怎样把梁柱配筋和轴压比调到最佳
关于轴压比的建议
![关于轴压比的建议](https://img.taocdn.com/s3/m/99ca30781fd9ad51f01dc281e53a580217fc504b.png)
关于轴压比的建议还给出我的三点建议:1.为了保证必要的延性,控制轴压比是非常有益的;为了给自己省去许多计算上的麻烦,建议不要采用接近1.0的轴压比,(往往通不过);2.在轴压比较高的情况下(大于0.9),如果算得的配筋率较高(如单侧大于1.5%),实际配筋可以降低1~2级(每级0.25%)采用,可以在保证了实际的承载力,又不影响延性的情况下,使截面"强剪弱弯"。
3.在轴压比较低的情况下(如0.7左右),实际配筋均较计算配筋提高1级(每级0.25%)采用,以提高截面承载力,同时也可保证"强剪弱弯"。
取900X900,1000X1000,1100X1100三种截面,考虑C40的混凝土,二级钢筋,依次取0.25%,0.5%,0.75%,....至2%(单侧)的配筋率,在设计强度和标准强度两种指标下,分别计算它们在轴心受压,界限破坏,纯弯破坏的承载力;简化N-M曲线为过这三点的折线后,再分别计算在16000KN的设计值,13000KN的标准值(与16000KN的设计值相当)的作用下,它们的所能承受的弯矩;声明一下,按我所取的设计值,对900X900的截面轴压比接近1,对1000X1000的截面轴压比接近0.8,对1100X1100的截面轴压比接近0.67;经过比较,可以得出如下结论:1.控制轴压比可以提高柱的抗弯能力.2.按标准荷载,标准强度计算时,均为大偏心受压(可能我在折算标准荷载时所取系数要大一些),在相同配筋率的情况下,大一级的截面比小一级的要大1/5左右(增大的qun式随配筋率的增大有所增大);但相同配筋量的情况下增大不显著,两者相差不多,只有1/8~9的差别.3.按设计强度,设计荷载计算时,均为小偏心受压.在此情况下,计算的抗弯矩值无论在相同配筋率还是相同配筋量的情况下的情况下都显著增大,增大1/2左右,在低配筋率时可达2/3强.4.按标准强度计算的抗弯值都大于纯弯承载力;而按设计值计算时有所不同,当轴压比接近1时,抗弯能力都低于纯弯状态,当轴压比较小时,抗弯能力都远大于纯弯状态,且低配筋时就有很大抗弯能力.如0.25%的1mX1m的截面抗弯能力相当于1%的0.9mX0.9m的截面,0.25%的1.1mX1.1m的截面抗弯能力相当于2%的0.9mX0.9m的截面, 5.比较相同截面下,按标准值与设计值计算的结果,还可以得出一条重要的结论: 轴压比为1时的抗弯能力被严重低估了!在相同配筋率情况下,轴压比为1时,在配筋率从0.25~2%增大时,设计值为标准值的0.15~0.53;轴压比为0.8时,在配筋率从0.25~2%增大时,设计值为标准值的0.55~0.75;轴压比为0.67时,在配筋率从0.25~2%增大时,设计值为标准值的0.92~0.96;。
浅谈结构计算中几个重要参数的调整方法
![浅谈结构计算中几个重要参数的调整方法](https://img.taocdn.com/s3/m/8504e9bfdd3383c4bb4cd272.png)
浅谈结构计算中几个重要参数的调整方法摘要:为保证钢筋混凝土结构的科学性与合理性,对结构计算结果的正确判断与调整是设计中的关键。
以下针对规范中对轴压比、周期比、层间位移角、位移比、刚度比、层间受剪承载力比、刚重比、剪重比等几个重要参数的规定,提出最佳的调整方法,与同行探讨。
关键词:钢筋混凝土结构;结构计算;参数调整Will: to ensure the reinforced concrete structure more scientific and reasonable structure calculation results of the judging correctly and adjustment of the design is the key. The following for specification to axial compression ratio, cycle of displacements Angle than, than, stiffness ratio, the displacement between layers, shear bearing capacity, and just weight than, cut the heavy than than the provisions of several important parameters, put forward the best adjustment method, and peer discussion.Keywords: reinforced concrete structure; Structure calculation; Parameters adjustment1 轴压比主要为控制结构延性。
规范对墙肢和柱均有相应限值要求,见GB50011-2010《建筑抗震设计规范》(以下简称《抗规》)6.3.6和6.4.2。
梁板最小配筋率以及梁配筋率实例和柱子轴压比
![梁板最小配筋率以及梁配筋率实例和柱子轴压比](https://img.taocdn.com/s3/m/6283a4c3aa00b52acfc7ca55.png)
框架柱轴压比建筑结构设计术语。
它的规范定义如下:轴压比的定义为柱的轴向压力与理论抗压强度的比值。
公式是N/(fc*A)。
N为柱的轴压力,fc为砼抗压强度设计值,A为柱的截面面积。
轴压比一般在0.6至0.95之间。
通俗一点说,就是柱子可能受的力大小和柱子最大能承受的力的比值。
相当于安全系数的倒数。
轴压比越大,越不安全,抗震能力越差。
同时也越省材料,节省造价。
建筑抗震设计规范(50011-2001)中6.3.7和混凝土结构设计规范(50010-2002)中11.4.16都对柱轴压比规定了限制,限制轴压比主要是为了控制结构的延性。
轴压比越大,柱的延性就越差,在地震作用下柱的破坏呈脆性。
