearings SLB XFF-0000Soft-Magnetic Alloys SP XFG-0303-K Iron-Graphite Bearings SLB XFG-0308-K Iron-Graphite Bearings SLB XFL-4005Prealloyed Steel SP XFL-4205Prealloyed Steel SP XFL-4400Prealloyed Steel SP XFL-4405Prealloyed Steel SP XFL-4605Prealloyed Steel SP XFL-4805Prealloyed Steel SP XFL-48105Prealloyed Steel SP XFL-4905Prealloyed Steel SP XFL-5208Prealloyed Steel SP XMIM Materials Standards for Metal Injection Molded PartsPF Materials Standards for P/F Steel PartsSLB Materials Standards for PM Self-Lubricating BearingsSP Materials Standards for PM Structural PartsFerrous Nonferrous Material Section ControlledDesignation Code Material System Key Structural SS Expansion Magnetics Bearings Structural Bearings FL-5305Prealloyed Steel SP XSinter-Hardened Steel SP XFLC-4608Sinter-Hardened Steel SP XFLC-4805Sinter-Hardened Steel SP XFLC-48108Sinter-Hardened Steel SP XFLC-4908Sinter-Hardened Steel SP XFLC2-4808Sinter-Hardened Steel SP XFLC2-5208Sinter-Hardened Steel SP XFLDN2-4908Diffusion-Alloyed Steel SP XFLDN4C2-4905Diffusion-Alloyed Steel SP XFLN-4205Hybrid Low-Alloy Steel SP XFLN-48108Sinter-Hardened Steel SP XFLN2-4400Hybrid Low-Alloy Steel SP XFLN2-4405Hybrid Low-Alloy Steel SP XFLN2-4408Sinter-Hardened Steel SP XFLN2C-4005Hybrid Low-Alloy Steel SP XFLN4-4400Hybrid Low-Alloy Steel SP XFLN4-4405Hybrid Low-Alloy Steel SP XFLN4-4405(HTS)Hybrid Low-Alloy Steel SP XFLN4-4408Sinter-Hardened Steel SP XFLN4C-4005Hybrid Low-Alloy Steel SP XFLN6-4405Hybrid Low-Alloy Steel SP XFLN6-4408Sinter-Hardened Steel SP XFLNC-4405Hybrid Low-Alloy Steel SP XFLNC-4408Sinter-Hardened Steel SP XFN-0200Iron-Nickel and Nickel Steel SP XFN-0205Iron-Nickel and Nickel Steel SP XFN-0208Iron-Nickel and Nickel Steel SP XFN-0405Iron-Nickel and Nickel Steel SP XFN-0408Iron-Nickel and Nickel Steel SP XFN-5000Soft-Magnetic Alloys SP XFS-0300Soft-Magnetic Alloys SP XFX-1000Copper-Infiltrated Iron and Steel SP XFX-1005Copper-Infiltrated Iron and Steel SP XFX-1008Copper-Infiltrated Iron and Steel SP XFX-2000Copper-Infiltrated Iron and Steel SP XFX-2005Copper-Infiltrated Iron and Steel SP XFX-2008Copper-Infiltrated Iron and Steel SP XFY-4500Soft-Magnetic Alloys SP XFY-8000Soft-Magnetic Alloys SP XMIM-17-4 PH Stainless Steels MIM XMIM-2200Low-Alloy Steels MIM XMIM-2200Soft-Magnetic Alloys MIM XMIM-2700Low-Alloy Steels MIM XMIM-316L Stainless Steels MIM XMIM-420Stainless Steels MIM XMIM-430L Stainless Steels MIM XSoft-Magnetic Alloys MIM XMIM-4140Low-Alloy Steels MIM XMIM-4605Low-Alloy Steels MIM XMIM-F-15Controlled-Expansion Alloys MIM XMIM-Fe-3% Si Soft-Magnetic Alloys MIM XMIM-Fe-50% Co Soft-Magnetic Alloys MIM XMIM-Fe-50% Ni Soft-Magnetic Alloys MIM XMIM Materials Standards for Metal Injection Molded PartsPF Materials Standards for P/F Steel PartsSLB Materials Standards for PM Self-Lubricating BearingsSP Materials Standards for PM Structural PartsFerrous Nonferrous Material Section ControlledDesignation Code Material System Key Structural SS Expansion Magnetics Bearings Structural Bearings P/F-1020Carbon Steel PF XP/F-1040Carbon Steel PF XP/F-1060Carbon Steel PF XP/F-10C40Copper Steel PF XP/F-10C50Copper Steel PF XP/F-10C60Copper Steel PF XP/F-1140Carbon Steel PF XP/F-1160Carbon Steel PF XP/F-11C40Copper Steel PF XP/F-11C50Copper Steel PF XP/F-11C60Copper Steel PF XP/F-4220Low-Alloy P/F-42XX Steel PF XP/F-4240Low-Alloy P/F-42XX Steel PF XP/F-4260Low-Alloy P/F-42XX Steel PF XP/F-4620Low-Alloy P/F-46XX Steel PF XP/F-4640Low-Alloy P/F-46XX Steel PF XP/F-4660Low-Alloy P/F-46XX Steel PF XP/F-4680Low-Alloy P/F-46XX Steel PF XSS-303L Stainless Steel - 300 Series Alloy SP XSS-303N1Stainless Steel - 300 Series Alloy SP XSS-303N2Stainless Steel - 300 Series Alloy SP XSS-304H Stainless Steel - 300 Series Alloy SP XSS-304L Stainless Steel - 300 Series Alloy SP XSS-304N1Stainless Steel - 300 Series Alloy SP XSS-304N2Stainless Steel - 300 Series Alloy SP XSS-316H Stainless Steel - 300 Series Alloy SP XSS-316L Stainless Steel - 300 Series Alloy SP XSS-316N1Stainless Steel - 300 Series Alloy SP XSS-316N2Stainless Steel - 300 Series Alloy SP XSS-409L Stainless Steel - 400 Series Alloy SP XSS-409LE Stainless Steel - 400 Series Alloy SP XSS-410Stainless Steel - 400 Series Alloy SP XSS-410L Stainless Steel - 400 Series Alloy SP XSS-430L Stainless Steel - 400 Series Alloy SP XSS-430N2Stainless Steel - 400 Series Alloy SP XSS-434L Stainless Steel - 400 Series Alloy SP XSS-434LCb Stainless Steel - 400 Series Alloy SP XSS-434N2Stainless Steel - 400 Series Alloy SP XMATERIALS STANDARDS AVAILABLE FROM MPIFThe latest editions of MPIF materials standards are available for purchase in a variety of formats, including printed hard copy, on CDROM and in pdf electronic format. Quantity discounts are available. The following are the materials standards that are immediately available – click on the link(s) provided to verify or order the latest edition of any standard.You may also contact the MPIF Publications Department at 609-945-0009 to place an order.To ensure compliance, users of MPIF standards are cautioned to refer to the latest edition of any standard.MPIF Standard 35 - Family of Materials StandardsFor structural parts made by the PM (powder metallurgy) process, see MPIF Standard 35, “Materials Standards for PM Structural Materials”For bearings and bushings made by the PM process, see MPIF Standard 35,“Materials Standards for PM Self-Lubricating Bearings”For steel components made by the powder forging (P/F) process, see MPIF Standard 35, “Materials Standards for P/F Steel Parts”For components made by the metal injection molding (MIM) process, see MPIF Standard 35, “Materials Standards for Metal Injection Molded Parts”MPIF Standard 35 is Published and Copyrighted byMetal Powder Industries FederationPrinceton, New Jersey USAAll rights reservedFor More Information:Tel: 609-452-7700 Fax: 609-987-8523E-mail: info@ Web site: 。
粉末冶金材料标准表完整版本
公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93<二> MPIF-35烧结铁和烧结碳钢的化学成分(%).烧结铁-铜合金和烧结铜钢的化学成分(%). 烧结铁-镍合金和烧结镍钢的化学成分(%).材料牌号Fe CF-0000 97.7-100 0.0-0.3F-0005 97.4-99.7 0.3-0.6F-0008 97.1-99.4 0.6-0.9注: 用差减法求出的其它元素( 包括为了特殊目的而添加的其它元素) 总量的最大值为 2.0%。
▲材料牌号Fe Cu CFC-0200 83.8-98.5 1.5-3.9 0.0-0.3FC-0205 93.5-98.2 1.5-3.9 0.3-0.6FC-0208 93.2-97.9 1.5-3.9 0.6-0.9FC-0505 91.4-95.7 4.0-6.0 0.3-0.6FC-0508 91.1-95.4 4.0-6.0 0.6-0.9FC-0808 88.1-92.4 7.0-9.0 0.6-0.9FC-1000 87.2-90.5 9.5-10.5 0.0-0.3材料牌Fe Ni 号Cu CFN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9注: 用差减法求出的其它元素( 包括为了特殊⊙ 铁- 铜合金和铜钢粉末冶金材料性能 ( MPIF-35)注: 用差减法求出的其它元素 ( 包括为了特 殊目的 而添加的其它元素 ) 总量的最 大值为 2.0%。
粉末冶金美国MPIF标准35.doc
为制定本标准,采用的拉伸性能.都是用为鉴定粉末冶金材料的性能专用制备的拉伸试样测定的由人批眾生产的寥件用切削加I••制备的试样和用为鉴定粉木冶金材料专门制备的个别试样测定的拉伸性能值可能不同。(关丁•拉伸试验试样更详细的情况见NIPIF标准10)o制订粉末冶金材料技术条件时潦小值啲歳义何在?
