鱼菜共生系统的建立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鱼菜共生系统的建立
鱼菜共生技术就是一项涉及到微生物、植物、鱼三者共营共生的技术,利用三者间的生态关系实现能量物质间的可循环可持续动态发展,达到一种仿自然生态而胜于自然的生态的人工系统,在建立这样的系统时要考虑到三者之间生物种类、及生物量之比例,从而达到一种最佳的生态组合。
为了使三者间都有一个良好的互生环境,硬件设施的建设就是基础,软件的调控就是关键,物种
的选择就是达到成功共生的重要环节。在生产上可以根据上述原则去构建相关的设施设备与鱼种选择、微生物的培养。
开发鱼菜共生系统达到最适的生态平衡与最佳的经济回报,需考虑到以下几个方面。
第一步,在光照充足,水源保障,电力交通方便的地方选择基地,最适就是在郊区或城市空旷地带,可以更贴近市场,便于产品的直销上市,减少中间运输环节,也可以改变传统长途运输对鱼菜产品新鲜度及质量的影响,得以发挥近郊农业的地域优势与市场优势,也就是对城市农业水资源运用的最经济生产模式,以往在城区或郊区常因水资源的制约而难以进行水产养殖,而鱼菜共生具有用水量极省,循环利用率高特点,完全可利用饮用水进行洁净化无污染之生产,就是普通养殖业用水量的10%,种植用水量的1/3,也就就是该系统几乎可以实现水的100%利用,除了自然蒸发与植物蒸腾耗水外,系统的运行没有任何浪费,就是节水集约型农业生产模式,更就是适合城市发展的都市农业项目。
第二步,确定种养殖的面积与比例,种养殖的面积与比例关系到物种间的生态平衡关系,也就就是物质能量循环利用的最佳比例,适合的比例就是系统成功运行之关键,比方说,多少鱼排出的粪便能为多少菜提供养分,什么微生物种类的培育能够对水质净化产生最佳的生态效果,这些就是三者间共生关系建立的前提,也就是该系统最为核心的技术基础。
虽然目前,有许多地方也进行着工业化养鱼,但它们主要依靠物理与化学净化水质的方法来实现净化,与达到高密度的目的,设备设施与运行的成本极高,难以让普通业主所接受,存在的养殖成本高,市场竞争力弱的问题,而引进植物与微生物参予系统共建时,就可以发挥微生物的强大分解能力来处理分解水中的有机物及转化对鱼生存影响较大的氨氮,可以启动植物庞大的根系表面积来吸收吸附分解后可利用吸收的矿物质,从而达到水中残留物及有害物的及时转化与生物净化,为鱼的高密度养殖提供可循环利用的水资源,达到节水节能节料的目的。按照一立方水体配置14平方米的蔬菜种植面积来规划种养比例及布局,也就就是一个10立方米的养殖桶每天产生的排泄物就需要14平方米的蔬菜来净化吸收,来达到净化与平衡之目的,这个比例就是通过实践证明的
较为科学的比例。通常生产上构建时,可建直径3、5米、高1米约10-12立方水量的圆桶作为养殖池,再同时配建140平方米的水培蔬菜床或70平方米的气雾栽培塔,两者布局一般以联体建设更利于管道的布设操作与生产管理,另外,为了让微生物的繁殖有更佳的场所,通常在140平方的栽培面积中,留出1/10-1/5的砾质培硝化床,所谓砾质培硝化床,就就是采用豌豆粒大小的石砾铺床面作为基质,也可用陶粒作基质来建立硝化床,硝化床的作用就是起到过滤颗粒状的鱼饲废残及为硝化菌等有益菌的繁衍创造场所,达到有机物与氨氮的一级过滤与转化,可以把氨氮转化为对鱼生存影响较小的硝态氮,对养殖水的净化来说就是很重要的生物化学净化法。另外,粒状的固态残渣也可以在硝化过滤床上得以附着净化,达到物理过滤之作用。从养殖池外排的水经硝化床过滤后再流经栽培床,在植物根系的吸收作用下,进行了再度的完全生物净化,使水质的各项指标基本达到养殖的水质指标后,再返回到养殖池,为养殖池水质的保持创造了最适的外部生物保障系统,所以硝化过滤床及栽培蔬菜床的设计与规划就是成功养殖高密度鱼的关健一环,如果系统设计及比例不合理都会导致水质恶化,从而影响鱼的生长或死亡,这种生物生态的设计方法正就是鱼菜共生的最核心技术与最可靠的保障。就是其它任何一种方法所不能比的,它具有水处
