油气上窜速度计算公式-现场实用
上窜速度计算公式
油顶深度(m) 钻头下深(m) T2-T1(min) 钻头下深T0(min) 静止时间(h) T1:开泵时间; 6801.00 6829.38 155 172
上窜速度(m/h) 9.1 上窜高度(m) 6Hale Waihona Puke 6.62停泵时间 开泵时间
年 年
71.2
T2:开始见到显示时间;
T0:钻头下深迟到时间;t:静止时间;H:钻头下深; H油顶:油顶深度; h:上窜高度; V:上窜速度
h = H油顶-(T2-T1)÷ 0× T H
V = h÷ t
钻具视重表
外径(mm) 钻杆127 钻杆127 钻铤159 钻铤178 钻铤203 内径(mm) 109 105 75 75 75 视重(公斤/米) 26.19 31.47 121.2 164.3 219.3
颜色符号对比表
符号 0 1 2 3 4 5 6 7
1.两种颜色 以中圆点描 述。2颜色深 浅用“+”、 “-”号代表 。
颜色 白色 红色 紫色 褐色 黄色 绿色 蓝色 灰色
04 月 03 日 09 时 40 分 静止时间 32.92 04 月 04 日18 时 35 分
Q+R K1bs K1bt2 K1bt1 K1ba J
第三系+第四系 赛汉塔拉组 腾二 腾一 阿尔善 株罗
油气上窜速度实用计算方法
油气上窜速度实用计算方法
孙晓波
【期刊名称】《探矿工程-岩土钻掘工程》
【年(卷),期】2016(043)009
【摘要】油气上窜速度对钻井施工中下一步施工方案的制定具有重要参考价值.文章在总结分析前人经验的基础上结合现场施工实际对传统油气上窜速度计算公式加以修正,并对修正后的公式中涉及到的参数进行了逐一分析,在不影响正常施工工序的条件下使公式中各参数取值准确性进一步提高.通过现场工程测试,该方法简单实用且计算准确性较高.该计算方法在保证计算结果准确性的同时,也具备较强的现场可操作性,通过大量的实践检验后可进一步推广.
【总页数】5页(P47-51)
【作者】孙晓波
【作者单位】中石化胜利石油工程有限公司西南分公司,山东东营257000
【正文语种】中文
【中图分类】TE22
【相关文献】
1.油气上窜速度计算方法的改进与现场应用 [J], 郇志鹏;邱斌;胡剑风;郇志程;高颂;曾杰
2.油气上窜速度计算方法改进及应用 [J], 狄多林
3.油气上窜速度实用计算方法 [J], 张桂林
4.深水钻井油气上窜速度的一种计算方法 [J], 蒋钱涛; 曹鹏飞; 关利军; 杜克拯; 周
志军
5.一种新的油气上窜速度计算方法——分段判定累计泵冲法 [J], 黄振;周玳羽;付新;贺华东;刘鑫
因版权原因,仅展示原文概要,查看原文内容请购买。
油气上窜速度计算
油气上窜速度计算在钻井过程中,当钻穿油、气层后,因某种原因起钻,而到下次下钻循环时,常有油气侵现象,这就是在压差作用下的油气上窜。
单位时间内油气上窜的距离称油气上窜速度,其计算公式如下:V=H/T其中:H=H1—H2H2=排量(l/s)×未气侵泥浆返出时间(s)/每米井眼环空容积(l/m)式中:V—油气上窜速度,米/小时。
H—油气上窜高度,米。
T—静止时间,小时。
H1—油气层深度,米。
H2—未气侵泥浆的深度,米。
H – 60Q/V ·(T1-T2)u==———―――――――――――― (1—4一1)T上式中u——油气上窜速度,m/h;H——油气层深度,m;Q——钻井泵排量,L/s;T1——见到油气显示时间,min;T2——下完钻后的开泵时间,min;V----单位长度井眼环空的理论容积,L/m;T——井内钻井液静止时间,min。
例:某井在2 160 m钻遇油气层后即循环钻井液,18:00开始停泵起钻,次日14:00下完钻开泵,开泵后14:20发现钻井液油气侵,当时钻井泵排量为18 L/s,该井环形空间每1 m容积为24 L,问油气上窜速度是多少?解:由题意已知:H=2 160 m,Q=18 L/s,V=24 L/mT1=14:20,T2=14:00R=(24—18)+14=20 h将已知数据代入式(14-1),则H – 60Q/V ·(T1-T2) 2160- (60×18)/24 ×(14:20-14:00)U==------------------------ == ---------------------------------------==63 (m/h)T20答:该井油气上窜速度为63 m/h。
油气上窜速度计算公式-现场实用
油气上窜速度计算公式-现场实用油气上窜速度(测后效)计算方法在揭开油气层后,由于某种原因停止钻井,在起下钻过程中或静止时间,如果井底压力小于地层压力,油气进入井筒并上行。
通过测后效的方法观察地层油气是否进入井筒,以便及时调整钻井液性能,保证钻井的安全。
具体的做法是,在静止一段时间后下钻到底,循环钻井液,通过观察井口返出泥浆的情况,若有油气返出的显示(比如:泥浆中有油花或气体),泥浆密度下降,表明油气进入井筒。
通过计算,可知道油气的上窜速度。
计算油气上窜速度有两种方法:迟到时间法和容积法1、迟到时间法:V={H-[T-T]×h?t}?T120注:V—油气上窜速度, m/s;t—钻头所在井深的迟到时间,秒;h—循环时钻头所在的井深, m;H—油气层的深度, m;T—见到油气显示时间; h:min; 1T—下到井深h时开泵时间; h:min; 2T—井内泥浆静止时间; h:min; 02、容积法V={H- [T-T] ×Q?v}?T1200注:V—油气上窜速度, m/s;T—见到油气显示时间; h:min; 1T—下到井深h时开泵时间; h:min; 2Q—泥浆泵的排量; l/s;v—下如钻具外径和井径的单位环空容积, l/m; 0文案编辑词条B 添加义项 ?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
油气上窜速度实用计算方法
油 气 上 窜 速 度 实 用 计 算 方 法
张 桂 林
( 胜 利 石 油 管 理 局 石 油 工 程 技 术 管 理 处 , 山 东 东 营 ) 2 5 7 0 0 0
摘 要 : 简 要 分 析 了 传 统 的 迟 到 时 间 法 、 容 积 法 计 算 油 气 上 窜 速 度 的 主 要 不 足 , 提 出 了 一 种 用 相 对 时 间 计 算 钻 井 。 该 方 法 通 过 一 次 下 钻 测 量 记 录 未 受 油 气 侵 钻 井 液 和 受 油 气 侵 钻 井 液 的 两 个 显 及 井 下 作 业 施 工 中 油 气 上 窜 速 度 的 方 法 , 就 能 计 算 油 气 上 窜 速 度 , 解 决 了 一 般 开 发 井 不 测 量 迟 到 时 间 和 传 统 计 算 方 法 中 数 据 取 值 一 致 性 差 、 精 度 低 的 示 时 间 。 推 导 出 了 等 直 径 井 眼 与 复 合 直 径 井 眼 不 同 情 形 的 油 气 上 窜 速 度 计 算 公 式 。 问 题 关 键 词 : 钻 井 ; 井 下 作 业 ; 油 气 上 窜 速 度 ; 计 算 方 法 : 文 献 标 识 码 : 文 章 编 : ( ) 中 图 分 类 号 T E 2 1 A 1 0 0 1 0 8 9 0 2 0 0 6 0 6 0 0 2 3 探 技 术 年 月 2 0 0 6 1 1