简单地说,柱轴压比越大,配筋也相应会很大。
往往柱轴压比接近规范限值,虽说没超过规范限值,但钢筋会很大,不如将柱子再加大一级,一般50mm为一级。
轴压比很小,说明柱截面大了,在没有其它要求情况下,可以减少柱截面。
一般在抗震设计中,要控制轴压比的上限,也就是要控制柱的轴力不能太大,过大的话要通过加大柱的面积来减小轴压比以满足规范限值。
轴压比是抗震概念设计的一项指标。
它不是通过理论计算得出的,而是通过试验及实际地震破坏情况,发现轴压比低的柱子延性比较好,地震的破坏程度远小于轴压比高的柱子。
因此规范设置了轴压比上限,以保证柱子的延性,提高抗震性能。
梁的配筋率怎么计算:二:梁截面为250X650,上部配筋为2根18,下部为3根16,另外还有4根12的构造筋,箍筋为8@100/200。
上部配筋【4+(0.4-保护层厚度+15D)*2】*3下部【(4+(0.4-保护层+12D)*2】*3构造筋同下部钢筋箍筋单长(0.25+0.5)*2-8*保护层+2*11.9d+8d根数(加密区/间距+1)*2+(非加密区/间距—1)加密区长度为0.5h=0.5*0.5(h为梁高)就是这样。
老预算员们总结出来的,现在都用这种方法,2楼那种太麻烦了,分一定要给我哦,我把师傅真传的都给你了。
高层结构设计需要控制的七个比值及调整方法
![高层结构设计需要控制的七个比值及调整方法](https://img.taocdn.com/s3/m/a8b8bea027284b73f342506a.png)
高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SA TWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
PKPM中七个比的控制和调整
![PKPM中七个比的控制和调整](https://img.taocdn.com/s3/m/a0a136ec6f1aff00bed51eef.png)
高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5,高规 6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:剪重比是规范考虑长周期结构用振型分解反应谱法和底部剪力法计算时,因地震影响系数取值可能偏低,相应计算的地震作用也偏低,因此出于安全考虑,规范规定了楼层水平地震剪力得最小值.若楼层水平地震剪力小于规范对剪重比的要求,水平地震剪力的取值应进行调整,主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规4.3.12。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.3,高规3.5.2;对于形成的薄弱层则按高规3.5.8,抗规3.4.4予以加强。
高层结构设计的参数及调整方法
![高层结构设计的参数及调整方法](https://img.taocdn.com/s3/m/554aaaad524de518964b7de5.png)
高层结构设计的参数及调整方法
的合理布置,设计过程中主要通过对一些目标参数的控制来达到这一目的。
一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求。
见抗规6.3.7和6.4.6,高规6.4.2和7.2.14及相应的条文说明。
轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足规范要求时的调整方法:
1、程序调整:SATWE程序不能实现。
2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。
见抗规5.2.5,高规3.3.13及相应的条文说明。
剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪重比不满足规范要求时的调整方法:。
结构设计中各种比的定义及调整方法
![结构设计中各种比的定义及调整方法](https://img.taocdn.com/s3/m/6471fd96c67da26925c52cc58bd63186bceb92b1.png)
结构设计中各种比的定义及调整方法1、轴压比:结构形式和抗震等级是直接影响轴压比限值的主要因素。
在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,与柱子的不一样。
主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.2,.高规6.4.2和7.2.13及相应的条文说明轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长结构的安全,见抗规5.2.5,高规4.3.12及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙,柱截面,提高刚度。
2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放人系数”中输入大于l的系数增人地震作用,以满足剪重比要求。
3、侧向刚度比:主要为限制结构竖向布置的不则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.3,高规3.5.2及相应的条文说明;对于形成的薄弱层则按高规3.5.8予以加强。
刚度比小满足时的调整力法:。
1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE 自动将该楼层定义为薄弱层,并按高规3.5.8将该楼层地震剪力放大1.25倍。
高层建筑结构设计调整方法(新规范)
![高层建筑结构设计调整方法(新规范)](https://img.taocdn.com/s3/m/81bad827dd36a32d7375810e.png)
