九年级二次函数专题训练精华版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:二次函数的图象与性质

本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.

考点1.二次函数图象的对称轴和顶点坐标

二次函数的图象是一条抛物线,它的对称轴是直线x=- ,顶点坐标是(- ,).

例1 已知,在同一直角坐标系中,反比例函数与二次函数的图像交于点.

(1)求、的值;

(2)求二次函数图像的对称轴和顶点坐标.

考点2.抛物线与a、b、c的关系

抛物线y=ax2+bx+c中,当a>0时,开口向上,在对称轴x=- 的左侧y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当a<0时,开口向下,在对称轴的右侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.

例2 已知的图象如图1所示,则的图象一定过()

A.第一、二、三象限B.第一、二、四象限

C.第二、三、四象限D.第一、三、四象限

考点3.二次函数的平移

当k>0(k<0)时,抛物线y=ax2+k(a≠0)的图象可由抛物线y=ax2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a(x-h)2(a≠0)的图象可由抛物线y=ax2向右(或向左)平移|h|个单位得到.

例3 把抛物线y=3x2向上平移2个单位,得到的抛物线是()

A.y=3(x+2)2

B.y=3(x-2)2

C.y=3x2+2

D.y=3x2-2

专题复习二:二次函数表达式的确定

本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.

考点1.根据实际问题模型确定二次函数表达式

例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园,设边长为米,则菜园的面积(单位:米)与(单位:米)的函数关系式为(不要求写出自变量的取值范围).

考点2.根据抛物线上点的坐标确定二次函数表达式

1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);

2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);

3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).

例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.

例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).

(1)求该抛物线的解析式;

(2)求该抛物线的顶点坐标.

专项练习二

1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为()

A.y=2a(x-1)

B.y=2a(1-x)

C.y=a(1-x2)

D.y=a(1-x)2

2.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO= ,CO=BO,AB=3,则这条抛物线的函数解析式是.

3.对称轴平行于y轴的抛物线与y轴交于点(0,-2),且x=1时,y=3;x=-1时y=1,

求此抛物线的关系式.

4.推理运算:二次函数的图象经过点,,.

(1)求此二次函数的关系式;

(2)求此二次函数图象的顶点坐标;

(3)填空:把二次函数的图象沿坐标轴方向最少平移个单位,使得该图象的顶点在原点.

专题三:二次函数与一元二次方程的关系

本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x轴的交点个数等,题型主要填空题、选择题和解答题.

考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围

一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.

例1 根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c,为常数)的一个解的范围是()

6.17 6.18 6.19 6.20

A.B.

C.D.

考点2.根据二次函数的图象确定所对应的一元二次方程的根.

二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.

例2 已知二次函数y=-x2+3x+m的部分图象如图1所示,则关于x的一元二次方程-x2+3x+m=0的解为________.

考点3.抛物线的交点个数与一元二次方程的根的情况

当二次函数y=ax2+bx+c的图象与x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根;当二次函数

y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+bx+c的图象与x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根.反之亦然.

例3 在平面直角坐标系中,抛物线与轴的交点的个数是()

A.3

B.2

C.1

D.0

专项练习三

1.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是________.

2.已知二次函数的部分图象如图2所示,则关于的一元二次方程的解为.

3.已知函数的图象如图3所示,那么关于的方程的根的情况是()

A.无实数根

B.有两个相等实数根

C.有两个异号实数根

D.有两个同号不等实数根

4. 二次函数的图象如图4所示,根据图象解答下列问题:

(1)写出方程的两个根.

(2)写出不等式的解集.

(3)写出随的增大而减小的自变量的取值范围.

(4)若方程有两个不相等的实数根,求的取值范围.

专题四:利用二次函数解决实际问题

本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.

解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.

例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场

相关文档
最新文档