环 ( 应 保 持 等 泵 速 ) 并 在 井 口 记 录 显 示 时 间 段 、 狋 狇 狇 1 3 4 ( ) ( ) 犎 + - 1 犎 + - 1 犎 底 3 4 狇 狇 1 1 , 根 据 记 录 的 时 间 计 算 油 气 上 窜 速 度 。 狋 ″ 狏 犎 = 犺 Δ 1 2 狋 ″ 1) - ( : ) ; ) 假 设 开 泵 后 油 气 不 再 侵 入 井 眼 忽 略 开 + 狇 1 2 狋 + 内 狇 狇 1 1狇 1 泵 后 油 气 滑 脱 、 气 体 膨 胀 上 升 速 度 。 ( ) 1 0 应 考 虑 下 入 钻 具 ( 管 柱 ) 时 油 气 侵 钻 井 液 返 入 了 将 式 代 入 得 ( ) ( ) : 1 0 1 钻 具 ( 管 柱 ) 内 部 , 随 开 泵 循 环 又 进 入 环 空 并 与 环 空 狇 狇 3 4 ( ) ( ) 犎 + - 1 犎 + - 1 犎 底 3 4 犺 油 气 侵 钻 井 液 一 同 上 返 ( 如 图 所 示 ) 。 油 气 上 窜 速 狏 1 Δ 狇 狇 1 1 2 = - 狋 ″ 狋 1 度 的 计 算 公 式 为 : 静 ( ) + 狋 静 狇 狋 + 内 狇 狇 狇 1 1 1 犎 1 ( ) 狏 = 1 ( ) 1 1 狋 静 式 ( ) 就 是 该 种 情 形 下 的 油 气 上 窜 速 度 计 算 公 , , / ; 式 中 为 油 气 上 窜 速 度 为 油 气 侵 钻 井 液 1 1 狏 m h 犎 1 。 实 际 高 度 , ; 从 停 泵 起 钻 至 本 次 开 泵 的 总 静 止 式 m 狋 静为 式 ( ) ( ) 中 , 循 环 时 井 口 油 气 显 示 时 间 , 。 2 1 1 狋 ~ 1为 h ( 段 ) , ; 为 将 钻 具 ( 管 柱 ) 的 时 间 犎 + 犺 + 犺 h 狋 Δ 1 1 2 内 受 侵 钻 井 液 全 部 替 入 环 空 的 时 间 , ; 、 、 h 犎 犎 1 2 、 为 各 井 段 长 度 , ; 、 、 别 为 、 犎 犎 m 狋 狋 狋 犎 3 4 2 3 4分 2 、 段 钻 井 液 返 出 井 口 时 间 , ; 、 、 犎 犎 h 狇 狇 狇 3 4 1 3 4分 别 为 、 、 、 , / ; 段 的 环 空 容 积 犎 犎 犎 犎 L m 狋 ″ 1 2 3 4井 , ; 为 从 开 泵 循 环 到 见 到 油 气 显 示 时 间 为 油 气 侵 h 狇 井 段 井 眼 容 积 , / ; 钻 具( 管 柱 ) 内 容 积 , L m 内为 狇 / ; 为 下 入 钻 具 ( 管 柱 ) 后 油 气 侵 段 上 升 高 度 , L m 犺 1 ; ( ) , 为 钻 具 管 柱 内 受 侵 钻 井 液 在 环 空 的 高 度 m 犺 2 ; 为 钻 具 ( 管 柱 ) 下 入 油 气 层 中 的 长 度 , ; mΔ 犺 m 2 钻 具 ( 管 柱 ) 底 部 深 度 ( 应 小 于 或 等 于 油 气 层 犎 底为 底 部 深 度 ) , ; , / ( ) 。 为 循 环 排 量 不 用 于 计 算 m 犙 L s 由 式 ( ) 可 知 , 对 于 一 口 具 体 的 井 , 钻 头 深 度 1 1 图 钻 头 管 柱 底 部 深 度 大 于 油 层 顶 部 深 度 的 情 形 ( ) 1 、 井 段 长 度 ( 、 ) 、 钻 具 ( 管 柱 ) 下 入 油 气 犎 犎 犎 底 3 4 根 据 图 , 存 在 如 下 关 系 式 : 1 层 内 长 度 、 井 眼 容 积 、 环 空 容 积( 、 、 犺 Δ 狇 狇 狇 2 1 3 ( ) / 狋 - 狋 犎 + 犺 + 犺 犙 Δ Δ 1 1 1 2狇 1 ) 、 钻 具 ( 管 柱 ) 内 容 积 确 定 的 , 开 泵 循 环 后 内是 狇 狇 4 =2 / / / 狋 + 狋 + 狋 犙 + 犎 犙 + 犎 犙 狇 狇 狇 2 3 4犎 1 3 3 4 4 只 要 准 确 记 录 时 间 、 与 总 静 止 时 间 , 代 入 式 狋 狋 ″ 狋 静 1 ( ) 犎 + 犺 + 犺 Δ 狇 1 1 2 1 ( ) ) 便 可 求 出 油 气 上 窜 速 度 。 = 2 ( 1 1 犎 + 犎 + 犎 狇 狇 狇 2 1 3 3 4 4 式 ( ) 虽 然 繁 琐 , 但 未 知 条 件 只 有 三 个 , 因 此 1 1 ( ) / 犎 + 犺 + 犺 犙 Δ 内 内 狇 狇 1 1 2 狋= Δ ( )借 = 3 助 计 算 机 进 行 计 算 非 常 方 便 ( 可 根 据 实 际 井 眼 考 虑 ) / 狋 - 狋( 犎 + 犺 + 犺 犙 Δ Δ 狇 狇 1 1 1 2 1 1 定 的 扩 大 率 , 井 下 作 业 施 工 不 必 考 虑 ) 。 ( )一 狋 + 狋 + 狋 = 狋 ″ 4 2 3 4 者 根 据 相 同 的 原 理 , 对 于 单 一 直 径 井 眼 、 二 级 ( ) 笔 犎 = 犺 + 犎 + 犺 + 犎 + 犎 + 犎 5 Δ 底 2 1 1 2 3 4 合 直 径 井 眼 、 多 级 复 合 井 眼 , 分 钻 头 ( 管 柱 底 部 ) ( ) ( ) ( 犎 + 犺 = 犎 + 犺 + 犺 + 犎 + 复 Δ Δ 狇 狇 1 2 1 1 2 1 1 、 度 浅 于 油 层 顶 部 深 度 与 油 层 顶 部 深 度 相 同 和 大 于 ) ( )深 犺 + 犺 6 Δ 内 狇 1 2 油 气 层 顶 部 深 度 种 情 形 进 行 了 推 导 , 结 果 如 下 。 3 由 式 ( ) ( ) 可 得 : 2 6 ~ ) 单 一 直 径 井 眼 。 1 狋 内 狇 1 ( ) 狋 = 7 Δ ( ) , 钻 头 管 柱 底 部 深 度 浅 于 油 层 顶 部 深 度 时 油 + 内 狇 狇 1 上 窜 速 度 为 : - - - - 内 内 狇 狇 狇 狇 狇 狇 1 1 ( )气 犺 = 犎 + 犺 8 Δ 1 1 2 + + 内 内 狇 狇 狇 狇 1 1 犎 钻 头 犺 Δ 1 ( ) 狏 =狋 + 1 2 狋 狋 狋 1 静 狇 狇 狇 狇 2 2 3 4 2 ( ) ( ) 犎 = 犎 + 犺 - 犎 - 犎 9 + 狋 Δ 静 狇 2 1 2 3 4 狋 狋 狋 + 内 狇 狇 狇 狇 狇 1 1 狇 1 1 1 1 1 1狇 1 钻 头 ( 管 柱 底 部 ) 深 度 等 于 油 层 顶 部 深 度 时 , 油 由 式 ( ) 、 ( ) 、 ( ) 得 : 7 8 9
现场地层压力计算
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;—σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
油气上窜速度实用计算方法
油气上窜速度实用计算方法摘要:本文介绍了用相对时间计算钻井及井下作业施工中油气上窜速度的方法。
该方法通过一次下钻测量记录两个时间,就能计算油气上窜速度,解决了一般开发井不测量迟到时间和传统方法计算中数据取值一致性差、精度低的问题。
对等直径井眼与复合直径井眼分别进行了理论分析并推导出了相应的计算公式。