利用NPIF标准35规定粉木冶金材料的技术条件•意味着除非粉末冶金冬件的生产方法和用戸另有协议,材料必须达到标准中规定的最小强度值•显然•倘若最小强度值是用试样测定的,则试样必须只右粉木冶金冬件生产方说规定的尺寸和其它特性,同时它是为鉴定该材料在和冬件相同的生产条件下专门制备的(见材料性能)。
标准值
粉末冶金零件往往芥先在未腐蚀状态卜进行检测。在一烧结正常的粉木冶金零件屮,J-200X卜很少或看不到原颗粒界。孔隙愈圆.材料的强度、延性及冲击强度就愈高。
对倉少与铜和铁与碳的泯介粉,依据珠光体所占面积百分率可:*3S判斷化合碳含■对于含Cu录低,5%的Fe-Cu-C合金.珠光体为100%时.人依匕相当化合碳含吊•为0.8%。较少彊的珠光体恿味着化介碳禽昴成比例地减少。在粉末冶金探钢中.即使是仅倉2%〜4%(质砒分数)Ni,富Ni区都将占柑当大的面枳白分数。在估计珠光体所山面枳iT分数时,这些应予扣除。不要将富银区和铁索体和混淆。通常应避免衷而脱碳,因为脱碳会减低材料的换度与耐磨性。倘若粉末冶金冬件的倉碳磧为0.6%〜0.9%.只耍表面层的含碳最低「・0.6%,就表明已发牛脱碳。表面微杲脱碳问题不人,但廿脱碳层人J:0.25mm,则必须证明它对材料功能无害才行。(见ASTME1077测彊脱碳深度)。
化学成分
每一种材料的化学组成表中•都列出了主耍尤索的最小与最人质最百分含©0-其它元索"包括在其它元索总彊并以放人百分含吊來农示。其中也可能包括仃为特殊口的而添加的其它微届元索毎一种材料的化学组成表规定的都是未进行含浸油、含浸树脂、水蒸气处理或具它类似处理的基本材料的化学组成。
粉末冶金学习材料标准表.docx
公司制造的铁基粉末冶金零件执行标准与成分性能<一 > GB/T14667.1-93化学成分 %物理机械性能材料牌号C化合Cu Mo Fe 其它密度 D抗拉强度 ob延伸率冲击韧性 a k表观硬度 HB g/cm3MPa%( 无切口 )J/cm 2F0001J≥6.4≥100≤3.0≤5.0≥40烧结F0002J≤0.1——余量≤1.5≥6.8≥150≥5.0≥10.0≤50铁F0003J≥7.2≥200≥7.0≥20.0≥60 F0101J≥6.2≥100≥1.5≥5.0≥50 F0102J 0.1~0.4——余量≤1.5≥6.4≥150≤2.0≥10.0≥60烧F0103J≥6.8≥200≥3.0≥15.0≥70 F0111J≥6.2≥150≥1.0≥5.0≥60结F0112J 0.4~0.7——余量≤1.5≥6.4≥200≥1.5≥10.0≥70碳F0113J≥6.8≥250≥2.0≥10.0≥80钢F0121J≥6.2≥200≥0.5≥3.0≥70 F0122J 0.7~1.0——余量≤1.5≥6.4≥250≥0.5≥5.0≥80 F0123J≥6.8≥300≥1.0≥5.0≥90烧结F0201J≥6.2≥250≥0.5≥3.0≥90 F0202J 0.5~0.82~4余量≤1.5≥6.4≥350≥0.5≥5.0≥100铜钢F0203J≥6.8≥500≥0.5≥5.0≥110烧结E0211J0.4~0.72~4 0.5~1.0余量≤1.5≥6.4≥400≥0.5≥5.0≥120铜铝钢E0212J≥6.8≥550≤0.5≥5.0≥130 <二 > MPIF-35物理机械性能最小强度 (A)(E)拉伸性能压缩屈硬度极限屈服强度伸长率服宏观微观密度材料牌号屈服极限强度强度(0.2%)(25.4mm)( 表现 )( 表现 )(0.1%)MPa MPa MPa%MPa洛氏g/cm3 F-0000-107012090 1.511040HRF N/A 6.1-151******** 2.512060 6.7 -201402601707.0130807.3 F-0005-10100170120< 112525HRB 6.1 -20140220160 1.016040N/A 6.6 -25170260190 1.519055 6.9 F-0005- 50HT340410< 0.530020HRC58HRC 6.6 -60HT410480(D)< 0.53602258 6.8 -70HT480550< 0.542025587.0 F-0008-20140200170< 0.519035HRB 5.8-25170240210< 0.521050N/A 6.2-30210290240< 1.021060 6.6-35240390260 1.0250707.0 F-0008- 50HT380450< 0.5 S48022HRC60HRC 6.3 -65HT450520< 0.55502860 6.6-75HT520590< 0.56203260 6.9-85HT590660< 0.569035607.1烧结铁和烧结碳钢的化学成分 (%).烧结铁 - 铜合金和烧结铜钢的化学成分烧结铁 - 镍合金和烧结镍钢的化学成分 (%).材料牌号Fe C(%).材料牌号Fe Ni Cu C F-000097.7-1000.0-0.3材料牌号Fe Cu C FN-0200 92.2-99.0 1.0-3.00.0-2.5 0.0-0.3 F-000597.4-99.70.3-0.6FC-020083.8-98.5 1.5-3.9 0.0-0.3FN-0205 91.9-98.7 1.0-3.00.0-2.5 0.3-0.6 F-000897.1-99.40.6-0.9FC-020593.5-98.2 1.5-3.9 0.3-0.6FN-020891.6-98.4 1.0-3.00.0-2.5 0.6-0.9注: 用差减法求出的其它元素 ( 包括为了FC-020893.2-97.9 1.5-3.9 0.6-0.9FN-040589.9-96.7 3.0-5.50.2-2.0 0.3-0.6特殊目的而添加的其它元素 ) 总量的FC-050591.4-95.7 4.0-6.00.3-0.6FN-040889.6-96.4 3.0-5.50.0-2.0 0.6-0.9最大值为 2.0%。
MPIF
MPIF Standard 35 is issued to provide the design and materials engineer with the information necessary for specifying powder metallurgy (PM) materials that have been developed by the PM parts manufacturing industry. This section of Standard 35 deals with conventional PM materials for structural parts. It does not apply to materials for PM self-lubricating bearings, powder forged (PF) or metal injection molded (MIM) products which are covered in separate editions of MPIF Standard 35. The same materials may appear in more than one section of the standard depending upon their common use, e.g., some structural materials may also be used in bearing applications and vice versa. Each section of this standard is divided into subsections based on the various types of PM materials in common commercial use within that section. Notes at the beginning of each subsection discuss the characteristics of that material. Users of this standard should make a determination as to the availability of any referenced material.The use of any MPIF Standard is entirely voluntary. MPIF Standards are issued and adopted in the public interest. They aredesigned to eliminate misunderstandings between the manufacturer and the purchaser and to assist the purchaser in selecting and obtaining the proper material for a particular product. Existence of MPIF Standards does not in any respect preclude any member or non-member of MPIF from manufacturing or selling products that use materials or testing procedures not included in MPIF Standards. Other such materials may be commercially available.By publication of these Standards, no position is taken with respect to the validity of any patent rights nor does MPIF undertake to ensure anyone utilizing the Standards against liability for infringement of any Letters Patent or accept any such liability.Neither MPIF nor any of its members assumes or accepts any liability resulting from use or non-use of any MPIF Standard. In addition, MPIF does not accept any liability or responsibility for the compliance of any product with any standard, the achievement of any minimum or typical values by any supplier, or for the results of any testing or other procedure undertaken in accordance with any Standard.MPIF Standards are subject to periodic review and may be revised. Users are cautioned to refer to the latest edition. New, approved materials and property data may be posted periodically on the MPIF website. Between published editions, go to to access data that will appear in the next printed edition of this standard.Both the purchaser and the manufacturer should, in order to avoid possible misconceptions or misunderstandings, agree on the following conditions prior to the manufacture of a PM part: minimum strength value, grade selection, chemical composition and alloying method, proof testing, typical property values and processes, that may affect the part application.ScopeNo part of this publication may be repro-duced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.® Copyright 2012ISBN No. 978-0-9853397-1-5Published by Metal Powder Industries Federation105 College Road East Princeton, New Jersey 08540-6692 U.S.A.Tel: (609) 452-7700Fax: (609) 987-8523 E-mail: info@ Website: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by anymeans, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.2MPIF Standard 35 - 2012Materials Standards for PM Structural Parts Explanatory Notes and DefinitionsMinimum Value ConceptThe Metal Powder Industries Federation has adopted the concept of minimum strength values for PM materials for use in a structural application. These strength values may be used in designing for a PM part application. It should be noted that the powder metallurgy process offers equivalent minimum tensile strength values over a wide range of materials. It is seen as an advantage of the process that equivalent strengths can be developed by varying chemical composition, particle configuration, density and/or processing techniques.As an aid to the user in selecting materials, in addition to minimum strength values, typical values for other properties are listed. This makes it possible for the user to select and specify the exact PM material and properties most suitable for a specific application. The data provided define values for listed materials and display typical mechanical properties achieved under commercial manufacturing procedures. Physical and mechanical property performance characteristics may be changed by the use of processing steps beyond those designated in this standard. To select a material optimum in both properties and cost-effectiveness, it is essential that the part application be discussed with the PM parts manufacturer.Minimum ValueFor structural PM materials in the as-sintered condition the minimum value is expressed in terms of the yield strength (0.2% offset method) in thousand pounds per square inch (103 psi) or megapascals (MPa).For structural PM materials in the heat treated condition (quenched-hardened and sinter-hardened), the minimum value expressed is ultimate tensile strength in thousand pounds per square inch (103 psi) or megapascals (MPa). When PM materials are heat treated, tensile properties and hardness increase; nevertheless, the failure mode is such that 0.2% offset yield points are not always attainable. The yield and ultimate tensile strengths are therefore approximately the same for heat treated materials. (See Heat Treatment and Sinter Hardening page 4).For soft-magnetic materials the maximum value is expressed in terms of the coercive field strength in oersteds x 10.The tensile properties utilized for establishing this Standard were obtained from tensile specimens prepared specifically for evaluating PM materials. Tensile properties of specimens machined from commercial parts may vary from those obtained from individual specimens prepared specifically for evaluating PM materials.(See MPIF Standard 10for additional details on tensile test specimens.) What "Minimum Value" Means WhenSpecifying a PM MaterialThe recommended method of demonstrating minimum strength values is through the use of a static or dynamic proof test (see Proof Testing page 7) by the manufacturer and the purchaser using the first production lot of parts and a mutually agreed upon method of stressing the part. For example, from the design of a given part, it is agreed that the breaking load should be greater than a given force. If that force is exceeded in proof tests, the minimum strength is demonstrated. The first lot of parts can also be tested in service and demonstrated to be acceptable. The static or dynamic load to fracture is determined separately and these data are analyzed statistically to determine a minimum breaking force for future production lots. Exceeding that minimum force on future lots is proof that the specified strength has been met.Acceptable strength can also be demonstrated on tensile or transverse rupture test specimens. These should be of the same lot of material, have the same density as the parts themselves and should be sintered and heat treated along with the production parts. This method becomes less reliable when the parts are much larger than the test specimens. If transverse rupture test specimens are selected as the evaluating medium, manufacturer and purchaser must agree on minimum values because these may be lower than the typical values shown in the tables of data.The least desirable method for demonstrating a minimum property is to machine a test specimen from the part itself. This is particularly difficult with small or heat treated parts.If this method is to be used, manufacturer and purchaser must agree on the location from which the test specimen will be removed. This is necessary because density and strength can vary from point to point in a complex PM multi-level part. The tensile data reported in this specification for as-sintered materials are based on 0.250 inch (6.35 mm) thick as-pressed specimens per Figure 1 in MPIF Standard 10. For hardened (quench-hardened and sinter-hardened) specimens, the tensile data are based on a 0.190 inch (4.83 mm) diameter gauge section per Figure 4 in MPIF Standard 10. The gauge length is 1.0 inch (25.4 mm) in both instances. If other sizes are used, it must be demonstrated separately that equivalent results are obtained.Utilization of MPIF Standard 35 to specify a PM material means that unless the purchaser and manufacturer have agreed otherwise, the material will have the minimum value specified in the Standard. It is understood that if a test specimen is used to determine this value it shall have the dimensions and other3 33MPIF Standard 35, PM Structural Parts — 2012 Editioncharacteristics determinedby the manufacturer and prepared specifically for evaluating such material under conditions equivalent to those used in the manufacture of the part.