压降计算

压降计算
压降计算

创]电源线衰减计算(适合DC12V远传)Post By:2010-4-19 19:12:00 [只看该作者]

在论坛看见有人问DC12V、AC24V电压能传多远,这是发帖者很懒惰的行为。其实这些用GOOGLE 搜即可搜出来。

线压降与以下因素有关:

1、传输线的规格,即线径;知道线径通过查表即知其电阻率!

2、传输线的距离;

3、前端设备(摄像机、云台、解码器)的动作电流。(但台情况下,如果多台则要加N)

4、要知道控制端的控制电压。

5、要上过初中物理课,知道欧姆电路P\I\R,功率、电流、电阻之间的公式关系!

6、要懂数学计算。

7、废话少说,看下面从网上搜来的。即可解决任何人的传输线压降计算问题。

此主题相关图片如下:电阻率表格.jpg

此主题相关图片如下:dianzu.jpg

几种金属导体在20℃时的电阻率材料电阻率(Ω m)

(1)银1.65 × 10-8

(2)铜1.75 × 10-8

(3)铝2.83 × 10-8

(4)钨5.48 × 10-8

(5)铁9.78 × 10-8

(6)铂2.22 × 10-7

(7)锰铜4.4 × 10-7

(8)汞9.6 × 10-7

(9)康铜5.0 × 10-7

(10)镍铬合金1.0 × 10-6

(11)铁铬铝合金1.4 × 10-6

(12) 铝镍铁合金1.6 × 10-6

(13)石墨(8~13)×10-6

可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘体的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做半导体(semiconductors)。

总结:常态下(由表可知)导电性能最好的依次是银、铜、铝,这三种材料是最常用的,常被用来作为导线等,其中铜用的最为广,几乎现在的导线都是铜的(精密仪器,特殊场合除外)铝线由于化学性质不稳定容易氧化已被淘汰。由于铝密度小,取材广泛,且价格比铜便宜,目前被广泛用于电力系统中传输电力的架空输电线路。为解决铝材刚性不足缺陷,一般采用钢芯铝绞线,即铝绞线内部包有一根钢线,以提高强度。银导电性能最好但由于成本高很少被采用,只有在高要求场合才被使用,如精密仪器、高频震荡器、航天等。顺便说下金,在某些场合仪器上触点也有用金的,那是因为金的化学性质稳定故采用,并不是因为其电阻率小所至。

1.线径计算:电线电缆的规格都是用横截面积表示,如1.5mm2 、2.5mm2等,通常可以将导线的线径除以2,再平方,乘以3.14。如1.5平方独股铜线线径1.38mm,计算(1.38/2)×(1.38/2)×3.14×1股=1.494954平方,这就是合格的国标线径。

2.电阻计算:电阻值=电阻率*长度/横截面

3.如果把各种材料制成长1米、横截面积1平方毫米的导线,在20℃时测量它们的电阻(称为这种材料的电阻率)并进行比较,则银的电阻率最小,其次是按铜、铝、钨、铁、锰铜、镍铬合金的顺序,电阻率依次增大。

铝导线的电阻率是铜导线的1.5倍多,它的电阻率p=0.0294Ωmm2/m,铜的电阻率p=0.01851 Ω·mm2/m,电阻率随温度变化会有一些差异。

则如果200m长的2*1.0的铜线作为电源线的话,电阻值=0.01851*200/1=3.702Ω

4.线路允许的电压降:普通红外枪机要求电压为直流12V,如果采用15V直流电源为枪机供电的话,

允许的电压差是3V。

5.线路最大电流=设备工作电流*设备个数,如某条线路上共有2个枪机,每个枪机工作电流为500ma,则该线路最大电流=500ma*2

6.导线的电阻=线路允许的电压降÷线路最大电流

由以上公式可以推导出,如果为某台要求工作电压12V,工作最大电流为500ma的枪机供电时,用15V 直流电源进行远端供电,采用2*1.0的铜导线进行供电传输,线路最大长度应为:

导线的电阻=(15-12)÷0.5=6Ω

导线的电阻应为小于6Ω

电阻值=电阻率*长度/横截面长度=电阻值*横截面/电阻率

所以,允许的导线长度最大=6*/0.01851=324M

所以采用2*1.0的铜线,许导线长度应小于324M,由于导线为双股,所以如果采用2*1.0的铜线,长度应小于324M/2=162M。

从上面计算可以看出,一般情况下,应采用前端供电方式,即总线采用220V电源线,到每个摄像机变压,是经济实用的方式。

举个例子:

12V,1A的电源,通过300米(如果300米是距离那么先回路长就是600米,要按600米线计算

)铜制电源线,衰减得到的电压有多少?