本文包括前言、基本原理与计算方法、注意事项及结论认识等。
对传统的迟到时间法、容积法进行了简要分析并提出了主要不足。
主题词:钻井井下作业油气上窜速度计算方法一、对传统计算方法的分析及问题提出在钻井和井下作业施工中,油气上窜速度是衡量井下安全的重要技术数据,是确定下一步施工方案措施的重要技术依据。
油气上窜速度过高,将导致井涌井喷问题发生,造成对地下油气资源的破坏、对地面环境的破坏和对钻井施工安全的严重威胁。
特别是随着油气勘探开发区域的逐年扩大和地下状况的不断复杂化,对钻井和井下作业技术与安全提出了更高的要求,对油气上窜速度的测量计算也要求更准确、更方便。
对于油气上窜速度的计算,传统的方法包括“迟到时间法”和“容积法”两种方法。
毋庸置疑,这两种计算方法在理论上是正确的。
但是,这两种方法涉及到的关键参数——迟到时间、泥浆泵排量的准确性问题,对计算的准确性带来了很大影响。
迟到时间法是钻井现场一直采用的方法。
这种方法的主要不足,一是迟到时间的测量比较繁琐;二是迟到时间的测量计算中受到“钻井液运载比”影响和钻具内部下行时间影响,很难保证计算的精确性;三是迟到时间的测量计算与油气上窜速度测量计算是在不同的下入钻具次数和状态下,数据一致性差;四是没有将油气侵段的显示时间引入上窜速度计算中,缺乏全面性;五是用钻屑的迟到时间计算油气上窜速度不合理;六是没有考虑复合井眼情况;等等。
同时,开发井钻井和井下作业现场一般不测量迟到时间的实际情况,也是影响该方法进行计算的现实情况。
对于容积法,现场应用较少。
主要是泥浆泵排量的具体值精确性差,井眼容积也不容易准确确定,因此计算精度低。
油气上窜速度的现场计算
油气上窜速度的现场计算油气上窜速度当井眼空井静止时,由于钻井液液柱压力小于地层流体压力,以及两者之间存在密度差的原因,导致地层内流体(油气) 进入井眼,产生向井口方向的运移,其上升的速度,称为油气上窜速度。
公式表示如下:s t H v 1式中 V ———油(气) 上窜速度,m/ h ; H 1 ———油(气) 在静止t s 时间后上升的高度,m ; t s ———钻井静止时间,h 。
1、迟到时间法迟到时间法计算油气上窜速度的理论计算公式为:V 上窜= { H 油层- [ H 钻头( T 见- T 开) / T 迟]}/T 静 式中:V 上窜———油气上窜速度,米/ 小时;H 油层———油气层显示井深,米;H 钻头———循环泥浆时钻头所在的井深,米;T 迟———钻头所在井深的迟到时间,分;T 见———见到油气显示的时间,日、时、分;T 开———钻头下到H 钻头时循环泥浆开泵时间,日、时、分; T 静———上回次停泵时间至本回次开泵时间,小时。
显然,上述理论计算公式是根据迟到时间这一关键参数来计算的。
但在实际作业时,由于泵排量的不稳定性,有时,泵排量甚至会成倍的增长或减少,从而使得T迟也成一变量,所以在实际中,上述理论计算所得的上窜速度的误差较大。
根据这一实际现象,我们就利用一般录井仪都能检测到的累计泵冲数这一参数来将上面的理论计算公式加以修正。
2 、累计泵冲数法其计算公式为:V上窜= (H油层- H1) / T静= (H油层- 17. 4S1/ 23.6) / T静或V上窜= (17. 4/ 23. 6) ×(S0 - S1) / T静式中,V上窜、H油层、T静解释同上;H1 ———测量时油气层已上窜所至的井深,米;S0 ———正循环时自油气层返上至井口的累计泵冲数,冲;S1 ———正循环测上窜速度时,见到油气显示时的累计泵冲数,冲; 17. 4 ———每冲泵排量,升/ 冲;23. 6 ———9-5/ 8”套管与5”钻杆间的环空容积,升/ 米。
油气上窜速度的现场计算
油气上窜速度的现场计算油气上窜速度当井眼空井静止时,由于钻井液液柱压力小于地层流体压力,以及两者之间存在密度差的原因,导致地层内流体(油气) 进入井眼,产生向井口方向的运移,其上升的速度,称为油气上窜速度。
公式表示如下:s t H v 1式中 V ———油(气) 上窜速度,m/ h ; H 1 ———油(气) 在静止t s 时间后上升的高度,m ; t s ———钻井静止时间,h 。
1、迟到时间法迟到时间法计算油气上窜速度的理论计算公式为:V 上窜= { H 油层- [ H 钻头( T 见- T 开) / T 迟]}/T 静 式中:V 上窜———油气上窜速度,米/ 小时;H 油层———油气层显示井深,米;H 钻头———循环泥浆时钻头所在的井深,米;T 迟———钻头所在井深的迟到时间,分;T 见———见到油气显示的时间,日、时、分;T 开———钻头下到H 钻头时循环泥浆开泵时间,日、时、分;T 静———上回次停泵时间至本回次开泵时间,小时。
显然,上述理论计算公式是根据迟到时间这一关键参数来计算的。
但在实际作业时,由于泵排量的不稳定性,有时,泵排量甚至会成倍的增长或减少,从而使得T迟也成一变量,所以在实际中,上述理论计算所得的上窜速度的误差较大。
根据这一实际现象,我们就利用一般录井仪都能检测到的累计泵冲数这一参数来将上面的理论计算公式加以修正。
2 、累计泵冲数法其计算公式为:V上窜= (H油层- H1) / T静= (H油层- 17. 4S1/ 23. 6) / T静或V上窜= (17. 4/ 23. 6) ×(S0 - S1) / T静式中,V上窜、H油层、T静解释同上;H1 ———测量时油气层已上窜所至的井深,米;S0 ———正循环时自油气层返上至井口的累计泵冲数,冲;S1 ———正循环测上窜速度时,见到油气显示时的累计泵冲数,冲;17. 4 ———每冲泵排量,升/ 冲;23. 6 ———9-5/ 8”套管与5”钻杆间的环空容积,升/ 米。
深水钻井油气上窜速度的一种计算方法
工艺技术深水钻井油气上窜速度的一种计算方法蒋钱涛①㊀曹鹏飞②㊀关利军①㊀杜克拯②㊀周志军②(①中海石油(中国)有限公司深圳分公司;②中海油能源发展股份有限公司工程技术深圳分公司)蒋钱涛,曹鹏飞,关利军,杜克拯,周志军.深水钻井油气上窜速度的一种计算方法.2019,30(4):40G43摘㊀要㊀油气上窜速度是现场进行油气层评价和井控安全评估的重要参数.在南海东部海域深水作业过程中,使用常规油气上窜速度计算方法,发现计算结果会产生较大误差.通过使用泵冲数与容积相结合的方法,并在开启增压泵的情况下引入有效泵冲数,解决了增压泵开启对油气上窜速度计算的影响.通过在南海东部多口深水井的现场实际应用表明,该计算方法正确可靠㊁效果明显,为钻井和井下作业安全施工提供了重要依据.关键词㊀泵冲数㊀深水㊀增压泵㊀钻具排替㊀油气上窜㊀速度中图分类号:T E132.1㊀㊀文献标识码:A㊀㊀D O I :10.3969/j.i s s n .1672G9803.2019.04.008㊀蒋钱涛㊀工程师,1982年生,2007年毕业于长江大学地球科学学院资源勘查工程专业,现在中海石油深圳分公司勘探部从事海上油气勘探工作.通信地址:518067广东省深圳市南山区后海滨路3168号中海油大厦A 座.电话:(0755)26022624.E Gm a i l :j i a n g qt @c n o o c .c o m.c n 0㊀引㊀言随着世界对石油资源需求的不断增长,对深水区油气资源勘探开发势在必行.