(See Material Properties beginning on page 12.)Typical Values For each PM material listed, a set of typical values is shown for properties in addition to strength, e.g., density, hardness, elongation, etc., some or all of which may be important for a specific application. Typical values at the densities shown were determined by interpolation and extrapolation of graphs of average mechanical properties versus density. The mechanical property data were derived from interlaboratory studies for the sintering and heat treating of test bars under commercial conditions. The typical values are listed for general guidance only. They should not be considered minimum values. While achievable through normal manufacturing processing, they may vary somewhat depending upon the area of the component chosen for evaluation, or the specific manufacturing process utilized. Those properties listed under the "typical valuesection" for each material which are required by the purchaser should be discussed thoroughly with the PM parts manufacturer before establishing the specification. Required property values, other than those expressed as minimum, should be separately specified for each PM part, based on its intended use. Chemical Composition The chemical composition table for each material lists the principal elements by minimum and maximum mass percentage. "Other elements" include the total other elements and is reported as a maximum percentage. These may include other minor elements added for specific purposes. The chemical composition table for each material specifies the basic material before any oil impregnation, resin impregnation, steam treating or other such process has taken place. Mechanical Properties Mechanical property data indicate the minimum and typical properties that may be expected from test specimens conforming to the density and chemical composition criteria listed. It should be understood that mechanical properties used in this Standard were derived from test specimens prepared specifically for material evaluation and sintered under commercial production conditions. The impact energy (unnotched Charpy) and transverse rupture strength data were derived from standard test specimens designed for this purpose. (See MPIF Standards 40 and 41 for additional details.) Hardness values of heat-treated specimens are given first as apparent hardness and second, when available, as microindentation hardness values. Microindentation hardness values shown as Rockwell C were converted from 100 g load (0.981 N) Knoop microindentation hardness measurements. (See MPIF Standard 51.)Heat TreatmentFerrous PM parts containing 0.3% or higher combined carbon can be quench-hardened and tempered for increased strength, hardness and wear resistance. The percentages of carbon and other alloying elements effectively combined in the material and its density, determine the degree of hardening possible for any given quench condition. Microindentation hardness values of 650 HK 100 g (56 HRC) and higher can be obtained by quench hardening. The recommended procedure for heat treatment and/ or carburization of ferrous PM parts is with a gas type atmosphere or vacuum. The use of liquid salts is not recommended because of the possibility of surface absorption and subsequent bleed-out of the salts and internal corrosion. Low density parts may carburize throughout while higher density parts (7.0 g/cm 3 or higher) may develop a carburized case. Process control is necessary to ensure that specified carbon levels are maintained.(See MPIF Standard 52 for additional details.) Tempering or stress relief is required after quenching for maximum strength and durability; typically one (1) hour at temperature per 1 inch (25 mm) of section thickness. A compromise between hardness and such properties as impact energy is necessary because the tempering temperature to achieve surface hardness will not necessarily provide optimum strength properties. The tempering temperature is a major factor in determining final hardness.Sinter Hardening Some PM materials may, in effect, be quench hardened during the cooling cycle following sintering; this is known as sinter hardening. This is especially the case with prealloyed nickel-molybdenum-manganese and molyb-denum-chromium-manganese steels containing admixed copper. It is also true for martensitic stainless steels. Tempering or stress relief after hardening is required for maximum strength and durability.Surface Finish The overall finish and surface reflectivity of PM materials depends on density, tool condition and secondary operations. Conventional profilometer readings give an erroneous impression of surface finish because a different surface condition exists from that found on the machined or ground surfaces of wrought materials. Conventional readings take into account the peaks and valleys of machined surfaces, while PM parts have a series of very smooth surfaces that are interrupted with varying sized pores. Effective surface smoothness of PM components compares favorably with ground or ground and polished surfaces of wrought and cast components. Surface finish can be improved further by secondary operations such as repressing, honing, burnishing or4MPIF Standard 35, PM Structural Parts — 2012 Editiongrinding. The surface finish requirements and methods of determination must be established by mutual agreement between purchaser and producer, considering end use of the part. (See MPIF Standard 58 for additional details.)MicrostructureThe examination of the microstructure of a PM part can serve as a diagnostic tool and reveal the degree of sintering and other metallurgical information critical to the powder metallurgy process. There are several observations common to most sintered materials, as described briefly below. Comments on specific materials will be found in the subsections devoted to those particular materials.In selecting a section of a PM part for microstructural analysis, an interior plane, parallel to the pressing direction is preferred for mounting and polishing. Coarse and fine polishing should be continued until all of the pores are opened to view and the area fraction of porosity represents the density of the part. For example, an 80% dense part should show 20% of its area as pores. (See MPIF Standard 69 for additional details.) Parts with interconnected porosity can be impregnated with liquid epoxy during preparation of the specimen for microstructural examination. This will help prevent distortion of the voids during grinding or polishing.Sintered parts are always examined first in the unetched condition. In an average sinter there will be very few or no original particle boundaries seen at 200X. The more rounded the pores, the higher the strength, ductility and impact resistance.For mixes of iron and carbon with low nickel and copper content, the approximate carbon content can be estimated by the area fraction of pearlite. For an iron-copper carbon alloy with less than 5% copper, one hundred percent pearlite corresponds to approximately 0.8% combined carbon. Lesser amounts of pearlite mean proportionally less carbon. In nickel steels, even with only 2 to 4% by mass of nickel, the nickel-rich areas occupy a substantial area fraction. These should be discounted in estimating the area fraction of pearlite. The nickel-rich areas should not be confused with ferrite. Loss of surface carbon is generally to be avoided due to lower hardness and wear resistance. If a part is to have 0.6-0.9% carbon, decarburization is indicated if a surface layer measures less than 0.6% carbon. Minor amounts of surface decarburization are seldom a problem but if the layer is deeper than 0.010 inch (0.25 mm) it may be necessary to prove that function has not been impaired. (See ASTM E1077 for measuring the depth of decarburization.)Heat-treated ferrous parts generally show a mixture of martensite and fine pearlite. This is particularly true for the PM nickel and carbon steels that are of low hardenability. The maximum tensile strength for these materials has been found to occur in parts with 10% to 35% fine pearlite. The prealloyed steels usually showall martensite because of their greater hardenability.The formation of a carbide network embrittles the martensite in a hardened part and is generally to be avoided. Minor amounts of carbide in the outer 0.005inch (0.13 mm) of parts usually cause no problem.Minor amounts of retained austenite toughen the martensitic structure and usually cause no problem. Higher percentages are generally avoided because retained austenite can transform to brittle martensite in service.In preparing PM specimens for microstructural examination, the following etchants and procedures are recommended. Ferrous parts containing carbon are generally etched in 2% nital or a combination ofnital/picral. Austenitic stainless steel may be etched in glyceregia (10 mL HNO3,20 mL HCI, 30 mL