理成本低,水循环利用率高,生态平衡关系稳定,鱼菜菌共生关系与谐,各种生物各得其所各尽其能的完美生态组合,所以专家估计,鱼菜共生系统就是当前及未来农业生产中,最为完善可操作性最强的可持续循环有机农业模式,日后必将成为农业的一个主要发展方向,更就是城区农业的主要模式。
第三步,铺设管道安装相关设备与设施形成科学的水循环系统。鱼菜共生系统中,最为科学的设计就就是水培用水与养殖用水之间形成一体化的循环体系,而这种循环体系的构建就就是通过合理的管道铺设与设计,再加上智能化或自动化的控制设备与部件,组成了自动化的水循环水处理系统,包括养殖池的排废吸污管,加入新水的进水管与经循环处理后的回流管,以及铺于池底的爆气增氧管,这些管组成了养殖池的管道系统。另外,用于栽培的还有,喷雾管道或者浇灌管道,以及经植物根系吸收后的回收回流管道,这些管道系统的设计,让栽培蔬菜的水与养殖的水之间形成了一体循环,达到彼此的生物生态效果。鱼池底部的饲料残渣或者鱼粪便经吸污管抽吸到硝化床,而在硝化床流过后,一部份经石砾过滤,一部份经微生物转化与分解,再流入微生物处理池,这个
池就是由生物绵为载体并接种多种微生物的处理池,它可以把硝化处理后的污水,进行数十种类微生物的再处理,把一些蔬菜难吸收的大分子有机物分解为易被根系吸收的矿质离子,也就是一个矿化池,经微生物矿化池后,再流溢到另一个贮液池,这个池的作用就相当于蔬菜水培的营养液池,它需经过再次的过滤,供给生长着的瓜果蔬菜等植物,可以就是水培供液,也可以就是气雾培的喷雾供液,使这些处理后的水再供到下一个植物处理系统(即栽培系统),形成了多道多环节综合处理体系,通过植物根系吸收后,回流的水就可入重新注入的养殖池,从而形成了,微生物、植物、鱼间的共生共存关系,这也就是鱼菜共生能够勿需增添大量高昂水处理设备的关键所在,把处理功能最为强大的植物,微生物科学地引入到养殖系统中出,这也就是该技术最大的创新所在。
管道的布设让水循环形成了一体化,但要让水循环实现自动化科学化,还需配备动力系统与控制系统,其中动力系统就就是由抽水泵及增氧充气泵组成,用于排污的可以采用排量较大的自吸泵,用于补水与气雾培的可以选用自吸泵,泵的功率可因栽培面积大小及养殖池的大小来选择,而增氧充气泵其实就就是空气压缩机,通过压缩后的空气导入爆气增氧管,在水底形成了微小的气泡达到水体增氧的目的,同时也加快水中氨氮的挥发,让水体微生物的繁殖速度加快,优化微生物的有益种群而抑制致病与恶化水体的微生物产生,在高密度养殖中,增氧系统就是必不可少的设施。除了管道及动力设施组成的硬件系统外,还得配装自动化的控制装置或计算机系统,它就是整个共生系统的指挥中心,相当于人的大脑,也就是实现轻松养殖,傻瓜栽培所必不可少的主要部份。在该控制系统的设计中可以把生产所涉的各种操作皆设为自动化,甚至就是饲料投喂,水体加温皆可设为自动完成,但生产上有时为了考虑投入成本与能源的节俭,一些不就是必需的常用人工代替,但其中水体溶氧检测就是必不可少的,在高密度的鱼体活动发育过程中,会消耗大量的水中氧气,这些氧气含量如低于鱼需氧之下限值就会像池塘养殖那样“翻塘”,其损失就是巨大的,所以在系统的控制中把溶氧的检测与实时在线控制作为核心,要把溶氧传感器与计算机控制设备联接进行智能化的控制,达到溶氧参数的自动化管理,在高密度养殖中为了优化溶氧环境还可以附配气液混合泵,它能把纯氧以超细微泡的方式溶入的水中,保持水体有超饱与氧存在,对于鱼及微生物的生长来说就是极为重要的。在水质的自动化循环管理中,以围绕水质的各项指标为管理核心,除了溶氧控制管理外,还需每周进行PH值的测定,生产上简易的用试纸,也可选用PH计进行检测,当PH值过低,如低于5时,就需进行调酸处理,往池中添加氢氧化钾或氢氧化钙,这些化学物既可以让水保持中性,又可以起到补充钙与钾的作为,让瓜果或蔬菜长得更好。
养殖池的水质环境与溶氧环境就是实现鱼菜共生高密度养殖之关键,通过上述系统的科学构建,利用微生物技术实现对鱼有危害所氨氮及时硝化,以及大量有机物的矿化分解,保持水体正常的有机物与氨氮指标,就是净化水质实现循环养殖的重要环节,另外,系统提供实时在线的溶氧控制,