深水区作为近年来勘探的重点,钻井数量呈逐年上升趋势,必然对传统录井方法及工艺提出新的挑战,准确计算油气上窜速度即是其中的一项课题.油气上窜是指钻开油气层后,在油气层压力与钻井液液柱压力的压差作用下,地层中的油气以扩散㊁渗滤两种途径进入井筒钻井液中,并沿井筒向上移动的现象.油气上窜速度是指单位时间内油气上窜的距离.油气上窜速度是定性反映油气活跃的一个重要数据,其计算也是钻井施工现场一项非常重要的工作,它的准确与否直接影响施工现场的井控安全,如果油气上窜速度计算不准确,很容易导致井涌㊁井喷等井控事故[1].在南海东部海域深水钻探作业中,油气上窜速度受多种因素影响,比如长隔水管及增压泵的使用,会使岩屑稳定上返被打乱,而传统的计算方法未能有效排除影响因素,导致与实际的油气上窜速度存在较大误差.这使得依据传统计算方法所得的油气上窜速度不能有效㊁合理地评价油气层和评估井控安全,甚至形成对井筒压差的误判,造成工程事故.为此,分析油气上窜速度计算影响因素,有针对性地改进计算方法对深水钻探作业十分必要.1㊀油气上窜速度的常规计算方法现场常用的油气上窜速度计算方法主要有迟到时间法㊁容积法和泵冲数法[2].迟到时间法:v =[H -(h /t )(t 1-t 2)]/t 0(1)式中:v 为上窜速度,m /h ;H 为油气层顶深,m ;h 为循环时钻头深度,m ;t 为钻头位置的迟到时间,m i n ;t 1为见到油气显示的时刻,m i n ;t 2为下钻至井深h 的开泵时刻,m i n ;t 0为钻井液静止时间,h .容积法:v =[H -(Q /V c )(t 1-t 2)]/t 0(2)式中:Q 为钻井液循环排量,L /m i n ;V c 为环空理论每米容积,L /m .泵冲数法:v =[H -(h /S 1)S 2]/t 0(3)式中:S 1为钻头所在位置的迟到泵冲数,无量纲;S 2为见油气显示时总泵冲数,无量纲.上述3种方法具备涉及参数少㊁计算简单㊁使用方便等优点,在现场应用时间较长.但缺点也是显而易见的,因其公式过于简化,计算时没有排除气管线延迟㊁环空尺寸变化㊁钻具排替等因素的影响,故计算结果准确性相对较差[3]. 04 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月2㊀深水钻井工艺对计算结果影响因素分析在深水作业中,需要下入较长的隔水管来完成钻井液的循环,隔水管的直径较大,井眼直径则随井身结构的改变而逐渐变小,这导致井眼内的环空分为上㊁下两部分:下部自井底至海底井口,由钻杆与裸眼或者套管之间的环空形成,上部自海底井口至转盘面,由隔水管与钻杆之间的环空形成,并且上部环空体积相对下部较大.这就造成了钻井液由井底上返至井口的过程中,因环空截面发生变化,钻井液稳定上返被打乱,对钻井液及岩屑的迟到时间造成影响.另外深水钻井过程中为了加速钻井液在隔水管内的上返速度以及减少岩屑在海底井口的滞留时间,要在隔水管底部增设增压泵辅助钻井液循环,而增压泵的应用改变了钻井液在隔水管中的总排量,使实际迟到时间在计算过程中受到钻井液排量改变的影响(图1).图1㊀深水钻井液循环示意钻具排替作用是指起下钻或短起下钻测后效期间,钻具下入后替换部分钻井液而导致油气侵(后效)液面上升的作用.钻具排替作用按照排替方式不同可分为开排和闭排.开排是指钻具组合未使用浮阀等内防喷工具,钻具水眼双向畅通,排替的体积等于钻具组合本体的体积;闭排是指钻具组合使用浮阀等内防喷工具,钻井液只能单向向下畅通,排替的体积等于钻具组合外径的体积.迟到时间法公式(1)和容积法公式(2)中的t㊁t1㊁t2这三个关键参数,会受钻头下钻到底开泵循环时开泵数量㊁泵冲数变化㊁泵的上水效率等诸多因素影响.一般刚下钻到底开泵循环时,由于钻井液静止时间长,钻井液粘度高,只能使用小排量循环,泵冲数较小,循环一定时间后再提高循环排量,升高泵冲数,并逐渐趋于平稳[4].简单地以(t1-t2)等同于后效气的迟到时间,会使油气上窜速度计算值误差较大.泵冲数法公式(3),由于裸眼尺寸和套管尺寸不同,以及隔水管增压泵的影响,循环时钻头深度h与泵冲数不成比例,若直接使用冲数折算h,则会使油气上窜速度计算值误差很大,故无法直接使用泵冲数折算h.3㊀泵冲数与容积相结合计算油气上窜速度油气上窜速度的计算中不仅要考虑到钻具排替的影响,还要根据钻井现场实际情况,当增压泵开启时,需要排除增压泵对油气上窜的影响.3.1㊀泵冲数与容积相结合计算方法原理从开泵到井口见到油气显示这段时间,钻井液推动油气界面向上运移的高度所对应的环空容积等于环空排出钻井液的体积,即井深h视(单位:m)以上的环空容积,同时油层所在井深H对应的环空容积等于其所对应的排出钻井液的体积.所以井深H与h视之间的环空容积,等于实际见油气显示时相对油气层深度处少排出的钻井液体积.故可以将环空容积与钻井液体积进行关联,进而与泵冲数进行关联.如图2所示,油气层自身上窜至井深h纯上(单位:m),下钻至井深h纯上后,继续下钻,受到钻具的排替作用,油气被向上挤[5],由于此时钻井液的终切(钻井液静止10m i n时所测的切力)较大,可以认可此模型,最终下钻至井深h(单位:m),此时油气被上挤至井深h视.故钻具的排替量等于h纯上与h视之间的环空容积.基于上述两个相等关系分析,可以推导出油气上窜距离,进而得到油气上窜速度.3.2㊀公式推导根据3.1节的分析,井深H与h视之间的环空容积,等于实际见油气显示时比油气层深度处少排出的钻井液体积,据此可得到下列等式:(H-h视)ϕ环面=(S3-S2)q泵h视=H-(S3-S2)q泵/ϕ环面(4)14第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀蒋钱涛等:深水钻井油气上窜速度的一种计算方法图2㊀下钻过程后效上挤示意式中:h视为经过钻具排替之后的后效气所处的井深,m;S3为油气层深度处的迟到泵冲数,无量纲; S2为见油气显示时的总泵冲数,无量纲;q泵为泵每冲的容积(已考虑泵效),m3;ϕ环面为钻杆外径与裸眼或套管之间的环形面积,m2.根据钻具排替原理[6],可得到下列等式:V闭排=(h-h视)q闭式中:V闭排为钻具闭端排替总量,m3;q闭为钻杆的闭端排替量,m3/m.V环容=(h纯上-h视)ϕ环面式中:V环容为被钻具排替上挤的环空容积,m3;h纯上为后效气原始上窜界面深度(未经钻具排替),m.因为V闭排=V环容(h-h视)q闭=(h纯上-h视)ϕ环面所以等式两端同时除以ϕ环面,得到下式:h纯上=h视-h视q闭/ϕ环面+h q闭/ϕ环面进而得到下式:h纯上=h视(ϕ环面-q闭)/ϕ环面+h q闭/ϕ环面(5)由速度公式可以得到下式:v=(H-h纯上)/t0(6)3.3㊀增压泵开启时油气上窜速度计算方法在后效气返出之前开启增压泵的情况下,公式(4)中的参数需要进行调整.公式(4)中的S3是油气层深度处的迟到泵冲数(返至钻台面),S2是见油气显示时的总泵冲数.由于隔水管增压泵的开启,此时的S3及S2不能直接代入该式进行计算,需要区分油气上返至钻台面和返至水下井口时的泵冲数(图1).这是因为当油气从h视上返至水下井口期间,增压泵不对其上返做功,即增压泵是无效泵冲数,只有上返至隔水管内后,增压泵才对其做功,这是有效泵冲数.另外,作用于立管管汇的钻井液泵,始终对油气的上返做功.