高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5,高规6.4.2和7.2.13。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规4.3.1 3。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.3,高规3.5.2;对于形成的薄弱层则按高规3.5.8予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规3.5.8将该楼层地震剪力放大1.25倍(1.25需在SATWE调整信息中定义)。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
混凝土柱的轴压比
![混凝土柱的轴压比](https://img.taocdn.com/s3/m/86b1cb7ae55c3b3567ec102de2bd960591c6d95f.png)
混凝土柱的轴压比混凝土柱的轴压比是指混凝土柱的承载能力与其材料强度的比值,是设计工程师在设计混凝土柱时必须要考虑的重要因素之一。
下面就混凝土柱的轴压比从多个角度进行阐述。
一、如何计算混凝土柱的轴压比?计算混凝土柱的轴压比需要知道混凝土柱的承载能力和其材料强度。
其中柱子的承载能力又可以分为两种情况,分别是直接受力与弯曲受力时的承载能力。
对于直接受力的情况,计算轴压比的公式为N/Ag,其中N为柱子的承载能力,单位为牛顿,Ag为柱截面积,单位为平方米。
对于弯曲受力情况,则需要进行极限状态设计,按照规范计算其轴压比。
二、混凝土柱的轴压比的影响因素1. 混凝土的强度:混凝土的强度直接影响柱子的材料强度,即柱子的承载能力。
2. 钢筋配筋方式:混凝土柱中的钢筋配筋方式不同,其承载能力也会不同,从而影响其轴压比。
3. 底部弯矩:底部受弯矩时,混凝土柱的承载能力会下降,进而降低其轴压比。
4. 高宽比:混凝土柱的高宽比越大,其轴压比也相应越小。
5. 柱截面形状:柱截面形状不同,其承载能力也会不同,从而影响其轴压比。
三、混凝土柱的轴压比与安全性之间的关系混凝土柱的轴压比越小,代表了柱子的安全性越高。
因为如果混凝土柱的轴压比超过一定的值,就可能发生杆件屈曲,从而使柱子失去承载能力,造成人员伤亡和财产损失。
四、如何提高混凝土柱的轴压比为了提高混凝土柱的轴压比,可以从以下几个方面入手。
1. 优化混凝土配合比:通过合理的混凝土配合比,提高混凝土的强度,进而提高混凝土柱的轴压比。
2. 合理设计钢筋配筋方案:通过合理的钢筋配筋方案,增加混凝土柱的承载能力,从而提高其轴压比。
3. 控制柱截面形状:通过合理的柱截面形状设计,提高混凝土柱的承载能力,进而提高其轴压比。
综上所述,混凝土柱的轴压比是设计混凝土柱时需要考虑到的重要因素之一,同时其与柱子的安全性息息相关。
为了提高混凝土柱的轴压比,设计工程师需要在混凝土配合比、钢筋配筋方案、柱截面形状等方面进行合理的优化设计,从而保障工程安全。
混凝土柱轴压比不足的加固方法
![混凝土柱轴压比不足的加固方法](https://img.taocdn.com/s3/m/80dc5e292f3f5727a5e9856a561252d381eb201e.png)
混凝土柱轴压比不足的加固方法说实话混凝土柱轴压比不足的加固方法这事儿,我一开始也是瞎摸索。
我最开始想到的就是增大混凝土截面法。
这就好比给人穿厚衣服,让他看起来更壮实一样。
我就开始在原来的柱子周围再浇筑一层混凝土。
不过这里面可麻烦着呢。
首先得把原来柱子表面给清理干净,就像你给东西打补丁得先把脏东西弄掉一样,要把上面的浮浆啊、杂物啊都清除得干干净净的才行。
我当时就因为没清理好,结果新老混凝土贴合得不好,差点就失败了。
然后就是支模板,这可不能马虎啊,得保证支得规规矩矩的,不然浇出来的截面形状就不对了。
浇混凝土的时候也要控制好配比,就像做饭放调料得比例合适一样,水泥、沙、石子还有水的比例要是没调好,那混凝土的强度就达不到要求。
后来,我又试了外包型钢加固法。
这就好比给柱子穿上一身钢铠甲。
先是选择合适的型钢,你不能图便宜弄那些质量不好的。
我之前试过一次便宜的型钢,结果那强度根本就不行,后来又得返工重新做。
选好型钢就得把型钢紧紧地和柱子固定在一起,通常会用到胶水或者螺栓什么的。
这过程中,要特别注意那些接口的部分,一定要处理得很细致,就像系鞋带得系紧了一样,要让力能够很好地传递。
还有一个我没怎么实操但是研究过的办法,粘贴纤维复合材加固法。
这就好像给柱子贴上强力胶布来增强它的力量。
不过这个对操作环境要求还挺高的,比如粘贴的基层得干燥清洁,我就不确定实际操作起来会不会遇上天气不好的时候该咋办,我就怕到时候粘贴不牢固。
反正呢,在处理混凝土柱轴压比不足的加固过程中,每一步都得小心谨慎,而且要多做检查,这样才能保证加固的效果。
不管是哪种方法,前期的准备工作和一些细节处理真的特别重要,一不小心就会出问题,我可是吃了不少亏才明白这些的呢。
怎样把梁柱配筋和轴压比调到最佳(结构设计经验心得)
![怎样把梁柱配筋和轴压比调到最佳(结构设计经验心得)](https://img.taocdn.com/s3/m/00c36066783e0912a2162ae9.png)
怎样把梁柱配筋和轴压比调到最佳结构新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。
如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。
以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。
但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。
这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
(1)振型组合数是软件在做抗震计算时考虑振型的数量。