假如线缆是1平方毫米的铜线;即得如下:

线路衰减电压U = 距离300米*电流1A*(铜导线1平方毫米阻值0.018欧姆)/ 导线截面积(假如是1平方mm) =5.4V (如果是600米的话,则压降能降10.8V)

混凝土抗压强度计算表

抗压强度检测 1.1 一般规定 1.1.1 钻芯法可用于确定检测批或单个构件的混凝土抗压强度推定值,也可用于钻芯修正方法修正间接强度检测方法得到的混凝土抗压强度换算值。 1.1.2 抗压芯样试件宜使用直径为100mm的芯样,且其直径不宜小于骨料最大粒径的3倍;也可采用小直径芯样,但其直径不应小于70mm且不得小于骨料最大粒径的2倍。 1.2 芯样试件试验和抗压强度值计算 1.2.1 芯样试件应在自然干燥状态下进行抗压试验。当结构工作条件比较潮湿,需要确定潮湿状态下混凝土的抗压强度时,芯样试件宜在20℃±5℃的清水中浸泡40h~48h,从水中取出后应去除表面水渍,并立即进行试验。 1.2.2 芯样试件抗压试验的操作应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081中对立方体试件抗压试验的规定。

1 检测批的混凝土抗压强度推定值应计算推定区间,推定区间的上限值和下限值应按下列公式计算: 式中:fcu,cor,m——芯样试件抗压强度平均值(MPa),精确至0.1MPa; fcu,cor,i——单个芯样试件抗压强度值(MPa),精确至0.1MPa; fcu,e1——混凝土抗压强度推定上限值(MPa),精确至0.1MPa; fcu,e2——混凝土抗压强度推定下限值(MPa),精确至0.1MPa; k1,k2——推定区间上限值系数和下限值系数,按本规程附录A查得; scu——芯样试件抗压强度样本的标准差(MPa),精确至0.01MPa。 2 fcu,e1和fcu,e2所构成推定区间的置信度宜为0.90;当采用小直径芯样试件时,推定区间的置信度可为0.85。fcu,e1与fcu,e2之间的差值不宜大于5.0MPa和0.10fcu,cor,m两者的较大值。 3 fcu,e1与fcu,e2之间的差值大于5.0MPa和0.10fcu,cor,m两者的较大值时,可适当增加样本容量,或重新划分检测批,直至满足本条第2款的规定。 4 当不具备本条第3款条件时,不宜进行批量推定。

电压降计算方法80181

电缆电压降 对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的“压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一.电力线路为何会产生“电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三.如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入

L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm2铜芯电缆,试求电压降。 解:先求线路电流I I=P/1.732×U×cosθ=90÷(1.732×0.380×0.85)=161(A) 再求线路电阻R R=ρ×L/S=0.01740×600÷70=0.149(Ω) 现在可以求线路压降了: ΔU=I×R =161×0.149=23.99(V) 由于ΔU=23.99V,已经超出电压380V的5%(23.99÷380=6.3%),因此无法满足电压的要求。 解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求? I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=ρL/S=0.018*800/70=0.206欧 △U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 1.用途

混凝土抗压强度标准值计算

1 总则 1.0.1~1.0.3 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 3.1 混凝土 3.l.2 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去1.27倍标准差(保证率90%),改为强度总体分布的平均值减去1.645倍标准差(保

证率95%)。用公式表示,即: f cu,k =μfcu,15-1.645σfcu =μfcu ,15(1-1.645δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中0.95为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;0.1为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