由上述分析可知,S3在增压泵开启时,应为自油气层深度处返至水下井口时的迟到泵冲数;同时代替S2带入公式(4)进行计算的应为有效泵冲数,即(S井内立+S隔内)(其中:S井内立为油气返至水下井口时,作用于立管管汇钻井液泵的总泵冲数;S隔内为充满隔水管内容积所需的泵冲数,由理论环空体积公式计算得到).因为S井内立无法直接读取,需用(S2-S隔内)得到一个泵冲数,在录井数据库中可以查询该泵冲数(S2-S隔内)对应的时刻点(此时刻即为油气返至水下井口的时间),然后查询截止至该时刻,作用于立管管汇钻井液泵的总泵冲数,此值即为S井内立,最后使用(S井内立+S隔内)代替S2并代入公式(4)进行计算即可.4㊀应用实例4.1㊀L井概况L井是南海东部海域一口超深水预探井,钻具组合为(914.40mmˑ2580.17m)+(660.40mm ˑ4046.00m)+(444.50mmˑ4496.00m)+(311.15mmˑ5050.00m),套管组合为(914.40mmˑ2580.17m)+(508.00mmˑ4041.21m)+(339.72mmˑ4490.07m).使用149.225mm钻杆钻进,在444.50mm井眼井深4158m处钻遇气测异常显示层,起下钻作业期间钻井液静止时间12h,下钻至4483m开始循环钻井液,测得后效气全量6.3%.4.2㊀计算过程在泵的总冲数为S2=21500(立管+增压泵)时,测得后效气,减去隔水管所需要的泵冲数(S隔内=19014),得到冲数为2486,此时刻对应的立管冲数为S井内立=1414,得到实际后效气通过该冲数从井深4158m处的油气层返到水下井口位置;实际钻进期间,从井深4158m处返出至转盘面所用冲数为23952,S3-(S井内立+S隔内)可得气体上窜冲数3524,对应钻井液体积为78.947m3.因为油气层深度至上层套管鞋深度间的环空容积为16.363m3,所以气体已上窜至20i n(508mm)套管内,需要分段计算:查询q泵每冲的容积为22.86L, q闭为钻杆的闭端排替量17.898L/m,ϕ环面钻杆与24 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月508.0mm套管间环空面积为0.1654m2,钻杆与444.5mm裸眼间环空面积为0.1373m2.分段计算上窜高度.444.5mm裸眼段:4158-4041.21=116.79m508.0mm套管内:(78.947-16.363)/0.1654=378.38m所以,总上窜高度为:116.79+378.38=495.17m,h视=3662.83m将上述数据带入公式(5),计算得到:h纯上=3662.83-(3662.83-4483)ˑ0.017898/㊀㊀㊀㊀0.1654=3751.58m已知静止时间为12h,将数据带入公式(6),计算可得v=33.9m/h.4.3㊀应用效果在南海东部海域深水井多次的试验发现,相比其他计算方法,利用泵冲数与容积相结合计算的油气上窜速度排除了增压泵和钻具排替作用对计算结果的影响,与实际情况吻合度更好.表1为多口深水井使用不同上窜速度计算方法得到的结果对比.由表1可见,在C井中,按照迟到时间法计算测井安全时间为63.3h,由于处理测井复杂情况,在超过测井安全时间63.3h后,并未见气体涌出井口的情况发生,之后进行通井作业,使用泵冲数与容积结合法计算油气上窜速度,计算结果与实际情况更为吻合.表深水钻井油气上窜速度各方法计算结果对比5㊀结束语(1)计算油气上窜速度,综合考虑了下钻过程中钻具的排替作用,井身结构对油气上窜速度的影响.(2)在深水井增压泵开启情况下,油气上窜速度计算思路及方法与常规计算方法差别较大,本方法更能真实反映油气上窜的过程及速度.(3)公式推导建立在油气在钻井液中上窜高度与运移时间的基础上,未考虑油气在钻井液中的滑脱上升㊁气体膨胀等因素,有待进一步研究.参㊀考㊀文㊀献[1]㊀李振海,覃保锏,金庭科,等.油气上窜速度计算方法的修改[J].录井工程,2011,22(2):12G13,26.L I Z h e n h a i,Q I NB a o j i a n,J I NT i n g k e,e t a l.M o d i f i c a t i o no f t h e c a l c u l a t i o nm e t h o d o f o i l a n d g a s a s c e n d i n g v e l o c i t y[J].M u dL o g g i n g E n g i e e r i n g,2011,22(2):12G13,26.[2]㊀王守君,刘振江,谭忠健,等.勘探监督手册(地质分册) [M].北京:石油工业出版社,2013.WA N G S h o u j u n,L I U Z h e n j i a n g,T A N Z h o n g j i a n,e ta l.E x p l o r a t i o n s u p e r v i s i o nm a n u a l(G e o l o g i c a l f a s c i c l e)[M].B e i j i n g:P e t r o l e u mI n d u s t r y P r e s s,2013.[3]㊀马春林,黄浩.利用排量倒推法计算地层中油气上窜速度[J].录井工程,2018,29(2):37G41.MAC h u n l i n,HU A N G H a o.C a l c u l a t i o no f o i l a n d g a sa s c e n d i n g v e l o c i t y i n f o r m a t i o nb y d i s p l ac e m e n t i n v e rGs i o nm e t h o d[J].M u dL o g g i n g E n g i n e e r i n g,2018,29(2):37G41.[4]㊀宋广健,严建奇,王丽珍,等.油气上窜速度计算方法的改进与应用[J].石油钻采工艺,2010,32(5):17G19.S O N GG u a n g j i a n,Y A NJ i a n q i,WA N GL i z h e n,e t a l.I m p r o v e m e n t a n d a p p l i c a t i o no f t h e c a l c u l a t i o nm e t h o do f o i la n d g a sa s c e n d i n g v e l o c i t y[J].O i lD r i l l i n g&P r o d u c t i o nT e c h n o l o g y,2010,32(5):17G19.[5]㊀郇志鹏,邱斌,胡剑风,等.油气上窜速度计算方法的改进与现场应用[J].录井工程,2018,29(1):34G37.HU A N Z h i p e n g,Q I U B i n,HUJ i a n f e n g,e t a l.I mGp r o v e m e n t a n d f i e l d a p p l i c a t i o n o f t h e c a l c u l a t i o nm e t h o d o f o i l a n d g a s a s c e n d i n g v e l o c i t y[J].M u dL o gGg i n g E n g i n e e r i n g,2018,29(1):34G37.