glycerine)by swabbing for one to two minutes. Discard the solution after 30 minutes. Marble's reagent may also beused (10 grams Cu2S04, 50 mL HCI, 50 mL H20). Swab5 to 60 seconds. To develop grain boundaries in smallgrain clusters in bronze, etch by swabbing for 10 to 20 seconds in a mixture of 2 grams of K2Cr2O7, 4 mL of concentrated NaCI solution, 8 mL of H2SO4, 100 mL ofH2O. To develop a red color in copper-rich regions in bronze, etch by swabbing 10 to 20 seconds in 4%FeCI3 and H2O. For etching brasses, swab for 20 seconds in a solution of 5 mL of NH4OH, three drops ofH2O2, 5 mL of H20. This solution is unstable and shouldbe replaced after 20 minutes of usage. The K2Cr2O7 solution may also be used on nickel silver.PM Material Code DesignationThe PM material code designation or identifying codein the case of structural PM parts defines a specific material as to chemical composition and minimum strength expressed in 103psi. For example, FC-0208-60 is a PM copper steel material containing nominally 2% copper and 0.8% combined carbon possessing a minimum yield strength of 60 X 103 psi (60,000 psi) (410 MPa) in the as-sintered condition.A coding system offers a convenient means for designating both the chemical composition and minimum strength value of any standard PM material. Itis based on the system established by the industry withthe addition of a two-or three-digit suffix representing minimum strength in place of a suffix letter indicating density range. The density is given for each standard material as one of the typical values.Code designations in this Standard and revisions thereof apply only to PM materials for which MPIF Standards have been adopted. In order to avoid confusion, the MPIF coding system is intended for useonly with such materials and should not be used tocreate non-standard materials. The explanatory notes, property values, and other contents of this Standardhave no application to any other materials.In the coding system, the prefix letters denote the generaltype of material. For example, the prefix "CT" represents copper (C) and tin (T) which is known as bronze.556MPIF Standard 35, PM Structural Parts — 2012 EditionPrefix Letter CodeA Aluminum FS Iron SiliconC CopperFX Copper-Infiltrated Ironor SteelCT BronzeFY Iron Phosphorus CNZ Nickel-Silver G Free graphite CZ Brass M Manganese F IronN Nickel FCIron-Copper or Copper SteelP Lead FD Diffusion-AlloyedSteelS Silicon FF Soft-Magnetic Iron SS Stainless Steel FL Prealloyed Ferrousmaterial except Stainless SteelT (prealloyed) Tin FLD Diffusion-Alloyed Steel(prealloyed base)U Sulfur FN Iron-Nickel or NickelSteelY ZPhosphorus ZincPrefix and Numeric CodeThe numeric code following the prefix letter code refers to the composition of the material.In nonferrous materials, the first two numbers in the numeric code designate the percentage of the major alloying constituent. The last two numbers of the numeric code designate the percentage of the minor alloying constituent.For improved machinability lead is sometimes the third alloying element in a nonferrous alloy system. Lead will only be indicated by the letter "P" in the prefix. The percentage of lead or any other minor alloying element that is excluded from the numeric code is represented in the "Chemical Composition" that appears with each standard material.Illustration of PM nonferrous material designation coding:In ferrous materials, the major alloying elements (except combined carbon) are included in the prefix letter code. Other elements are excluded from the code but are represented in the "Chemical Composition" that appears with each Standard material. The first two digits of the numeric code indicate the percentage of the major alloying constituent present.Combined carbon content in ferrous materials is designated by the last two digits in the numeric code. The individual chemical composition tables show limits of carbon content for each alloy.The range of carbon that is metallurgically combined is indicated by the coding system. The combined carbon level can be estimated metallographically for sintered PM steels that have a well-defined ferrite/pearlite microstructure. For compositions with very low allowable carbon levels (< 0.08 %) total carbon determined analytically (ASTM E1019) is the recommended method.NOTE: When a clear pearlite to ferrite ratio cannot be determined metallographically, such as with heat treated steels and materials made from prealloyed base powders or diffusion-alloyed powders, then determination of combined carbon by normal metallographic methods is not practical. It is recommended that the carbon content of these materials should be reported as total carbon using the combustion method (ASTM E1019). The test method used should be identified in the report and identified as metallurgically combined carbon or total carbon. While total carbon will approximate the combined carbon in many materials, free graphite and other carbonaceous material will raise the total carbon content above the level of combined carbon, possibly causing the total carbon content to exceed the combined carbon level specified for the material.Illustration of PM ferrous material designation coding:In the case of PM stainless steels and PM prealloyedlow-alloy steels, the numeric code is replaced with a designation derived from modifications of the American Iron and Steel Institute alloy coding system, e.g., SS-316L-15, FL-4605-100HT.When a prealloyed steel powder is modified with elemental additions to create a hybrid low-alloy steel or a sinter-hardened steel, an alpha-numeric designator is used, e.g. FLN-4205-40, FLN2-4405-120HT or FLN4C-4005-60. If the base prealloyed composition has been modified (slight change to increase or decrease one or two elements) then a numeric designator will be added to the material designation code immediately after the first two digits for the prealloyed grade, e.g., FLC-48108-50HT.As with other PM materials, the suffix number denotes the specified minimum strength valueexpressed in 103psi.In the case of soft-magnetic alloys, the phosphorus containing irons are treated differently, since the amount of phosphorus is usually less than 1%. To indicate more accurately the nominal amount of phosphorus the code takes the nominal percent phosphorus, multiplies by 100 and uses this number for the first two digits in the code. The last two digits remain "00" since no carbon is required. For example, the iron-0.45% phosphorus alloy would be designated as: FY-4500.Suffix Digit CodeThe two- or three-digit suffix represents the minimumstrength value, expressed in 103psi, that the user can expect from the PM material possessing that chemical composition. In the as-sintered condition the strength is tensile yield; in the heat treated condition, it is ultimate tensile. (See Minimum Value page 3.) 67MPIF Standard 35, PM Structural Parts — 2012 EditionExamples of PM Material Designation CodingNominal Compositions Complete Code for Material, Composition Material by Percent & Minimum Strength (103psi) PM Bronze Cu-90, Sn-10 CT-1000-13 PM Nickel-Silver Cu-64, Ni-18, Zn-18 CNZ-1818-17 PM Nickel-Silver Cu-64, Ni-18, Zn-16, Pb-2 CNZP-1816-13 PM Brass Cu-90, Zn-10 CZ-1000-11PM Brass Cu-78, Zn-20, Pb-2 CZP-2002-12As-sintered Heat Treated PM Iron Fe, 99, C-0.2 F-0000-20 — PM Steel Fe, 98, C-0.8 F-0008-35 F-0008-85HT PM Copper Steel Fe, 96, Cu-2, C-0.8 FC-0208-60 FC-0208-95HT PM Nickel Steel Fe, 96, Ni-2, C-0.5 FN-0205-35 FN-0205-180HT PM Infiltrated Iron Fe, 78, Cu-20 FX-2000-25 — PM Infiltrated Steel Fe, 77, Cu-20, C-0.8 FX-2008-60 FX-2008-90HT PM Phosphorus Iron Fe, P-0.45 FY-4500-20W PM Stainless Steel (austenitic) AISI 316 (modified) SS-316N1-25 — PM Stainless Steel (martensitic) AISI 410 (modified) SS-410-90HT PM 4600 Steel (prealloyed) AISI 4600 (modified), C-0.5FL-4605-45 FL-4605-140HT PM 4200 Steel (hybrid low-alloy)AISI 4200 (modified), Ni-1.5, C-0.5 FLN-4205-40 FLN-4205-105HT Suffix Letter CodeWhen the code designation "HT" appears after the suffix digits it is understood that the PM material specified has been heat treated (quench hardened and tempered or sinter-hardened) and that the strengthrepresented is ultimate tensile in 103psi.In the case of the soft-magnetic alloys the suffix does NOT designate yield or tensile strength, but rather the maximum coercive field strength (10 times the value in oersteds) and an alphabetic designator for the minimum density as follows:MinimumDesignator Density (g/cm 3)U 6.5 V 6.7 W 6.9 X 7.1 Y 7.3 Z 7.4For example, a pure iron material at a minimum density of 6.9 g/cm 3and coercive field strength of 2.3 Oe would be designated as F-0000-23W. The iron-0.45% phosphorus alloy at a 7.1 g/cm 3minimum density and coercive field strength of 2.0 Oe would be designated as FY-4500-20X. Grade Selection Before a particular grade of material can be selected, a careful analysis is required of the design of the part and its end use, including dimensional tolerances and an analysis of part design versus tool design. In addition, the final property requirement of the finished part should be considered, e.g., static and dynamic loading, corrosion resistance, wear resistance, machinability, brazability, pressure tightness and any other requirements pertinent to the application. It is recommended that all of the above aspects be subjects of discussion between the manufacturer and thepurchaser prior to the final grade selection.(See Powder Metallurgy Design Manual published by the Metal Powder Industries Federation.)Proof TestingIt is highly recommended that a proof test and/or destructive test method be established between the pur-chaser and the PM parts manufacturer to ensure that the actual PM part meets the intent of the design. If possible, this test should be related to the actual function of the part, e.g., gear tooth break load, crush test, pull test, etc. It may require a special fixture or sub-assembly for use by both the PM parts manufacturer and the purchaser. Establishment of values should be determined by actual testing of production lots. It is recommended that such tests supplement the material specification designated on the engineering drawing.Chemical AnalysisThe chemical composition of PM materials is deter-mined by standard analytical test methods, such asoptical emission spectroscopy, atomic absorption spectroscopy, inductively coupled plasma spectroscopy, X-ray fluorescence, or titration/gavimetric (see ASTM standards for appropriate test methods). For the elements carbon, nitrogen, oxygen or sulfur the ASTM E1019 test method describes appropriate combustion-infra-red absorption and inert gas fusion methods. The carbon method of ASTM E1019 determines total carbon content that may include both metallurgically combined carbon (in steel) as well as free carbon (such as soot, oil or graphite). Metallurgically combined carbon can be estimated metallographically for sintered structural steels with a microstructure of ferrite and pearlite. For compositions with very low allowable carbon levels (< 0.08%) total carbon is the recommended method.7。