混凝土抗压强度计算表计算过程及填写实例

混凝土抗压强度计算表计算过程及填写实例C15、C30各1组试压结果分别为28.9和37.2;C25共14组强度为37.5、29.9、43.4、34.6、45.6、42.5、49.1、49.9、42.1、34.6、35.4、38.4、39.1、40.6,请帮忙做下混凝土抗压强度计算表,列下计算过程(主要不会求标准值)。 根据GB 107-87,您上面的C15、C30都不需要用到标准差,用非统计方法评定就行了。非统计方法评定的依据是:1、满足平均强度是标准强度值的1.15倍及以上;2、最低强度是标准强度值的0.95倍以上。所以,您的强度是合格的。 至于C25的强度值,根据GB 107-87第4.1.3条:当其强度应同时满足下列要求:1、平均强度减去1.7倍标准差要大于等于的强度标准值的0.9倍。(1.7和后面的0.9都是基于14组强度值的系数)2、最低值不低于标准强度值的0.9倍。按照您给出的数据,C25的平均强度是40.2,标准差是5.7,最低强度是29.9,都是满足上述要求的。即C25强度评定合格。标准差我在excel上算的,用STDEV()公式,如果是自己算,就是每一强度值减去平均值的数然后平方,再把每一个平方数相加,用这个数除以(14-1),再开平方根。 希望对您有用 37.5 7.2 33.75 29.9 105.8 26.91 43.3 9.7 38.97 34.6 31.2 31.14 45.6 29.3 41.04 42.5 5.4 38.25 49.1 79.5 44.19 49.9 94.4 44.91 42.1 3.7 37.89 34.6 31.2 31.14 35.4 22.9 31.86 38.4 3.2 34.56 39.1 1.2 35.19 40.6 0.2 36.54 562.6 424.7 40.2 32.7 30.5 5.7 9.7

简单明了的告诉你—电缆线路的压降计算方法及案例

一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中:P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入 L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 线路电压降最简单最实用计算方式线路压降计算公式:△U=2*I*R I:线路电流 L:线路长度。 1、电阻率ρ铜为0.018欧*㎜2/米 铝为0.028欧*㎜3/米 2、I=P/1.732*U*COS? 3、电阻R=ρ*l/s(电缆截面mm2) 4、电压降△U=IR<5%U就达到要求了。

例:在800米外有30KW负荷,用70㎜2电缆看是否符合要 求?I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=Ρl/电缆截面 =0.018*800/70=0.206欧 △U=2*IR=2*56.98*0.206=23.44>19V (5%U=0.05*380=19) 不符合要求。 2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为2根线。电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的 就是欧姆定律:U=R*I 但必须要有负载电流数据、导线电阻值才能运算。铜线电阻率:ρ=0.0172,铝线电阻率:ρ=0.0283 例: 单相供电线路长度为100米,采用铜芯10平方电线负载功率10KW,电流约46A,求末端电压降。求单根线阻: R=ρ×L/S=0.0172×100/10≈0.17(Ω) 求单根线末端电压降: U=RI=0.17×46≈ 7.8(V) 单相供电为零、火2根导线,末端总电压降: 7.8×2=15.6(V)

压降计算公式

压降计算公式 在计算压降时,请确保参数正确,不鞥混淆电压降和电压差。考虑电压Vs处的源极上的母线和负载下的电压为V1。线路阻抗上的电压降是deltaV,等于电流和线路阻抗乘积的矢量。然后,源极电压等于负载电压加上向量加法线上的电压降。源极和负载之间的电压差等于模数| Vs |的差值 - | Vl |。这不一定等于线路上的电压降。

近似公式为:DV = K [r.cos(FI)+ x.sen(FI)]。 电缆的R和X(欧姆/公里),长度(km);I(A)。 对于3相,K = sqrt(3)或具有2个导体的单相的K = 2。 但是如果用负载流研究计算两点的电压,则可以获得电压降的精确值,并使两个电压值