[6]㊀李基伟,柳贡慧,李军,等.油气上窜速度的精确计算方法[J].科学技术与工程,2014(22):180G184.L I J i w e i,L I U G o n g h u i,L I J u n,e t a l.A n a c c u r a t e c a lGc u l a t i o nm e t h o do f t h eo i l a nd g a su p w a r dc h a n ne l i n gs p e e d[J].S c i e n c eT e c h n o l o g y a n d E n g i n e e r i n g,2014(22):180G184.(返修收稿日期㊀2019G11G27㊀编辑㊀王丙寅)34第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀蒋钱涛等:深水钻井油气上窜速度的一种计算方法m e t h o d.T h eb e n d i n g d e f o r m a t i o nd e g r e e o f t h e r o c k f o r m aGt i o n i s c h a r a c t e r i z e db y t h e p r i n c i p a l c u r v a t u r em e t h o d i nd i fGf e r e n t i a l g e o m e t r y.T h e p r i n c i p a l c u r v a t u r e r a n g eo f t h e l o s t c i r c u l a t i o n i s d e t e r m i n e dw i t ht h e a c t u a l d r i l l i n g c o n d i t i o na s t h e c o n s t r a i n i n g c o n d i t i o n,s o t h a t t h e d i s t r i b u t i o n c h a r a c t e rGi s t i c s o f t h e p r i n c i p a l c u r v a t u r e f i e l dc a nb eu s e dt o i n d i c a t e t h e s t r u c t u r a l f r a c t u r e d e v e l o p m e n t z o n e,s o a s t o a c h i e v e t h e p u r p o s eo f p r e d i c t i n g t h e l o s tc i r c u l a t i o n.T h i s m e t h o dh a s b e e n a p p l i e dt ot h ed r i l l i n g s i t eo fS h u n b e ib l o c ki n N o r t hGw e s tO i l f i e l d.T h er e s u l t ss h o wt h a t t h e p r i n c i p a l c u r v a t u r e m e t h o d c a ne f f e c t i v e l yp r e d i c t t h e l o s tc i r c u l a t i o na n d g u i d e t h ed r i l l i n g s i t et oc a r r y o u tt h es a f e t y a n dh i g he f f i c i e n c y c o n s t r u c t i o n.K e y w o r d s:S h u n b e i b l o c k,p r i n c i p a l c u r v a t u r em e t h o d,f r a cGt u r e,l o s t c i r c u l a t i o n,p r e d i c t i o nL u S h i h a o,F r o n t C o mm a n dB a s e,N o r t h w e s tO i l f i e l dC o m p aGn y,L u n t a i C o u n t y,B a z h o u,X i n j i a n g,841600,C h i n aA p p l i c a t i o no f t h e c o m b i n e dm u d l o g g i n g t e c h n o l o g y i n t h e d i sGc o v e r y o f h y d r o c a r b o n r e s e r v o i r si n T a i y u a n f o r m a t i o n o f G a n g b e i b u r i e dh i l l.T a nC h a o,W a n g C h a n g z a i,J iL i n g,H u F e n g b o,W a n g X i a o c h e n g,D o n g F e n g a n dX uJ i c e.M u dL o gGg i n g E n g i n e e r i n g,2019,30(4):22G28T h ea p p l i c a t i o no fn e wd r i l l i n g t e c h n i q u e ss u c ha sP D C a n dh i g hGp r e s s u r e j e t d r i l l i n g i nT a i y u a n f o r m a t i o no f b u r i e d h i l l s,n o r t h e r n D a g a n g b r i n g s g r e a tc h a l l e n g e st o m u dl o gGg i n g d i s c o v e r y o fs h o w o f g a sa n do i l i nt h i sb l o c k,w h i c h l e a d s t o t h e f a i l u r eo f c o n v e n t i o n a l g e o l o g i c a l l o g g i n g t o f i n d h y d r o c a r b o n r e s e r v o i r sa n dt h e i r l i t h o l o g y c o m b i n e dc h a r a cGt e r i s t i c s i nT a i y u a nf o r m a t i o ni nt i m e.I no r d e rt of i n do u t t