该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。
《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。
一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。
振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。
具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。
必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。
例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。
PKPM中七个比的控制与调整
![PKPM中七个比的控制与调整](https://img.taocdn.com/s3/m/8c3ae133482fb4daa58d4b75.png)
PKPM中七个比的控制和调整1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
4、位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。
高层结构设计的控制参数及调整方法
![高层结构设计的控制参数及调整方法](https://img.taocdn.com/s3/m/d84deacdfd0a79563d1e7201.png)
一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求。
见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。
轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足规范要求时的调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。
见抗规5.2.5,高规3.3.13及相应的条文说明。
剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪重比不满足规范要求时的调整方法:1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整:1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
2、结构调整:当剪重比偏小且与规范限值相差较大时,宜调整增强竖向构件,加强墙、柱等竖向构件的刚度。
刚重比的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
结构设计中高层建筑需控制的“六个比值” 及调整方法
![结构设计中高层建筑需控制的“六个比值” 及调整方法](https://img.taocdn.com/s3/m/6d467656336c1eb91a375d4c.png)
结构设计中高层建筑需控制的“六个比值” 及调整方法[摘要] 本文介绍了高层结构设计中需控制的“六个比值” 轴压比、剪重比、刚度比、位移比、周期比和刚重比及各比值不满足规范要求时如何进行调整,文中对“六个比值”的理解进行了说明和介绍。
[关键词] 高层建筑六个比值调整方法随着我国社会经济的迅猛发展,越来越多的高层建筑像雨后春笋一样在全国各地拔地而起。
本文对高层结构设计中需控制的“六个比值”进行了较详细的说明和介绍。
1.六个比值1.1轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求。
轴压比是指有地震作用组合的柱组合轴压力设计值与柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之一。
轴压比限值的依据是理论分析和试验研究并参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。
1.2 剪重比:主要为控制各楼层最小地震剪力,确保结构安全性。
规范上虽然没有明确要求6度区剪重比的控制,但一般经验还是按0.008的楼层最小剪力系数值考虑。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
1.3刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。
1)新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2。
2)高规的4.4.2条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;3)高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;4)高规的10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。
PKPM几个比值的控制与调整
![PKPM几个比值的控制与调整](https://img.taocdn.com/s3/m/db91414d767f5acfa1c7cd8e.png)
PKPM中七个比值的控制和调整1、轴压比:查看: 混凝土构件配筋及钢结构验算简图调整标准: 抗规6.3.7和6.4.6,高规6.4.2和7.2.14 。
主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、周期比:查看:WZQ.OUT调整标准:高规4.3.5, A级扭转第一周期不应大于平动第一周期的0.9,B级不应大于0.85。
主要为控制结构扭转效应,减小扭转对结构产生的不利影响,见高规4.3.5。
周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,结构扭转效应过大。