的模块的差值| V1 |在入口处和| V2 |输出。 注意,相量方程V1-V2 = Z.I,它是AC的直接OHM定律,其中Z = R + JX不提供值,由因为重要的差异通常是模块的差异dV = | V1 | - | V2 |而不是| V1-V2 | = | Z.I |这个方程式提供。 电压表连接在V1和V2会读| V1-V2 | = | Z.I |,入口处电压表的测量| V1 |和输出的测量值V2 |,即dV = | V1 | - | V2 |。 最后有这些概念: 电压降可以理解为电路(例如母线)的一个点的电压差,但对于两种不同的负载情况。事实是,在无负载的情况下,输出电压等于输入,从而计算出无负载状态下输出的电压降,而负载下的情况对应于计算模块之间的差值|输入电压|和|负载输出电压|其中Z = R + jX 是输入(源)和输出(母线)之间的阻抗。

导线压降计算方式

导线压降如何计算 解决思路: 1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 2、已知电缆电阻,供电电压,可求出电缆额定电流 3、已知设备工作电流,电缆额定电流,可求出线路总电流 4、已知线路总电流,电缆电阻,可求出电缆压降 5、推导电缆压降计算总公式 详细分析: 1、电缆电阻计算 根据电阻公式:R=ρ×l/s.其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=0.01851Ω.mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中: R为物体的电阻(欧姆); ρ为物质的电阻率,单位为欧姆米(Ω. mm2/m)。 L为长度,单位为米(m) S为截面积,单位为平方米(mm2) 这样距离是L(米)的单条线缆的电阻为 R(导线)=ρ*L /S 2、电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R(导线) 3、集中供电各设备为并联关系,并联电路总电流等于各支路电流之和 线路总电流I(总)=I(设备1)+I(设备N)+I(导线)

4、电压计算公式 U=IR 电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、电缆压降计算总公式 推导 U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】=【I(设备1)+I(设备N)+U(12V)/R(导线)】*【ρ*L/S】 ={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 最后结论 U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是 U(导线)=I(总)*R(导线),再乘以2就是实际压降。

电压降计算方法

电缆电压降对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一?电力线路为何会产生电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料 (铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的 10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三?如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1?计算线路电流I 公式:1= P/1.732 X U X cos 9 其中:P—功率,用千瓦” U—电压,单位kV cos 9—功率因素,用0.8?0.85 2 .计算线路电阻R 公式:R=pX L/S 其中:p—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入 L—线路长度,用米”代入

S —电缆的标称截面 3?计算线路压降 公式:△U=I XR 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm 2铜芯电缆,试求电压降。 解:先求线路电流I 匸P/1.732 X U X cos 9 =97J32r 关 0.380 X 0=861)) 再求线路电阻R R= pX L/S=0.01740 X 600 - 70=0.149( Q) 现在可以求线路压降了: △U=I X R =161 X 0.149=23.V9 ( 由于△ U=23.99V,已经超出电压380V的5% (23.99 -380=6.3% ,因此无法满足电压的要求。解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70伽2电缆看是否符合要求? 匸P/1.732*U*COS?=30/1.732*0.38* 0.8=56.98A R= pL/S=0.018*800/70=0.206 欧 △ U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 根据线路上的负荷矩,估算供电线路上的电压损失,检查线路的供电质量 2. 口诀

关于导线的相关电流及压降等计算方式

根据铜线截面积、长度及铜的电阻率,计算出铜线的电阻,电流乘以电阻就是铜线相压降,再乘以1.732就是线压降。 不同温度下,铜的电阻率不同,通常估算采用的电阻率为:ρ=0.0185欧姆平方毫米/米 电阻R=ρl/S l为铜线长度,以米为单位。S为铜线截面积,以平方毫米为单位,就是我们常说的??平方电缆的平方数。 计算结果的单位是欧姆。 首先计算电线的线阻值(铜线电阻率ρ=0.0172,铝线ρ=0.0283): R=ρ×L/S (L=米,S=m㎡) 计算线与线损耗的压降值(2根线的压降值): U=2RI