h e g e o l o g i c i n f o r m a t i o no f t h es t r a t a i nt h i sa r e aa n dd e t e rGm i n et h e m o s ts u i t a b l ec o m b i n a t i o n o f m u dl o g g i n g t e c hGn i q u e s f o r t h i sk i n do f o i l a n d g a sd i s c o v e r y,t a k i n g t w oe xGp l o r a t i o n w e l l s o f h y d r o c a r b o n r e s e r v o i r si n b u r i e d h i l l, n o r t h e r nD a g a n g a s e x a m p l e s,t h e c o m b i n a t i o n s e r i e s a n d a pGp l i c a t i o ne f f e c t o fm u d l o g g i n g m e t h o d s a r e s u mm a r i z e d,a n d t h e l i t h o l o g y a n d p e t r o l i f e r o u s p r o p e r t y o fT a i y u a n f o r m a t i o n a r e r eGr e c o g n i z e d.F i n a l l y,i t i s c o n f i r m e d t h a t t h e c o m b i n e d m u d l o g g i n g t e c h n o l o g y o fc a r b o n a t ea n a l y s i s+t h i ns e c t i o n a n a l y s i s+X R D+X R Fh a sa g o o de f f e c t o nt h e i d e n t i f i c a t i o n o f c o m p l e x l i t h o l o g y a n d r e s e r v o i r i n t h i s a r e a,t h e c o m b i n e d m u dl o g g i n g t e c h n o l o g y o f g a sl o g g i n g+t h r e eGd i m e n s i o n a l q u a n t i t a t i v e f l u o r e s c e n c e+r o c k p y r o l y s i sa n a l y s i sc a ne f f e cGt i v e l y d e a lw i t ht h ed i s c r i m i n a t i o no f f o r m a t i o n p e t r o l i f e r o u s p r o p e r t y i n t h i s a r e a.K e y w o r d s:c o m b i n e d m u dl o g g i n g t e c h n o l o g y,T a i y u a nf o rGm a t i o n,o i l a n d g a s i d e n t i f i c a t i o n,c o a l s e a m,b u r i e dh i l l i n n o r t h e r nD a g a n gT a nC h a o,N o.1M u dL o g g i n g C o m p a n y,T u a n j i eE a s tR o a d, D a g a n g O i l f i e l d,T i a n j i n,300280,C h i n aO p t i m i z a t i o no fd r i l l i n g a n df r a c t u r i n g t e c h n o l o g y f o rd i r e cGt i o n a l a n dh o r i z o n t a l w e l l s i nY a nᶄa n g a s f i e l d.D e n g C h a n g s hGe n g,Z h a n g Y i,X i eX i a o f e i,S o n g J i a x u a n,M i W e i w e i,M a Q i a n g a n dX uM i n.M u d L o g g i n g E n g i n e e r i n g,2019,30(4):29G34I no r d e r t o i m p r o v e t h e s u c c e s s r a t e o f d r i l l i n g a n d f r a cGt u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a n de n h a n c e t h e e f f i c i e n c y o f n a t u r a l g a s e x p l o i t a t i o n,m i c r oGs e i s m i cm o n i t o r i n g o f f r a c t u r i n g f o rv e r t i c a lw e l l sa n dh o r iGz o n t a lw e l l s i nY a nᶄa n g a s f i e l d i s c a r r i e do u t,t h e c h a r a c t e rGi s t i c so f d i r e c t i o n a l w e l l f r a c t u r i n g a n d t h e l a wo f f r a c t u r e e xGt e n s i o na r ea n a l y z e d,a n dt h ec h a r a c t e r i s t i c so f w e l lb o r e s t r u c t u r ec u r r e n t l y u s e di nd i r e c t i o n a lw e l l sa n d h o r i z o n t a l w e l l s a r e s u mm a r i z e d.B a s e do nt h i s,t h e p r o b l e m s i nd r i l lGi n g a n d f r a c t u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a r e p o i n t e do u t,a n d t h e c o r r e s p o n d i n g o p t i m i z aGt