MPIF35标准_粉末冶金零件材料标准牌号
硬度(洛氏)
宏观 (表观) 微观 (换算的)
90 120 170 120 160 190
1.5 2Leabharlann 5 7.0 <1.0 1.0 1.5 <0.5
105 120 160 105 115 135 115 130 140 85 110 115 140 115 115 135 150
40HRF 60.0 80.0 25HRB 40.0 55.0 20HRC 22.0 25.0 35HRB 50.0 N/A 60.0 70.0 22HRC 28.0 32.0 35.0 60HRC 60 60 60 58HRC 58 58 N/A N/A
MPIF标准35(烧结铁和烧结碳钢零件材料性能)
化学成份(%) 牌号 Fe F-0000-10 F-0000-15 F-0000-20 F-0005-15 F-0005-20 F-0005-25 F-0005-50HT F-0005-60HT F-0005-70HT F-0008-20 F-0008-25 97.1-99.4 F-0008-30 F-0008-35 F-0008-55HT F-0008-65HT 97.1-99.4 F-0008-75HT F-0008-85HT 注:参见MPIF标准35整理 0.6-0.9 520 590 590 660 0.6-0.9 210 240 380 450 290 390 450 520 140 170 97.04-99.7 0.3-0.6 97.04-99.7 0.3-0.6 97.7-100.0 0.0-0.3 C 其它 最小强度MPa (A)(E) 屈服 70 100 140 100 140 170 340 410 480 极限
主要特点
46 65 99 60 80 100 160 190 220 80 100 120 170 180 210 240 280
MPIF 35(1998)粉末冶金结构零件材料标准简介
事长 吕海波 、协会秘书长 高一 平 、 名誉理 事长李献璐分别讲 话 。 代 表 们对共 同关心 的问题充分发表 了意 见 ,
还介绍 了本单 位 的产 品 门类 、规格 、 生产 和 销售 形 势 。 大 家 建议 协 会进 一 步 加 强 信 息和 统计 工 作 。 会议 还 建
议加强 行业合作 , 促进建立全 国统一 的行 业协会 。
切削加工时 , 化合碳含量不得高于
。 为进一步提高材料 的强度 与耐磨性 , 还可对之 进行热 处理 。 当 需
要 耐磨性高而不适于进行热处理 时 , 推荐采用含铜量较高
的材 料 。 为 了 在 使 用 中进 行 自润 滑 , 密 度 低 的
零件 可进行 浸 油 处理 。
显微组织
添 加 于铁 粉 中的铜 粉 于
︸内
内
丈 ‘,
一
一
缨缪
巧
塑
中国钢协粉末冶金协会硬面技术专业委员会在湘召 开
中国钢协粉末冶金协会硬 面技术专业委 员会于 究会 。 中国钢协粉末冶金协会副理事 长顾乃粒 同 志和 硬
划 。 协会名誉
为 研讨本
家和领导干部
改革和 结构 优
件 的预 保 护和
希望协会专业委员会努力发挥好政府与企业 间发展硬面技术的桥梁和纽带作用 。
材料牌号
一
一
一
一
一
一
一
一
一
注 其它元素 包括为 了特殊 目的而添加的其他徽量元素 总量最大为
。
最 小值
二 笼泣一倪菌排和烧煊碳 拐 的物理 二力里性篮 一 一一一一塑咧凶组当队塑望 」巨 一
标 准值
最小强度 材料牌号 屈 服 极限
拉 伸性 能
粉末冶金标准1
公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93<二> MPIF-35烧结铁和烧结碳钢的化学成分(%).材料牌号Fe CF-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。
▲注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最烧结铁-铜合金和烧结铜钢的化学成分(%).材料牌号Fe Cu CFC-0200 83.8-98.5 1.5-3.9 0.0-0.3FC-0205 93.5-98.2 1.5-3.9 0.3-0.6FC-020893.2-97.9 1.5-3.9 0.6-0.9FC-0505 91.4-95.7 4.0-6.0 0.3-0.6FC-0508 91.1-95.4 4.0-6.0 0.6-0.9FC-0808 88.1-92.4 7.0-9.0 0.6-0.9FC-1000 87.2-90.5 9.5-10.5 0.0-0.3烧结铁-镍合金和烧结镍钢的化学成分(%).材料牌号Fe Ni Cu CFN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%大值为2.0%。
⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35)材料编号最小强度(A)(E) 拉伸性能横向断裂压缩屈服强度(0.1%)硬度密度屈服极限极限强度屈服强度(0.2%)伸长率(25.4mm)宏观(表现)微观(换算的) MPa MPa MPa % MPa MPa 络氏g/cm3FC-0200-15-18-21-24 100 170 140 1.0 310 120 11HRBN/A6.0 120 190 160 1.5 350140 18 6.3 140 210 180 1.5 390 160 26 6.6 170 230 200 2.0 430 180 36 6.9FC-0205-30-35-40-45 210 240 240 < 1.0 410 340 37HRBN/A6.0 240 280 280 < 1.0 520 370 48 6.3 280 340 310 < 1.0 660 390 60 6.7 310 410 340 < 1.0 790 410 727.1FC-0205-60HT-70HT-80HT-90HT 410 480 < 0.5 660 390 19HRC 58HRC 6.2 480 550< 0.5 760 490 25 58 6.5 550620 (D) < 0.5 830 590 31 58 6.8 620 690 < 0.5 930 660 36 58 7.0FC-0208-30-40-50-60 210 240 240 < 1.0 410 390 50HRBN/A5.8 280 340 310 < 1.0 620 430 616.3 340 410 380 < 1.0 860 460 73 6.7 410 520 450< 1.0 1070 490 847.2FC-0208-50HT-65HT-80HT-95HT 340 450< 0.5 660 400 20HRC 60HRC 6.1 450520 < 0.5 760 500 27 60 6.4 550620 (D) < 0.5 900 630 35 60 6.8 660 660 720 < 0.5 1030 720 43 60 7.1铁-镍合金和镍钢粉末冶金材料性能(MPIF-35) ↑上一页⊙不锈钢系列粉末冶金制品执行标准与典型牌号的成分和性能-不锈钢(MPIF-35)⊙铜基系列粉末冶金制品执行标准成分与性能-铜基(GB2688-81)⊙<三>"DIN V 30 910" 及"ISO5755" (成分与性能略)⊙烧结铝镍钴永磁合金的磁特性及其它物理特性< 規 格 二 - 不銹鋼 >TypeChemical Composition (%)Physical Mechanical PropertiesFe Cr Ni Cu Tin Si Mn Mo C S Other Density(g/cm 3) Ultimate Tensile Strength(kg/mm 2)Elong-ation(%) H ard-nessSUS303LSC bal 18.2 12.5 2.0 1.0 0.8 0.13 – <0.08 0.20 < 1.0> 6.3 20 Min. Min.2.0 RB40 SUS316LSC bal 17.0 13.5 2.0 1.0 0.75 0.12 2.2 <0.01 < 1.0> 6.325 Min.Min.5.0RB38FTG60-25(50R) 材料的力学性能。
美国MPIF标准35“粉末冶金自润滑轴承材料标准”
美国MPIF标准35“粉末冶金自润滑轴承材料标准”1998年修订简介韩凤麟编者按:轴承是机电工业的一类重要通用基础件,据中国机电日报200 0 年1月19日第6版报道,2 000年我国滚动轴承的总生产能力为23亿套,其中中小尺寸普通级滚动轴承可达21亿套。
但很少有人注意到,据初步估计,我国微小型粉末冶金自润滑轴承,即含油轴承,1999年销售量已超过20亿只,且大部分销往国外。
全世界微小型含油轴承年产量已近百亿只。
为适应我国粉末冶金含油轴承生产发展需要,特向有关生产厂家与用户推荐美国MP IF标准35《粉末冶金自润滑轴承材料标准》1998年版。
这是国内外最新的《粉末冶金自润滑轴承材料标准》,值得研究与借鉴。
轴承可定义为一种在其中有另外一种元件(诸如轴颈或杆)旋转或滑动的机械零件。
依据轴承工作时摩擦的型式,它们又分为滚动轴承与滑动轴承。
滑动轴承之中自身具有自润滑性的轴承叫做含油轴承或自润滑轴承。
用粉末冶金法制造的金属基含油轴承通称为粉末冶金自润滑轴承或烧结金属含油轴承。
粉末冶金自润滑轴承是音像设备、微特小型马达、办公机械、电动工具、洗衣机、电风扇、缝纫机、复印机等中不可缺少的一类轴承。
据笔者估计,1999年我国微特小型粉末冶金自润滑轴承的年产量已达到25亿只左右。
虽然我国早在1953年就已开始生产粉末冶金自润滑轴承,也制订过相应的国家标准〔1〕,诸如GB 2685-81《粉末冶金筒形轴承型式、尺寸与公差》、GB 2686-81《粉末冶金带挡边筒形轴承型式、尺寸与公差》、GB 2687-81《粉末冶金球形轴承型式、尺寸与公差》及GB 2688-81《滑动轴承粉末冶金轴承技术条件》,但是,这些标准自发布之日起,就从未进行过修订,已不能适应当前科技发展与生产的需要。
国际标准化组织(ISO)1996年对ISO 5755《烧结金属材料-规范》进行了修订〔2〕。
但其中关于粉末冶金自润滑轴承材料的牌号较少,也没有关于轴承设计与应用的说明。
MPIF标准35《金属注射成形零件材料标准》
美国MPIF标准35—《金属注射成形零件材料标准》一、MIM零件材料标准的注释和定义(1)MIM材料命名在制定MIM材料的技术规范时,MIM协会采用的牌号系统和AISI-SAE相同。
之所以选用这些牌号名称是因为MIM零件多用于替代已在使用的相应锻轧材料的制品。
当表示某种材料是用MIM工艺制造时,应在材料之前加“MIM”。
例如,用MIM工艺制造的316L不锈钢,可用“MIM-316L”来表示。
在选择某一具体材料之前,需要仔细分析零件的设计与其最终用途,其中包括尺寸公差、零件设计及模具设计。
另外,MIM零件的制造厂家和买方必须商定对成品零件的最终性能要求。
也可规定诸如静态与动态负载、耐磨性、切削性及耐蚀性之类的问题。
(2)一些基本概念与定义最小值概念金属粉末工业联合会对于用于结构零件的粉末冶金材料采用了最小力学性能值概念。
采用MIM工艺制造零件时,可用这些值作为用户选择具体应用材料的一个依据。
为有助于用户选择材料,除最小力学性能值外,还列出了其它性能得标准值。
从而,使用户可选择与确定合适的MIM材料与对具体用途最合适的性能。
提供的数据规定了材料的最小力学性能值,并列出了在工业生产条件下可达到的标准力学性能值。
通过较复杂的工艺过程可增强力学性能和改进其它使用性能。
要选择一种在性能与价格两方面都可行的最佳材料,用户与MIM 零件制造厂家一起讨论零件的用途最为重要。
最小值MIM材料的最小值,对于烧结态和(或)热处理态的所有材料都是用屈服强度(0.2%残余变形法)、极限抗拉强度及伸长率来表示的。
因为MIM材料的密度接近真密度,故其性能和锻轧材料相似。
为建立本标准,所用拉伸性能都是由拉伸试样测定的,拉伸试样是为评定材MIM料专门制备的(关于MIM材料试样的详情见MPIF标准50)。
由批量生产的零件切削加工的试样或由非标准的MIM试样测定的拉伸性能,可能和按照MPIF 标准50制备的试样测定的结果不同。
在编制MIM材料的技术规范时,表明最小强度值的实际方法是由制造厂家和用户利用生产的第一批零件和相互商定的对零件施加力的方法,进行静态或动态验收试验。
MPIF35标准 粉末冶金零件材料标准牌号
120 170 260 170 220 260 410 480 550 200 240
拉伸性能
屈服强度 伸长率 (0.2%)MPa (25.4mm)%
弹性常数
杨氏模量 Gpa
泊松比 0.25 0.25 0.28 0.25 0.25 0.27 0.25 0.27 0.27 0.25 0.25 0.25 0.27 0.25 0.25 0.27 0.27
MPIF标准35(烧结铁和烧结碳钢零件材料性能)
化学成份(%) 牌号 Fe F-0000-10 F-0000-15 F-0000-20 F-0005-15 F-0005-20 F-0005-25 F-0005-50HT F-0005-60HT F-0005-70HT F-0008-20 F-0008-25 97.1-99.4 F-0008-30 F-0008-35 F-0008-55HT F-0008-65HT 97.1-99.4 F-0008-75HT F-0008-85HT 注:参见MPIF标准35整理 0.6-0.9 520 590 590 660 0.6-0.9 210 240 380 450 290 390 450 520 140 170 97.04-99.7 0.3-0.6 97.04-99.7 0.3-0.6 97.7-100.0 0.0-0.3 C 其它 最小强度MPa (A)(E) 屈服 70 100 140 100 140 170 340 410 480 极限
硬度(洛氏)
宏观 (表观) 微观 (换算的)
90 120 170 120 160 190
1.5 2.5 7.0 <1.0 1.0 1.5 <0.5
105 120 160 105 115 135 115 130 140 85 110 115 140 115 115 135 150
MPIF标准35金属注射成形零件材料标准
美国MPIF标准35—《金属注射成形零件材料标准》一、MIM零件材料标准的注释和定义(1)MIM材料命名在制定MIM材料的技术规范时,MIM协会采用的牌号系统和AISI-SAE相同。
之所以选用这些牌号名称是因为MIM零件多用于替代已在使用的相应锻轧材料的制品。
当表示某种材料是用MIM工艺制造时,应在材料之前加“MIM”。
例如,用MIM工艺制造的316L不锈钢,可用“MIM-316L”来表示。
在选择某一具体材料之前,需要仔细分析零件的设计与其最终用途,其中包括尺寸公差、零件设计及模具设计。
另外,MIM零件的制造厂家和买方必须商定对成品零件的最终性能要求。
也可规定诸如静态与动态负载、耐磨性、切削性及耐蚀性之类的问题。
(2)一些基本概念与定义最小值概念金属粉末工业联合会对于用于结构零件的粉末冶金材料采用了最小力学性能值概念。
采用MIM工艺制造零件时,可用这些值作为用户选择具体应用材料的一个依据。
为有助于用户选择材料,除最小力学性能值外,还列出了其它性能得标准值。
从而,使用户可选择与确定合适的MIM材料与对具体用途最合适的性能。
提供的数据规定了材料的最小力学性能值,并列出了在工业生产条件下可达到的标准力学性能值。
通过较复杂的工艺过程可增强力学性能和改进其它使用性能。
要选择一种在性能与价格两方面都可行的最佳材料,用户与MIM 零件制造厂家一起讨论零件的用途最为重要。
最小值MIM材料的最小值,对于烧结态和(或)热处理态的所有材料都是用屈服强度(0.2%残余变形法)、极限抗拉强度及伸长率来表示的。
因为MIM材料的密度接近真密度,故其性能和锻轧材料相似。
为建立本标准,所用拉伸性能都是由拉伸试样测定的,拉伸试样是为评定材MIM料专门制备的(关于MIM材料试样的详情见MPIF标准50)。
由批量生产的零件切削加工的试样或由非标准的MIM试样测定的拉伸性能,可能和按照MPIF 标准50制备的试样测定的结果不同。
在编制MIM材料的技术规范时,表明最小强度值的实际方法是由制造厂家和用户利用生产的第一批零件和相互商定的对零件施加力的方法,进行静态或动态验收试验。
粉末冶金材料标准表
公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/<二> MPIF-35烧结铁和烧结碳钢的化学成分(%).材料牌号Fe CF-0000注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%。
▲注: 用差减法求出的其它元素(包括为了特烧结铁-铜合金和烧结铜钢的化学成分(%).材料牌号Fe Cu CFC-0200烧结铁-镍合金和烧结镍钢的化学成分(%).材料牌号Fe Ni Cu CFN-0200注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%殊目的而添加的其它元素)总量的最大值为%。
⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35)材料编号最小强度(A)(E)拉伸性能横向断裂压缩屈服强度%)硬度密度屈服极限极限强度屈服强度%)伸长率宏观(表现)微观(换算的) MPa MPa MPa%MPa MPa络氏g/cm3FC-0200-15-18-21-24 10017014031012011HRBN/A 120190160350140181402101803901602617023020043018036FC-0205-30-35-40-45 210240240< 41034037HRBN/A 240280280< 52037048280340310< 66039060310410340< 79041072FC-0205-60HT-70HT-80HT-90HT 410480< 66039019HRC58HRC 480550< 7604902558 550620(D)< 8305903158 620690< 9306603658FC-0208-30-40-50-60 210240240< 41039050HRBN/A 280340310< 62043061340410380< 86046073410520450< 107049084FC-0208-50HT-65HT-80HT-95HT 340450< 66040020HRC60HRC 450520< 7605002760 550620(D)< 9006303560 660660720< 10307204360铁-镍合金和镍钢粉末冶金材料性能(MPIF-35)↑上一页⊙不锈钢系列粉末冶金制品执行标准与典型牌号的成分和性能-不锈钢(MPIF-35)⊙铜基系列粉末冶金制品执行标准成分与性能-铜基 (GB2688-81)<三> "DIN V 30 910" 及 "ISO5755" (成分与性能略)⊙烧结铝镍钴永磁合金的磁特性及其它物理特性< 規格二 - 不銹鋼 >。
MPIF35英文版