导线压降如何计算 解决思路: 1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 2、已知电缆电阻,供电电压,可求出电缆额定电流 3、已知设备工作电流,电缆额定电流,可求出线路总电流 4、已知线路总电流,电缆电阻,可求出电缆压降 5、推导电缆压降计算总公式 详细分析: 1、电缆电阻计算 根据电阻公式:R=ρ×l/s.其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=0.01851 Ω.mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中:R为物体的电阻(欧姆); ρ为物质的电阻率,单位为欧姆米(Ω. mm2/m)。 L为长度,单位为米(m) S为截面积,单位为平方米(mm2)

这样距离是L(米)的单条线缆的电阻为 R(导线)=ρ*L /S 2、电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R (导线) 3、集中供电各设备为并联关系,并联电路总电流等于各支路电流之和线路总电流I(总)=I(设备1)+I(设备N)+I(导线) 4、电压计算公式 U=IR 电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、电缆压降计算总公式推导 U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】 =【I(设备1)+I(设备N)+U(12V)/R(导线)】*【ρ*L/S】 ={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】最后结论 U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是 U(导线)=I(总)*R(导线),再乘以2就是实际压降。

导线压降计算方式

解决思路: 1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 2、已知电缆电阻,供电电压,可求出电缆额定电流 3、已知设备工作电流,电缆额定电流,可求出线路总电流 4、已知线路总电流,电缆电阻,可求出电缆压降 5、推导电缆压降计算总公式 详细分析: 1、电缆电阻计算 根据电阻公式:R=ρ×l/s.其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=Ω.mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中: R为物体的电阻(欧姆); ρ为物质的电阻率,单位为欧姆米(Ω.mm2/m)。 L为长度,单位为米(m) S为截面积,单位为平方米(mm2) 这样距离是L(米)的单条线缆的电阻为R(导线)=ρ*L/S 2、电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R(导线) 3、集中供电各设备为并联关系,并联电路总电流等于各支路电流之和 线路总电流I(总)=I(设备1)+I(设备N)+I(导线) 4、电压计算公式U=IR

电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、电缆压降计算总公式 推导U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】=【I(设备1)+I(设备N)+U(12V)/R(导线)】*【ρ*L/S】 ={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 最后结论U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是U(导线)=I(总)*R(导线),再乘以2就是实际压降。

GD2301040混凝土抗压强度计算表说明

混凝土抗压强度计算表 讲明 GD2301040 1.混凝土强度验收批应符合下列规定(GB50204-92): 混凝土强度按单位工程同一验收批判定,但单位工程仅有一组试块,其强度不应低于1.15 f cu,k,当单位工程试块数量在2-9组时,按非统计方法评定;单位工程试块数量在10组及其以上时,按统计方法进行评定。 2.混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定 (GB50204-92): (1)每拌制100盘,且不超过100m3的同配合比混凝土,取样不得少于一次。 (2)每工作班拌制的同配合比的混凝土不足100盘时,其取样不得少于一次。 (3)对现浇混凝土结构。 1)每一层配合比的混凝土,其取样不得少于一次。 2)同一单位工程同配合比的混凝土,其取样不得少于一次。 注:预制混凝土应在预拌混凝土厂内按上述规定取样,混凝土运到施工现场后,尚应按上述规定留置试件。 3.判定标准: {m fcu-λ1 s fcu≥0.9 f cu,k统计方法

f cu,min ≥λ2 f cu,k { m fcu ≥1.15 f cu,k 非统计方法 f cu,min ≥0.95 f cu,k 式中:m fcu ----同一验收批混凝土强度的平均值(N/mm 2 ); f cu,k ----设计的混凝土强度标准值(N/mm 2 ); f cu,min ----同一验收批混凝土强度最小值(N/mm 2 ); s fcu ----同一验收批混凝土强度的标准值(N/mm 2 )。 如s fcu 的计算小于0.06 f cu,k 时,则取s fcu =0.0 f cu,k 混凝土强度合格判定系数 混凝土强度的标准差按下列计算: s fcu = n Σ f cu,i 2 - nm 2f cu i=1 n-1 式中:f cu,i ----第I 组混凝土试件强度值(N/mm 2 );