周期比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:只能通过人工调整改变结构布置,提高结构的扭转刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度。
第一或第二振型为扭转时的调整方法:1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
3)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)方向的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
4)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。
5)在进行上述调整的同时,应注意使周期比满足规范的要求。
结构设计中的8个参数比(超限)调节方法
![结构设计中的8个参数比(超限)调节方法](https://img.taocdn.com/s3/m/12e7d0b4a58da0116d174933.png)
结构设计中的几个参数比1.轴压比目的:控制构件保持一定延性。
保证柱(墙)的塑性变形能力和保证结构的抗倒塌能力。
要求:详见规范(抗规柱6.3.6、墙6.4.5和混规柱11.4.16、墙11.7.16&17),限制各等级的剪力墙和框架(支)柱轴压比;注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架(支)柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。
调节方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2.扭转周期比目的:周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。
一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性要求:规范规定(高规3.4.5):结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85振型判别方法:振型方向因子来判断,因子以50%作为分界。
注意:全国超限建筑抗震设防中,对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。
调节方法:一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。
周期比不满足要求说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。
3.有效质量参与系数目的:保证考虑充足的地震作用。
要求:详见规范(抗规5.2.2条文及高规5.1.13)计算振型数应使各振型参与质量之和不小于总质量的90%。
调节方法:增加计算参与的振型数量。
4.刚重比目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。
要求:详见规范(高规5.4)重力二阶效应及结构稳定注意:此处重力为重力荷载设计值,取1.2恒+1.4活。
PKPM中七个比的控制和调整高层
![PKPM中七个比的控制和调整高层](https://img.taocdn.com/s3/m/9ab52133964bcf84b8d57b21.png)
我新开的小店,有空光顾哈(开业初期不追求利润,只赚信誉):/多种CAD插件(拉移随心,雨夜屠夫墙柱工具,配筋助手等)购买网址:/item.htm?spm=a1z10.1.w4023-3707511177.2.euqMwZ&id=22448099065PKPM中七个比的控制和调整1、轴压比:查看: 混凝土构件配筋及钢结构验算简图调整标准: (抗规2010第62页表6.3.6),高规2010第66页表6.4.2主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见2010抗规6.3.6和6.4.5,高规2010 6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、周期比:查看:WZQ.OUT调整标准:高规2010第3.4.5条, A级扭转第一周期不应大于平动第一周期的0.9,B级不应大于0.85主要为控制结构扭转效应,减小扭转对结构产生的不利影响,见高规4.3.5。
周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,结构扭转效应过大。
周期比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:只能通过人工调整改变结构布置,提高结构的扭转刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度。
第一或第二振型为扭转时的调整方法:1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
3)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)方向的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
4)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。
柱子轴压比超限怎么办?[文档首发]
![柱子轴压比超限怎么办?[文档首发]](https://img.taocdn.com/s3/m/c836fa55fd0a79563d1e72e6.png)
柱子轴压比超限怎么办? [优良文档首发]轴压比是结构设计中另一个特别关怀的参数。