TABLE1Chemical Requirements Chemical Composition,Weight%Material Designation Iron Copper Carbon NickelMolyb-denumChro-miumMan-ganeseSilicon SulfurPhos-phorusNitro-genColumbium OtherF-0000Min97.7...0.0.............................. F-0000Max100.0...0.3........................... 2.0F-0005Min97.4...0.3.............................. F-0005Max99.7...0.6........................... 2.0F-0008Min97.1...0.6.............................. F-0008Max99.4...0.9........................... 2.0 FX-1000Min82.88.00.0.............................. FX-1000Max92.014.90.3........................... 2.0FX-1005Min82.58.00.3.............................. FX-1005Max91.714.90.6........................... 2.0 FX-1008Min82.28.00.6.............................. FX-1008Max91.414.90.9........................... 2.0FX-2000Min72.715.00.0.............................. FX-2000Max85.025.00.3........................... 2.0 FX-2005Min72.415.00.3.............................. FX-2005Max84.725.00.6........................... 2.0FX-2008Min72.115.00.6.............................. FX-2008Max84.425.00.9........................... 2.0 FC-0200Min93.8 1.50.0.............................. FC-0200Max98.5 3.90.3........................... 2.0FC-0205Min93.5 1.50.3.............................. FC-0205Max98.2 3.90.6........................... 2.0 FC-0208Min93.2 1.50.6.............................. FC-0208Max97.9 3.90.9........................... 2.0FC-0505Min91.4 4.00.3.............................. FC-0505Max95.7 6.00.6........................... 2.0 FC-0508Min91.1 4.00.6.............................. FC-0508Max95.4 6.00.9........................... 2.0FC-0808Min88.17.00.6.............................. FC-0808Max92.49.00.9........................... 2.0 FC-1000Min87.29.50.0.............................. FC-1000Max90.510.50.3........................... 2.0FN-0200Min92.20.00.0 1.0........................... FN-0200Max99.0 2.50.3 3.0........................ 2.0 FN-0205Min91.90.00.3 1.0........................... FN-0205Max98.7 2.50.6 3.0........................ 2.0FN-0208Min91.60.00.6 1.0........................... FN-0208Max98.4 2.50.9 3.0........................ 2.0 FN-0405Min89.90.00.3 3.0........................... FN-0405Max96.7 2.00.6 5.5........................ 2.0FN-0408Min89.60.00.6 3.0........................... FN-0408Max96.4 2.00.9 5.5........................ 2.0 FL-4205Min95.9...0.40.350.50........................ FL-4205Max98.75...0.70.550.85..................... 2.0FL-4605Min94.5...0.4 1.700.40........................ FL-4605Max97.5...0.7 2.000.80..................... 2.0 FL-4405Min96.35...0.40.75........................ FL-4405Max98.85...0.70.95..................... 2.0TABLE1Continued Chemical Composition,Weight%Material Designation Iron Copper Carbon NickelMolyb-denumChro-miumMan-ganeseSilicon SulfurPhos-phorusNitro-genColumbium OtherFLN-4205Min93.95...0.4 1.35*0.49........................ FLN-4205Max97.76...0.7 2.5*0.85..................... 2.0FLN2-4405Min93.35...0.4 1.000.65........................ FLN2-4405Max97.95...0.7 3.000.95..................... 2.0FLN4-4405Min91.35...0.4 3.000.65........................ FLN4-4405Max95.95...0.7 5.000.95..................... 2.0 FLN6-4405Min89.35...0.4 5.000.65........................ FLN6-4405Max93.95...0.77.000.95..................... 2.0FLNC-4405Min90.35 1.00.4 1.000.65........................ FLNC-4405Max96.95 3.00.7 3.000.95..................... 2.0 FLN2-4408Min93.15...0.6 1.000.65........................ FLN2-4408Max97.75...0.9 3.000.95..................... 2.0FLN4-4408Min91.15...0.6 3.000.65........................ FLN4-4408Max95.75...0.9 5.000.95..................... 2.0 FLN6-4408Min89.15...0.6 5.000.65........................ FLN6-4408Max93.75...0.97.000.95..................... 2.0FLN-4608Min91.00...0.6 3.6**0.39........................ FLN-4608Max93.41...0.9 5.0** 1.10..................... 2.0 FLC-4608Min91.00 1.00.6 1.600.39........................ FLC-4608Max96.41 3.00.9 2.00 1.10..................... 2.0FLC-4908Min92.40 1.00.6... 1.30........................ FLC-4908Max95.10 3.00.9... 1.70..................... 2.0 FLNC-4408Min90.15 1.00.6 1.000.65........................ FLNC-4408Max96.75 3.00.9 3.000.95..................... 2.0FD-0205Min93.15 1.30.3 1.550.4........................FD-0205Max96.45 1.70.6 1.950.6..................... 2.0SS-303N1,N2Min Rem...08.0...17.0000.1500.2......SS-303N1,N2Max Rem...0.1513.0...19.0 2.0 1.00.300.200.6... 2.0SS-303L Min Rem...08.0...17.0000.150.........SS-303L Max Rem...0.0313.0...19.0 2.0 1.00.300.20...... 2.0SS-304N1,N2Min Rem...08.0...18.000000.2......SS-304N1,N2Max Rem...0.0812.0...20.0 2.0 1.00.030.0450.6... 2.0SS-304L Min Rem...08.0...18.00000.........SS-304L Max Rem...0.0312.0...20.0 2.0 1.00.030.045...... 2.0SS-316N1,N2Min Rem...010.0 2.016.000000.2......SS-316N1,N2Max Rem...0.0814.0 3.018.0 2.0 1.00.030.0450.6... 2.0SS-316L Min Rem...010.0 2.016.00000.........SS-316L Max Rem...0.0314.0 3.018.0 2.0 1.00.030.045...... 2.0SS-410Min Rem...0......11.500000.2......SS-410Max Rem...0.25......13.0 1.0 1.00.030.040.6... 2.0 Note For the Stainless Steels:N1—Nitrogen alloyed.Good strength,low elongation.N2—Nitrogen alloyed.High strength,medium elongation.L—Low carbon. Lower strength,highest elongation.HT—Martensitic grade,heat treated.Highest strength.8.Mechanical Properties8.1The minimum guaranteed tensile strength,as shown in Tables2-7,is a numerical suffix in the material designation code and is read as103psi.The code is adopted from MPIF Standard35.All tensile strengths are defined as the0.2%offset yield strength for as-sintered materials and the ultimate tensile strength for sinter-hardened or sintered and heat-treated materials.8.1.1Materials in the as-sintered condition will have only the numeric value for thesuffix.8.1.2Materials that are sinter-hardened or sintered and heat-treated will have the numeric value followed by HT in the suffix.8.2The purchaser and manufacturer should agree upon the method to be used to verify the minimum strength character-istics of thefinished parts.Since it is usually impossible to machine tensile test specimens from these parts,alternative strength tests are advisable.An example would be measuring the force needed to break teeth off a gear with the gear properly fixtured.8.3If the tensile properties of the materials are required standard may also be verified using specifically prepared bars, molded form the same mixed powder lot,at the density of a critical region in the part,and processed along with the parts. When a P/M part has a larger ruling section than the test bar being used,the test bar may not be representative of the part. The following procedures are listed with the preferred method first.8.3.1Transverse rupture strength can be related to the minumum tensile strength by the ratio of typical transverse rupture strength to typical tensile strength at the same density as the part,as shown in,or interpolated from the tables contained in Appendix X1.8.3.2For as-sintered material,flat unmachined tension test specimens(see Fig.1)should be used for determination of 0.2%offset yield strength.8.3.3For determining the tensile strength of heat-treated material,round test bars should be machined from specially molded,as-sintered bars because heat treated,unmachined specimens yield lower values,The machined tension test specimens as shown in Fig.2should be heat-treated with the production parts.9.Sampling9.1Lot—Unless otherwise specified,a lot shall consist of parts of the same form and dimensions made from powders of the same composition,molded,and processed under the same conditions,and submitted for inspection at one time.9.2Chemical Analysis—When requested on the purchase order,at least one sample for chemical analysis shall be taken from each lot.The analysis shall be performed by a mutually agreed upon method.9.3Mechanical Tests—The manufacturer and purchaser shall agree on a representative number of specimens for mechanical tests.10.Rejection and Rehearing10.1Parts that fail to conform to the requirements of this specification may be rejected.Rejection should be reported to the producer or supplier promptly and in writing.11.Certification11.1When specified in the purchase order or contract,a producer’s certification shall be furnished to the purchaser thatTABLE2Minimum Tensile Strength for Iron and Carbon SteelMaterial Designation CodeMinimum StrengthYield Ultimate103psi AF-0000-1010...-1515...-2020...F-0005-1515...-2020...-2525...F-0005-50HT (50)-60HT (60)-70HT (70)F-0008-2020...-2525...-3030...-3535...F-0008-55HT (55)-65HT (65)-75HT (75)-85HT (85)A103psi56.895MPa(6.895N/mm2)TABLE3Minimum Tensile Strength for Copper Infiltrated Ironand SteelMaterial Designation CodeMinimum Strength Yield Ultimate103psi AFX-1000-2525... FX-1005-4040... FX-1005-110HT (110)FX-1008-5050... FX-1008-110HT (110)FX-2000-2525... FX-2005-4545... FX-2005-90HT (90)FX-2008-6060... FX-2008-90HT (90)A103psi56.895MPa(6.895N/mm2)TABLE4Minimum Tensile Strength for Iron-Copper and CopperSteelMaterial Designation CodeMinimum StrengthYield Ultimate103psi AFC-0200-1515...-1818...-2121...-2424...FC-0205-3030...-3535...-4040...-4545...FC-0205-60HT (60)-70HT (70)-80HT (80)-90HT (90)FC-0208-3030...-4040...-5050...-6060...FC-0208-50HT (50)-65HT (65)-80HT (80)-95HT (95)FC-0505-3030...-4040...-5050...FC-0508-4040...-5050...-6060...FC-0808-4545...FC-1000-2020...A103psi56.895MPa(6.895N/mm2)the parts were manufactured,sampled,tested,and inspected in accordance with this specification and have been found to meet the requirements.When specified in the purchase order or contract,a report of the test results shall be furnished.12.Keywords12.1ferrous powder metallurgy;ferrous structural parts; powder metallurgy(P/M);structural partsTABLE5Minimum Tensile Strength for Iron-Nickel and NickelSteelMaterial Designation CodeMinimum Strength Yield Ultimate103psi AFN-0200-1515...-2020...-2525...FN-0205-2020...-2525...-3030...-3535...FN-0205-80HT (80)-105HT (105)-130HT (130)-155HT (155)-180HT (180)FN-0208-3030...-3535...-4040...-4545...-5050...FN-0208-80HT (80)-105HT (105)-130HT (130)-155HT (155)-180HT (180)FN-0405-2525...-3535...-4545...FN-0405-80HT (80)-105HT (105)-130HT (130)-155HT (155)-180HT (180)FN-0408-3535...-4545...