电缆电压压降

电缆电压压降降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

混凝土抗压强度计算表

混凝土抗压强度计算表 抗压强度,就是30MPA,也就是30N/mm2 但这是设计值,实际值一般都比这个高 混凝土是脆性材料,没有屈服点,也就没有屈服强度.只有抗压强度、抗弯强度和抗拉强度的标准。 1 混凝土标号与强度等级 长期以来,我国混凝土按抗压强度分级,并采用“标号”表征。1987年GBJ107-87标准改以“强度等级”表达。DL/T5057-1996《水工混凝土结构设计规范》,DL/T5082-1998《水工建筑物抗冰冻设计规范》,DL5108-1999《混凝土重力坝设计规范》等,均以“强度等级”表达,因而新标准也以“强度等级”表达以便统一称谓。水工混凝土除要满足设计强度等级指标外,还要满足抗渗、抗冻和极限拉伸值指标。不少大型水电站工程中重要部位混凝土,常以表示混凝土耐久性的抗冻融指标或极限拉伸值指标为主要控制性指标。 过去用“标号”描述强度分级时,是以立方体抗压强度标准值的数值冠以中文“号”字来表达,如200号、300号等。 根据有关标准规定,混凝土强度等级应以混凝土英文名称第一个字母加上其强度标准值来表达。如C20、C30等。 水工混凝土仅以强度来划分等级是不够的。水工混凝土的等级划分,应是以多指标等级来表征。如设计提出了4项指标C9020、W0.8、F150、εp0.85×10-4,即90 d抗压强度为20 MPa、抗渗能力达到0.8 MPa下不渗水、抗冻融能力达到150次冻融循环、极限拉伸值达到0.85×10-4。作为这一等级的水工混凝土这4项指标应并列提出,用任一项指标来表征都是不合适的。作为水电站枢纽工程,也有部分厂房和其它结构物工程,设计只提出抗压强度指标时,则以强度来划分等级,如其龄期亦为28 d,则以C20、C30表示。 2 混凝土强度及其标准值符号的改变 在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。 根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混

电缆压降计算公式

电缆压降计算公式 线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

混凝土抗压试件数据整理总结

混凝土抗压试件数据整理总结(如离差系数) 离差系数:当砼试块超过30组时需要求离差系数,具体计算公式为:n组试块标准差Sn除以n组试块的强度的平均值Rn 即Sn/Rn 混凝土标号与强度等级 长期以来,我国混凝土按抗压强度分级,并采用“标号”表征。1987年GBJ107-87标准改以“强度等级”表达。DL/T5057-1996《水工混凝土结构设计规范》,DL/T5082-1998《水工建筑物抗冰冻设计规范》,DL5108-1999《混凝土重力坝设计规范》等,均以“强度等级”表达,因而新标准也以“强度等级”表达以便统一称谓。水工混凝土除要满足设计强度等级指标外,还要满足抗渗、抗冻和极限拉伸值指标。不少大型水电站工程中重要部位混凝土,常以表示混凝土耐久性的抗冻融指标或极限拉伸值指标为主要控制性指标。 过去用“标号”描述强度分级时,是以立方体抗压强度标准值的数值冠以中文“号”字来表达,如200号、300号等。 根据有关标准规定,混凝土强度等级应以混凝土英文名称第一个字母加上其强度标准值来表达。如C20、C30等。 水工混凝土仅以强度来划分等级是不够的。水工混凝土的等级划分,应是以多指标等级来表征。如设计提出了4项指标C9020、W0.8、F150、εp0.85×10-4,即90 d抗压强度为20 MPa、抗渗能力达到0.8 MPa下不渗水、抗冻融能力达到150次冻融循环、极限拉伸值达到0.85×10-4。作为这一等级的水工混凝土这4项指标应并列提出,用任一项指标来表征都是不合适的。作为水电站枢纽工程,也有部分厂房和其它结构物工程,设计只提出抗压强度指标时,则以强度来划分等级,如其龄期亦为28 d,则以C20、C30表示。 2 混凝土强度及其标准值符号的改变 在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。 根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混凝土强度等级,C18015则表示为180d龄期抗压强度标准值为15MPa。 3 计量单位的变化 过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。现按国务院已公布的有关法令,推行以国际单位制为基础的法定计量单位制,在该单位体系中,力的基本单位是N(牛顿),因此,强度的基本单位为1 N/m2,也可写作1Pa。标号改为强度等级后,混凝土强度计量单