这里的轴指的是柱子的轴力,压指的是柱子的混凝土的抗压强度,轴压比的计算公式为N/(fc·b·h0),这里N是柱子的轴力,fc指的是柱子的混凝土的抗压强度,b和h0分别为截面的宽度和高度。
跟着柱子的轴压比增添,柱子的延性变差。
为保证结构的延性,抗震规范中关于轴压比有明确的限值,以下表所示。
假如抗震验算中,轴压比超出限值怎么办?能够考虑以下方法:(1)加大柱子截面面积由轴压比的计算公式能够看出,加大截面高度和宽度,即截面面积,轴压比能够降低。
关于多层框架结构,能够经过增添截面面积的方法来减小轴压比。
可是,关于高层建筑结构,房子高度大、层数多、柱距大,单柱轴向力很大,增大截面面积会增添自重和资料耗费,并且阻碍建筑功能。
(2)采纳高强度混凝土由轴压比的计算公式知,增添混凝土的强度fc,轴压比能够降低。
与采纳C40的框架柱对比,采纳C60~C80的高强混凝土,能够减小柱截面面积30%左右。
目前,C60混凝土已经宽泛采纳,并获得了优秀的经济效益。
(3)采纳型钢混凝土型钢混凝土柱截面含钢面积5%~10%,可使柱截面面积减小 30%~40%,由于型钢骨架对钢结构的制作、安装能力要求较高,所以,目前许多用在高层建筑的基层部位柱,转投层以下的支柱;也有少量工程所有采纳型钢混凝土梁和柱。
(4)采纳钢管混凝土钢管混凝土可使柱混凝土处于有效侧向拘束下,形成三向应力状态,因而延性很大,承载力提升好多。
钢管的壁厚一般为柱直径的1/100~1/70。
钢管混凝土柱如采纳高强混凝土浇筑,能够使柱截面减小至原截面面积的50%左右。
但目前某些钢管混凝土柱与钢筋混凝土梁的节点结构较难知足8度设防的抗震,设计时应重视。
需要注意的是,关于型钢混凝土柱轴压比计算公式为N/(fc A+faAa).此中,N为考虑地震组合的柱轴向力设计值,A为扣除型钢后的混凝土截面面积,Aa为型钢的截面积,fc和fa 分别为混凝土的轴心抗压强度设计值和型钢的抗压强度设计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样把梁柱配筋和轴压比调到最佳新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。
如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。
以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。
但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。
这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
1.1振型组合数是软件在做抗震计算时考虑振型的数量。
该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。
《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。
一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。
振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。
具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。
必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。
例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。
如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。
1.2最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。
设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。
1.3结构基本周期是计算风荷载的重要指标。
设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。
上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。
2.确定整体结构的合理性整体结构的科学性和合理性是新规范特别强调内容。
新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
2.1周期比是控制结构扭转效应的重要指标。
它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。
也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。
《高规》第 4.3.5条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。
如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。
设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。
以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。
同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。
2.2位移比(层间位移比)是控制结构平面不规则性的重要指标。
其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。
需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。
在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。