-5555...A103psi56.895MPa(6.895N/mm2)TABLE6Minimum Tensile Strength for Low Alloy SteelMaterial Designation Code Minimum StrengthUltimate103psi AFL-4205-80HT80-100HT100-120HT120-140HT140 FL-4605-80HT80-100HT100-120HT120-140HT140 A103psi56.895MPa(6.895N/mm2)TABLE7Minimum Tensile Strength for Stainless Steel Material Designation CodeMinimum StrengthYield Ultimate103psi ASS-303N1-2525...SS-303N2-3535...SS-303L-1212...SS-304N1-3030...SS-304N2-3333...SS-304L-1313...SS-316N1-2525...SS-316N2-3333...SS-316L-1515...SS-410-90HT (90)A103psi56.895MPa(6.895N/mm2)Note For the Stainless Steels:N1—Nitrogen alloyed.Good strength,low elongation.N2—Nitrogen alloyed.High strength,medium elongation.L—Low carbon.Lower strength,highest elongation.HT—Martensitic grade,heat treated. Higheststrength.Pressing Area51.00in.2Note—Dimensions specified,except G and T are those of the die.Dimensionsin.mm A—Half length of reduced section0.62560.00115.88B—Grip length 3.18760.00180.9560.03 C—Width of grip section0.34360.0018.7160.03 D—Width at center0.22560.001 5.7260.03 E—End radius0.17160.001 4.3460.03 F—Half width of grip section0.17160.001 4.3460.03 G—Gage length 1.00060.00325.4060.08 L—Overall length 3.52960.00189.6460.03 R—Radius offillet125.4 T—Compact to this thickness0.140to0.250 3.56to6.35 W—Width at end of reduced section0.23560.001 5.9760.03 FIG.1Standard Flat Unmachined Tension Test Specimen forPowder Metallurgy(P/M)ProductsAPPENDIX(Nonmandatory Information)E OF THIS SPECIFICATIONX1.1PM/Material Code Designation:X1.1.1The P/M material code designation or identifyingcode for structural P/M parts defines a specific material as tochemistry and minimum strength expressed in 103psi (6.895MPa).For example,FC-0208-60is a P/M copper steel materialcontaining nominal 2%copper and 0.8%combined carbonpossessing a minimum yield strength of 603103psi (60000psi)in the as-sintered condition.X1.1.2The system offers a convenient means for designat-ing both the chemistry and minimum strength value of anystandard P/M material.The density is given for each standardmaterial as one of the typical values and is no longer arequirement of the specification.X1.1.3Code designations in this specification and revisionsthereof apply only to P/M materials for which specificationshave been adopted.In order to avoid confusion,the P/Mmaterial designation coding system is intended for use only with such materials and should not be used to create non-standard materials.However,the use of designations such as FC-0208or FN-0205to denote materials of a specified composition is permitted.The explanatory notes,property values,and other contents of this standard have no application to any other materials.X1.1.4In the coding system,the prefix letters denote the general type of material.For example,the prefix FC represents iron (F)and copper (C),which is known as iron-copper and copper steels.The prefix letter codes are as follows:X1.1.4.1C—Copper.X1.1.4.2F—Iron.X1.1.4.3FC—Iron Copper and Copper Steel.X1.1.4.4FN—Iron Nickel and Nickel Steel.X1.1.4.5FX—Infiltrated Iron or Steel.X1.1.4.6FL—Prealloyed Ferrous material except StainlessSteel.Dimensionsin.mm A—Gage length1.00060.00325.4060.08B—Diameter at center of reduced section0.18760.001 4.7560.03C—Diameter at ends of gage length0.19160.001 4.8560.03D 1—Radius of fillet0.25060.005 6.3560.13D 2—Radius of fillet0.05060.005 1.2760.13E—Overall length (die cavity length)3Nominal 75Nominal F—Length of end section0.31060.0057.8860.13G—Compact to this end thickness0.39560.00510.0360.13H—Die cavity width0.39560.00310.0360.08J—Length of shoulder0.25060.005 6.3560.13K—Diameter of shoulder 0.31060.0017.8860.03N OTE 1—Diameters to be concentric within 0.001T.I.R.and the 0.191and 0.187diameters to be free of scratches and tool marks.FIG.2Standard Round Machined Tension Test Specimen forPowder Metallurgy (P/M)ProductsX1.1.4.7FLN,FLNC,or FLC Prealloyed Low Alloy Steel Power,with Elemental Additions.X1.1.4.8FD—Diffusion Alloyed Steel.X1.1.4.9M—Manganese.X1.1.4.10N—Nickel.X1.2Prefix and Four-Digit Code:X1.2.1In ferrous materials,the major alloying elements (except combined carbon)are included in the prefix letter code. Other elements are excluded from the code but are represented in the Chemical Composition that appears with each standard material.Thefirst two digits of the four-digit code indicate the percentage of the major alloying constituent present.X1.2.2Combined carbon content in ferrous materials is designated by the last two numbers in the four-digit series.The carbon content up to and including0.3%is considered as zero; higher contents are included in ranges and coded as follows: Carbon Ranges Code Designationfrom0.0%to0.3%00from0.3%to0.6%05from0.6%to0.9%08X1.2.3The range of carbon that is metallurgically com-bined is indicated in the coding system.For an illustration of P/M ferrous material designation coding see Fig.X1.1.X1.2.4In the case of P/M prealloyed low alloy steels,the four digit series is replaced with a designation derived from modifications of the American Iron and Steel Institute alloy coding system, e.g.FL-4605-100HT.As with other P/M materials,the suffix number denotes the specified minimum strength value expressed in103psi.X1.3Suffıx Digit Code—The two-or three-digit suffix represents the minimum strength value,expressed in103psi (6.895MPa(6.895N/mm2))that the user can expect from the P/M material possessing that chemistry.In the as-sintered condition the strength is tensile yield;in the heat-treated condition,it is ultimate tensile(see Minimum Value,Tables X1.1-X1.12).X1.4Suffıx Letter Code—When the code designation HT appears after the suffix digits it is understood that the P/M material specified has been heat treated(quenched and tem-pered)and that the strength represented is ultimate tensile in 103psi(6.895MPa(6.895N/mm2)).X1.5Data Source—Information used in compiling this specification was contributed by the membership of ASTM Committee B-9on Metal Powders and Metal Powder Products and the Standards Committee of the Powder Metallurgy parts Association of MPIF.These technical data are onfile at MPIF Headquarters,Princeton,NJ,and are reproduced in this speci-fication with the permission of the Metal Powder IndustriesFederation.FIG.X1.1Illustration of P/M Ferrous Material DesignationCodingTABLE X1.1Iron and Carbon SteelN OTE 1—103psi 56.895MPa (6.895N/mm 2).N OTE 2—1in.525.4mm.N OTE 3—1ft-lb 51.356J.P/M Material Properties Minimum Values ATypical Values B MaterialDesignationCodeMinimum Strength A ,CTensile Properties Trans-verse Rupture Strength Unnotched Charpy Impact Strength Density Compres-sive Yield Strength (0.1%)Hardness Fatigue Limit D Yield Ultimate Ultimate Strength Yield Strength (0.2%)Elongation (in 1in.)Young’s Modulus Poisson’s Ratio Apparent (direct)Matrix (converted)103psi 103psi 103psi %106psi 103psi ft-lb g/cm 3103psi Rockwell 103psi F-0000-10-15-20101520.........182538131825 1.52.57.014.017.020.5E 3650953635 6.16.77.3E 40HRF 6080N/A 71014F-0005-15-20-25152025.........243238182328<1.01.01.514.016.518.0E 486476345 6.16.66.9E 25HRB 4055N/A 91214F-0005-50HT-60HT-70HT.........506070607080F <0.5<0.5<0.516.517.519.0E 10512014033.54 6.66.87.0E 20HRC 222558HRC 5858232730F-0008-2020...2925<0.512.051 2.5 5.835HRB 11-2525...3530<0.514.5E 613 6.2E 50N/A 13-3030...4235<1.016.5744 6.66016-3535...5740 1.019.010057.07022F-0008-55HT...5565<0.515.01003 6.322HRC 60HRC 25-65HT...6575F <0.516.5E 1154 6.6E 286029-75HT...7585<0.518.0130 4.5 6.9326032-85HT...8595<0.519.514557.1356036ASuffix numbers represent minimum strength values in 103psi;yield in the as-sintered condition and ultimate in the heat-treated condition.B Mechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.C Tempering temperature for heat-treated (HT)materials:350°F (177°C).D Fatigue limit values are estimates derived as 38%of typical ultimate tensile strength and were not experimentally determined.E Additional data in preparation will appear in subsequent editions of this standard.F Yield and ultimate tensile strength are approximately the same for heat-treated materials.TABLE X1.2Iron and Carbon Steel (SI)P/M Material PropertiesMINIMUM VALUES ATYPICAL VALUES B MaterialDesignationCode MinimumStrength A ,CTENSILE PROPERTIES ELASTIC CONSTANTS Unnotched Charpy Impact Energy Transverse Rupture Strength Com-pressive Yield Strength (0.1%)HARDNESS Fatigue Limit 90%Survival DensityYield Ultimate Ultimate Strength Yield Strength (0.2%)Elongation (in 25.4mm)Young’s Modulus Poisson’s Ratio Macro (ap-parent)Micro (con-verted)MPa MPa MPa %GPa J MPa MPa Rockwell MPag/cm 3F-0000-107012090 1.51050.25425011040HRF 466.1-151******** 2.51200.25834021060N/A 656.7-201402601707.01600.284766013080997.3F-0005-151********<1.01050.25433020025HRB 606.1-20140220160 1.01150.25544021040N/A 806.6-25170260190 1.51350.277520220551006.9F-0005-50HT 340410<0.51150.25472030020HRC 58HRC 1606.6-60HT 410480D <0.51300.27583036022581906.8-70HT 480550<0.51400.27597042025582207.0F-0008-20140200170<0.5850.25335028035HRB 805.8-25170240210<0.51100.25442028050N/A 1006.2-30210290240<1.01150.255510290601206.6-35240390260 1.01400.277690290701707.0F-0008-55HT 380450<0.51150.25469029022HRC 60HRC 1806.3-65HT 450520D <0.51150.25579040028602106.6-75HT 520590<0.51350.27690052032602406.9-85HT590660<0.51500.277100059035602807.1ASuffix numbers represent minimum strength values in 103psi;yield in the as-sintered condition and ultimate in the heat-treated condition.B Mechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.C Tempering temperature for heat-treated (HT)materials:177°C (350°F).D Yield and ultimate tensile strength are approximately the same for heat-treatedmaterials.N OTE1—10psi56.895MPa(6.895N/mm).N OTE2—1in.525.4mm.N OTE3—1ft-lb51.356J.N OTE4—All data based on single-pass infiltration.P/M Material Properties Minimum Values A Typical Values BMaterial DesignationCode Minimum Strength A,C Tensile PropertiesTransverseRuptureStrengthUnnotchedCharpyImpactStrengthDensityCompres-siveYieldStrength(0.1%)HardnessFatigueLimit D Yield UltimateUltimateStrengthYieldStrength(0.2%)Elongation(in1in.)Young’sModulusPoisson’sRatioApparent(direct)Matrix(con-verted) 103psi103psi103psi%106psi103psi ft-lb g/cm3103psi Rockwell103psiFX-1000-2525...51327.016.0E132257.3E65HRB N/A19 FX-1005-4040...7750 4.016.0E158137.3E82HRB N/A29 FX-1005-110HT...110120F<0.516.0E21077.3E38HRC55HRC46 FX-1008-5050...8760 3.016.0E166107.3E89HRB N/A33 FX-1008-110HT...110120F<0.516.0E189 6.57.3E43HRC58HRC46 FX-2000-2525...4637 3.015.0E144157.3E66HRB N/A17 FX-2005-4545...7560 1.515.0E14887.3E85HRB N/A29 FX-2005-90HT...90100F<0.515.0E17177.3E36HRC55HRC38 FX-2008-6060...8070 1.015.0E15677.3E90HRB N/A30 FX-2008-90HT...90100F<0.515.0E15957.3E36HRC58HRC38A Suffix numbers represent minimum strength values in103psi;yield in the as-sintered condition and ultimate in the heat-treated condition.B Mechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.C Tempering temperature for heat-treated(HT)materials:350°F(177°C).D Fatigue limit values are estimates derived as38%of typical ultimate tensile strength and were not experimentally determined.E Additional data in preparation will appear in subsequent editions of this standard.F Yield and ultimate tensile strength are approximately the