电压降计算方式

导线压降如何计算导线压降如何计算导线压降如何计算导线压降如何计算解决思路: 1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 2、已知电缆电阻,供电电压,可求出电缆额定电流 3、已知设备工作电流,电缆额定电流,可求出线路总电流 4、已知线路总电流,电缆电阻,可求出电缆压降 5、推导电缆压降计算总公式 详细分析: 1、电缆电阻计算根据电阻公式:R=ρ×l/s. 其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=0.01851 .mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中:  。 R为物体的电阻(欧姆);ρ为物质的电阻率,单位为欧姆米(. mm2/m) L为长度,单位为米(m)S为截面积,单位为平方米(mm2)这样距离是L(米)的单条线缆的电阻为R(导线)=ρ*L /S 2、电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R(导线)3、集中供电各设备为并联关系,并联电路总电流等于各支路电流之和 线路总电流I(总)=I(设备1)+I(设备N)+I(导线) 4、电压计算公式U=IR 电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、电缆压降计算总公式推导U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】=【I(设备1)+I(设备N)+U(12V)/R (导线)】*【ρ*L/S】={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】最后结论U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是U(导线)=I(总)*R(导线),再乘以2就是实际压降。 125mV就是USB2.0的最大压降标准啊,125/500=0.25 OHM,也就是说,不管你用的导体是多大的,也无论你的线材是多长的,只要你的红黑导体电阻不要超过0.25 OHM就OK了。 例如,假设你的28#导体电阻量测出来是230 OHM/km,即0.23 OHM/M,那么压降方面的长度限制就是0.25/0.23=1.08米!! 大功告成!!

混凝土抗压强度标准值计算

1 总 则 1.0.1~1.0.3 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材 料 3.1 混凝土 3.l.2 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm 的立方体改为边长150mm 的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去1.27倍标准差(保证率90%),改为强度总体分布的平均值减去1.645倍标准差(保证率95%)。用公式表示,即: f cu,k =μfcu,15-1.645σfcu =μfcu ,15(1-1.645δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μ fcu,15──混凝土立方体(边长 150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δ fcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中0.95为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;0.1为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表 注:表中混凝土立方体抗压强度的变异系数是取用全国28个大中型水利水电工程合格 水平的混凝土立方体抗压强度的调查统计分析的结果。 3.1.3 混凝土强度标准值 (1)混凝土轴心抗压强度标准值

快速计算电缆电压降之欧阳家百创编

快速计算电缆压降,精讲分析! 欧阳家百(2021.03.07) 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦” U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入 L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R

线路电压降最简单最实用计算方式线路压降计算公式: △U=2*I*R I:线路电流 L:线路长度。 电缆降压怎么算 50kw 300米采用25MM2线是否可行? 答:先选取导线在计算压降,选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设条件等综合因素决定。 一般情况下,距离短、截面积小、散热好、气温低等,导线的导电能力强些,安全载流选上限; 距离长、截面积大、散热不好、气温高、自然环境差等,导线的导电能力弱些,安全载流选下限; 如导电能力,裸导线强于绝缘线,架空线强于电缆,埋于地下的电缆强于敷设在地面的电缆等等。

电压降根据下列条件计算: 1、导线温度70~90℃; 2、环境温度40℃; 3、电缆排列(单芯); S=2D 4、功率因数:cosθ=0.8; 5、末端允许降压降百分数≤5% 6、 Vd代表电压降: Vd=K x I x L x V0(v) I:工作电流或计算电流(A) L:线路长度(m) V0:表内电压(V/A.m) K:三相四线K=√3 单相 K=1 单相时允许电压降:Vd=220V x 5%=11V 三相时允许电压降:Vd=380V x 5%=19V 采用vv电缆25铜芯去线阻为 R=0.01(300/25)=0.2 其压降为U=0.2*100=20

相关文档
最新文档