此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。
2.3刚度比是控制结构竖向不规则的重要指标。
根据《抗震规范》和《高规》的要求,软件提供了三种刚度比的计算方式,分别是剪切刚度,剪弯刚度和地震力与相应的层间位移比。
正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键:2.3.1剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;2.3.2剪弯刚度主要用于底部大空间为多层的转换结构;2.3.3地震力与层间位移比是执行《抗震规范》第 3.4.2条和《高规》4.3.5条的相关规定,通常绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。
2.4层间受剪承载力之比也是控制结构竖向不规则的重要指标。
其限值可参考《抗震规范》和《高规》的有关规定。
2.5刚重比是结构刚度与重力荷载之比。
它是控制结构整体稳定性的重要因素,也是影响重力二阶效的主要参数。
该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。
2.6剪重比是抗震设计中非常重要的参数。
规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。
而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,但采用振型分解法时无法对此作出准确的计算。
因此,出于安全考虑,规范规定了各楼层水平地震力的最小值,该值如果不满足要求,则说明结构有可能出现比较明显的薄弱部位,必须进行调整。
除以上计算分析以外,设计软件还会按照规范的要求对整体结构地震作用进行调整,如最小地震剪力调整、特殊结构地震作用下内力调整、0.2Q0调整、强柱弱梁与强剪弱弯调整等等,因程序可以完成这些调整,就不再详述了。
3对单构件作优化设计前几步主要是对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。
3.1软件对混凝土梁计算显示超筋信息有以下情况:1)当梁的弯矩设计值M大于梁的极限承载弯矩Mu时,提示超筋;2)规范对混凝土受压区高度限制:四级及非抗震:ξ≤ξb二、三级:ξ≤0.35(计算时取AS ’=0.3 AS)一级:ξ≤0.25(计算时取AS ’=0.5 AS)当ξ不满足以上要求时,程序提示超筋;3)《抗震规范》要求梁端纵向受拉钢筋的最大配筋率 2.5%,当大于此值时,提示超筋;4)混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。
3.2剪力墙超筋分三种情况:3.2.1剪力墙暗柱超筋:软件给出的暗柱最大配筋率是按照4%控制的,而各规范均要求剪力墙主筋的配筋面积以边缘构件方式给出,没有最大配筋率。
所以程序给出的剪力墙超筋是警告信息,设计人员可以酌情考虑;3.2.2剪力墙水平筋超筋则说明该结构抗剪不够,应予以调整;3.2.3剪力墙连梁超筋大多数情况下是在水平地震力作用下抗剪不够。
规范中规定允许对剪力墙连梁刚度进行折减,折减后的剪力墙连梁在地震作用下基本上都会出现塑性变形,即连梁开裂。
设计人员在进行剪力墙连梁设计时,还应考虑其配筋是否满足正常状态下极限承载力的要求。
3.3柱轴压比计算:柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第 6.3.7条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第 6.4.2条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。
软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。
因此设计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。
3.4剪力墙轴压比计算:为了控制在地震力作用下结构的延性,新的《高规》和《抗震规范》对剪力墙均提出了轴压比的计算要求。
需要指出的是,软件在计算断指剪力墙轴压比时,是按单向计算的,这与《高规》中规定的短肢剪力墙轴压比按双向计算有所不同,设计人员可以酌情考虑。
3.5构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的德条件下截面的大小和形状合理,并节省材料。
但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。
4.满足规范抗震措施的要求在施工图设计阶段,还必须满足规范规定的抗震措施要求。
《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,这些措施是很多震害调查和抗震设计经验的总结,也是保证结构安全的最后一道防线,设计人员不可麻痹大意。
4.1设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。
4.2生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。
软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。
4.3施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。
规范这一部分的要求往往是以黑体字写出,属于强制执行条文,万万不可以掉以轻心。
4.4最后设计人员还应根据工程的实际情况,对计算机生成的配筋结果作合理性审核,如钢筋排数、直径、架构等,如不符合工程需要或不便于施工,还要做最后的调整计算次梁与主梁搭接时建模考虑其实关于这个问题,一直以来都在争论,当前主要有2种做法:4.4.1按铰接处理,在计算模型中将次梁端部约束释放。