same for heat-treated materials.TABLE X1.4Copper Infiltrated Iron and Steel(SI)N OTE1—All data based on single-pass infiltration.P/M Material PropertiesMINIMUM VALUES A TYPICAL VALUES BMaterial DesignationCode Minimum Strength A,C TENSILE PROPERTIESELASTICCONSTANTS UnnotchedCharpyImpactEnergyTrans-verseRuptureStrengthCompres-sive YieldStrength(0.1%)HARDNESSFatigueLimit90%Survival Density Yield UltimateUltimateStrengthYieldStrength(0.2%)Elongation(in25.4mm)Young’sModulusPoisson’sRatioMarco(appar-ent)Micro(con-verted) MPa MPa MPa%GPa J MPa MPa Rockwell MPa g/cm3FX-1000-251703502207.01600.283491023065HRB N/A1337.3 FX-1005-40280530340 4.01600.2818109037082HRB N/A2007.3 FX-1005-110HT760830D<0.51600.289145076038HRC55HRC2307.3 FX-1008-50340600410 3.01600.2814114049089HRB N/A2307.3 FX-1008-110HT760830D<0.51600.289130079043HRC58HRC2807.3 FX-2000-25170320260 3.01450.242099028066HRB N/A1227.3 FX-2005-45310520410 1.51450.2411102041085HRB N/A1407.3 FX-2005-90HT620690D<0.51450.249118049036HRC55HRC1607.3 FX-2008-60410550480 1.01450.249108048090HRB N/A1607.3 FX-2008-90HT620690D<0.51450.247110051036HRC58HRC1907.3A Suffix numbers represent minimum strength values in103psi(see page2);yield in the as-sintered condition and ultimate in the heat treated condition.B Mechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.C Tempering temperature for heat treated(HT)materials:177°C(350°F).D Yield and ultimate tensile strength are approximately the same for heat-treated materials(see page3).N OTE1—10psi56.895MPa(6.895N/mm).N OTE2—1in.525.4mm.N OTE3—1ft-lb51.356J.P/M Material Properties Minimum Values A Typical Values BMaterial DesignationCodeMinimumStrength A,CTensile PropertiesTransverseRuptureStrengthUn-notchedCharpyImpactStrengthDensityCompres-siveYieldStrength(0.1%)HardnessFatigueLimit D Yield UltimateUltimateStrengthYieldStrength(0.2%)Elongation(in1in.)Young’sModulus Poisson’sRatioApparent(direct)Matrix(con-verted) 103psi103psi103psi%106psi103psi ft-lb g/cm3103psi Rockwell103psiFC-0200-1515...2520 1.013.045 4.5 6.011HRB10 -1818...2823 1.515.0E515 6.3E18N/A11 -2121...3126 1.516.556 5.5 6.62612 -2424...3429 2.018.0636 6.93613FC-0205-3030...3535<1.013.060<2 6.037HRB13 -3535...4040<1.015.0E753 6.3E48N/A15 -4040...5045<1.017.0955 6.76019 -4545...6050<1.019.511587.17223FC-0205-60HT...6070<0.514.595 2.5 6.219HRC58HRC27 -70HT...7080F<0.516.0E110 3.5 6.5E255830 -80HT...8090<0.517.5120 4.5 6.8315834 -90HT...90100<0.519.0135 5.57.0365838FC-0208-3030...3535<1.012.060<2 5.850HRB13 -4040...5045<1.015.0E902 6.3E61N/A19 -5050...6055<1.017.01255 6.77323 -6060...7565<1.020.015577.28429 FC-0208-50HT...5065<0.514.095 2.5 6.120HRC60HRC25 -65HT...6575F<0.515.5E110 3.5 6.4E276029 -80HT...8090<0.517.5130 4.5 6.8356034 -95HT...95105<0.519.5150 5.57.1436040FC-0505-30-40-50304050.........445871364756<0.5<0.5<1.012.015.017.0E7710212434.555.86.36.7E51HRB6272N/A172227FC-0508-40-50-60405060.........506882506070<0.5<0.5<1.012.515.017.5E10012014533.54.55.96.36.8E60HRB6880N/A222631FC-0808-4545...5550<0.513.0E853 6.0E65HRB N/A21 FC-1000-2020...3026<1.013.0E53 3.5 6.0E15HRB N/A11A Suffix numbers represent minimum strength values in103psi;yield in the as-sintered condition and ultimate in the heat-treated condition.B Mechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.C Tempering temperature for heat-treated(HT)materials:350°F(177°C).D Fatigue limit values are estimates derived as38%of typical ultimate tensile strength and were not experimentally determined.E Additional data in preparation will appear in subsequent editions of this standard.F Yield and ultimate tensile strength are approximately the same for heat-treated materials.TABLE X1.6Iron-Copper and Copper Steel (SI)P/M Material Properties310MINIMUM VALUES ATYPICAL VALUES BMaterial Designation CodeMinimum Strength A ,CTENSILE PROPERTIES ELASTIC CONSTANTSUnnotched Charpy Impact Emergy Trans-verse Rupture Strength Compres-siveYield Strength (0.1%)HARDNESS FatigueLimit90%SurvivalDensity YieldUltimate Ultimate Strength Yield Strength (0.2%)Elongation (in 25.4mm)Young’s Modulus Poisson’s Ratio Macro (apparent)Micro (converted)MPaMPa MPa %GPa J MPa MPa Rockwell MPa g/cm 3FC-0200-15100170140 1.0950.27631012011HRB 70 6.0-181******** 1.51150.25735014018N/A72 6.3-21140210180 1.51150.2573901602680 6.6-24170230200 2.01350.2784301803687 6.9FC-0205-30210240240<1.0950.27<341034037HRB 90 6.0-35240280280<1.01150.25452037048N/A100 6.3-40280340310<1.01200.25766039060140 6.7-45310410340<1.01500.2710790410722107.1FC-0205-60HT410480<0.51100.25366039019HRC 58HRC 190 6.2-70HT 480550D<0.51050.2557604902558210 6.5-80HT 550620<0.51300.2768305903158230 6.8-90HT 620690<0.51400.27793066036582607.0FC-0208-30210240240<1.0850.25<341039050HRB 90 5.8-40280340310<1.01150.25362043061N/A120 6.3-50340410380<1.01200.25786046073160 6.7-60410520450<1.01550.2891070490842307.2FC-0208-50HT340450<0.51050.25366040020HRC 60HRC 170 6.1-65HT 450520D<0.51200.2757605002760210 6.4-80HT 550620<0.51300.2769006303560240 6.8-95HT 660720<0.51500.277103072043602807.1FC-0505-30210300250<0.5850.25453034051HRB 114 5.8-40280400320<0.51150.25670037062N/A152 6.3-50340490390<1.01200.25785040072186 6.7FC-0508-40280400340<0.5900.25469040060HRB 152 5.9-50340470410<0.51150.25583043068N/A 179 6.3-60410570480<1.01300.276100047080217 6.8FC-0808-45310380340<0.5950.27459043065HRB N/A 144 6.0FC-1000-20140210180<1.0950.27537023015HRBN/A806.0A Suffix numbers represent minimum strength values in 103psi;yield in the as-sintered condition and ultimate in the heat-treated condition.BMechanical property data derived from laboratory prepared test specimens sintered under commercial manufacturing conditions.CTempering temperature for heat-treated (HT)materials:350°F (177°C).DYield and ultimate tensile strength are approximately the same for heat-treatedmaterials.。
粉末冶金材料标准表
公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/T14667.1-9 3F-0005-10 -20 -25 100 170 120 <1 125 25HRBN/A6.1 140 220 160 1.0 160 40 6.6 170 260 190 1.5 190 55 6.9F-0005-50HT -60HT -70HT 340 410(D)<0.5 300 20HRC58HRC6.6 410 480 <0.5 360 22 58 6.8 48055<0.5 420 25 58 7.0F-0008-20 -25 -30 -35 140 200 170 <0.5 190 35HRBN/A5.8 170 240 210 <0.5 210 506.2 210 290 240 <1.0 210 60 6.6 240 390 260 1.0 250707.0F-0008-50HT -65HT -75HT -85HT 38045<0.5S 480 22HRC60HRC6.3 450520 <0.5 55028 60 6.6 520 590 <0.5 620 32 60 6.9 590 660 <0.5 690 35 607.1烧结铁和烧结碳钢的化学成分(%).材料牌号Fe CF-0000 97.7-100 0.0-0.3F-0005 97.4-99.7 0.3-0.6F-0008 97.1-99.4 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。
▲注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为烧结铁-铜合金和烧结铜钢的化学成分(%).材料牌号Fe Cu CFC-0200 83.8-98.5 1.5-3.9 0.0-0.3FC-0205 93.5-98.2 1.5-3.9 0.3-0.6FC-0208 93.2-97.9 1.5-3.9 0.6-0.9FC-0505 91.4-95.7 4.0-6.0 0.3-0.6FC-0508 91.1-95.4 4.0-6.0 0.6-0.9FC-0808 88.1-92.4 7.0-9.0 0.6-0.9FC-1000 87.2-90.5 9.5-10.5 0.0-0.3烧结铁-镍合金和烧结镍钢的化学成分(%).材料牌号Fe Ni Cu CFN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%⊙铁-铜合金和铜钢粉末冶金材料性能(MPIF-35)材料编号最小强度(A)(E)拉伸性能横向断裂压缩屈服强度(0.1%)硬度密度<规格二-不锈钢>FTG60-25(50R)材料的力学性能。
粉末冶金材料表格
企业制造的铁基粉末冶金部件履行标准与成分性能<一 > GB/化学成分 %物理机械性能资料牌号C 化合Cu Mo Fe其余密度 D抗拉强度 ob延长率冲击韧性 a k表观硬度 HB g/cm3MPa%( 无切口 )J/cm 2F0001J≥100≤≥40烧≥≤结F0002J≤——余量≤≥≥150≥≥≤ 50铁F0003J≥≥200≥≥≥60 F0101J≥≥100≥≥≥ 50 F0102J~——余量≤≥≥150≤≥≥60烧F0103J≥≥200≥≥≥70 F0111J≥≥150≥≥≥60结F0112J~——余量≤≥≥200≥≥≥70碳F0113J≥≥250≥≥≥80钢F0121J≥≥200≥≥≥70 F0122J~——余量≤≥≥250≥≥≥80 F0123J≥≥300≥≥≥90烧结F0201J≥≥250≥≥≥90 F0202J~2~4余量≤≥≥350≥≥≥100铜钢F0203J≥≥500≥≥≥110烧结E0211J~2~4~ 余量≤≥≥400≥≥≥120铜铝钢E0212J≥≥550≤≥≥130 <二 > MPIF-35物理机械性能最小强度 (A)(E)拉伸性能压缩折服硬度资料牌号折服极限极限折服强度伸长率强度宏观微观密度强度%)%)( 表现)(表现)MPa MPa MPa%MPa洛氏g/cm3 F-0000-10701209011040HRF-1510017012012060N/A-2014026017013080 F-0005-10100170120< 112525HRB -2014022016016040N/A-2517026019019055 F-0005- 50HT340410<30020HRC58HRC-60HT410480(D)<3602258-70HT480550<4202558 F-0008-20140200170<19035HRB-25170240210<21050N/A -30210290240<21060-3524039026025070 F-0008- 50HT380450< S48022HRC60HRC -65HT450520<5502860-75HT520590<6203260-85HT590660<6903560烧结铁和烧结碳钢的化学成分(%).烧结铁 - 铜合金和烧结铜钢的化学成分(%).烧结铁 - 镍合金和烧结镍钢的化学成分(%).资料牌号Fe C资料牌号Fe Cu C资料牌号Fe Ni Cu C F-0000FC-0200FN-0200注: 用差减法求出的其余元素殊目的而增添的其余元素( 包含为了特) 总量的最大值为 %。
粉末冶金材料标准表
公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93<二> MPIF-351 / 12烧结铁和烧结碳钢的化学成分(%).材料牌号Fe CF-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大烧结铁-铜合金和烧结铜钢的化学成分(%).材料牌号Fe Cu CFC-0200 83.8-98.5 1.5-3.9 0.0-0.3FC-0205 93.5-98.2 1.5-3.9 0.3-0.6FC-020893.2-97.9 1.5-3.9 0.6-0.9FC-0505 91.4-95.7 4.0-6.0 0.3-0.6FC-0508 91.1-95.4 4.0-6.0 0.6-0.9FC-0808 88.1-92.4 7.0-9.0 0.6-0.9烧结铁-镍合金和烧结镍钢的化学成分(%).材料牌号Fe Ni Cu CFN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.92 / 12值为2.0%。
▲注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。
FC-1000 87.2-90.5 9.5-10.5 0.0-0.3注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35)3 / 12铁-镍合金和镍钢粉末冶金材料性能(MPIF-35) ↑上一页4 / 12⊙不锈钢系列粉末冶金制品执行标准与典型牌号的成分和性能-不锈钢(MPIF-35)5 / 12⊙铜基系列粉末冶金制品执行标准成分与性能-铜基 (GB2688-81)6 / 12⊙<三> "DIN V 30 910" 及 "ISO5755" (成分与性能略)⊙烧结铝镍钴永磁合金的磁特性及其它物理特性7 / 12< 規格二 - 不銹鋼 >Type Chemical Composition (%) Physical Mechanical Properties8 / 129 / 1210 / 1211 / 1212 / 12FTG60-25(50R) 材料的物理性能FTG60-25(50R) 材料的力学性能。
粉末冶金材料标准表
(公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/<二> MPIF-35烧结铁和烧结碳钢的化学成分(%).;材料牌号Fe CF-0000-注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%。
▲注: 用差减法求出的其它元素(包括为了特烧结铁-铜合金和烧结铜钢的化学成分(%).材料牌号Fe Cu C~FC-0200(;,烧结铁-镍合金和烧结镍钢的化学成分(%).#材料牌号Fe Ni Cu CFN-0200`#、注: 用差减法求出的其它元素(包括为了特殊殊目的而添加的其它元素)总量的最大值为%。
\&目的而添加的其它元素)总量的最大值为%⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35)材料编号最小强度(A)(E){拉伸性能横向断裂压缩屈服强度%)硬度密度屈服极限'极限强度屈服强度%)伸长率宏观(表现)微观(换算的)MPa MPa MPa%MPa MPa络氏…g/cm3FC-0200-15-18-21-24 100170140310&12011HRBN/A 120190~16035014018|14021018039016026170230200/43018036FC-0205-30-35-40-45 210<240240< 41034037HRBN/A 240280280< 520370|48280340310…<66039060310410340< 79041072.FC-0205-60HT 410480< 660《19HRC58HRC—铁-镍合金和镍钢粉末冶金材料性能(MPIF-35)↑上一页⊙不锈钢系列粉末冶金制品执行标准与典型牌号的成分和性能-不锈钢(MPIF-35)⊙铜基系列粉末冶金制品执行标准成分与性能-铜基 (GB2688-81)<三> "DIN V 30 910" 及 "ISO5755" (成分与性能略)⊙烧结铝镍钴永磁合金的磁特性及其它物理特性< 規格二 - 不銹鋼 >TypeChemical Composition (%) Physical Mechanical PropertiesFe《Cr Ni Cu Tin Si Mn Mo C&SOther Density(g/cm3)UltimateTensileStrength(kg/mm2)Elong-ation(%)Hard-nessSUS303LSC bal 《–<】< > 20 Min.FTG60-25(50R) 材料的力学性能。