i o n s c h e m e i s g i v e n f o r e a c h p r o b l e m.O p t i m i z i n g t h e d i r e cGt i o n a l w e l ls t r u c t u r ef r o m t r i p l eGs e c t i o n t o p e n t a dGs e c t i o n t y p e r e q u i r e s t h a t t h ea n g l ed r o p s i n t os t r a i g h tw e l l s e c t i o n b e f o r e d r i l l i n g i n t o t h em a i n t a r g e t s t r a t a o fY a nᶄa n g a s f i e l d.B y u s i n g o r i e n t e d f i x e da n g l e p e r f o r a t i n g t e c h n o l o g y,t h e e fGf e c t i v e r e s e r v o i r i s f r a c t u r e db y f o c u s i n g f r a c t u r i n g f l u i da n d p i p en e t w o r k p r e s s u r e,a n dt h ee n d p o i n t o f t h es e c o n ds e cGt i o no f t h eh o r i z o n t a lw e l l i sa d j u s t e du p w a r dt ot h e m i d d l e a n d l o w e r p a r t o f t h e d e v i a t e dw e l l s e c t i o n.T h i s s c h e m e c a n e f f e c t i v e l y i m p r o v e t h er e c o v e r y r a t i oo fn a t u r a l g a s i nY a nᶄa n g a s f i e l d,w i t h r e m a r k a b l e a p p l i c a t i o ne f f e c t.K e y w o r d s:Y a nᶄa n g a sf i e l d,d i r e c t i o n a l w e l l,h o r i z o n t a l w e l l,m i c r o s e i s m i cm o n i t o r i n g,w e l l b o r e s t r u c t u r e,o r i e n t e d p e r f o r a t i n g,o p t i m i z a t i o nD e n g C h a n g s h e n g,Y a n c h a n g P e t r o l e u m S c i e n t i f i c R e s e a r c h C e n t e r,61T a n g y a nR o a d,X iᶄa nH iGt e c h I n d u s t r i e sD e v e l o pGm e n t Z o n e,S h a a n x i P r o v i n c e,710065,C h i n aA p p l i c a t i o no fE x c e l f u n c t i o ni nt h e i d e n t i f i c a t i o no fv o l c a n i c r o c k si ne l e m e n tl o g g i n g.Q u S h u n c a i,Z u o T i e q i u,Z h a n g Y a n q i a n dZ h a n g P e n g.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):35G39E l e m e n t l o g g i n g t e c h n o l o g y c a nb eu s e dt oo b t a i nt h e c o n t e n t o f e l e m e n t s i nr o c k sa n d m i c r o s c o p i c a l l y a n a l y z e t h e c o m p o s i t i o no f r o c k s.H o w e v e r,t h ea c c u r a t en a m i n g o f l iGt h o l o g y h a sb e c o m e a nu r g e n t p r o b l e mt ob e s o l v e d.T h e r eGf o r e,t h ea u t o m a t i cl i t h o l o g i cd i s c r i m i n a t i o na n dn a m i n g o f v o l c a n i c r o c k e l e m e n t l o g g i n g d a t a a r e r e a l i z e db y E x c e l f u n cGt i o n.T h a t i s,t h eT A Sc h a r tn u m b e ro fv o l c a n i cr o c ke l eGm e n t i d e n t i f i c a t i o ni sf o r m u l a t e di n E x c e l,a n dt h e E x c e l w o r k s h e e t o f v o l c a n i c r o c ke l e m e n t i d e n t i f i c a t i o n i s c o m p i l e d b a s e do nt h e l i t h o l o g y n a m i n g c o n d i t i o n s.T h e f i e l da p p l i e d e x a m p l e ss h o w t h a tt h e m e t h o di ss i m p l ea n dc o n v e n i e n t, w h i c hn o to n l y a c h i e v e st h ea c c u r a t en a m i n g o fe l e m e n t l iGt h o l o g y,b u t a l s o i m p r o v e s t h ew o r k e f f i c i e n c y.T h e a p p l i c aGt i o ne f f e c t o f e l e m e n t l o g g i n g t e c h n o l o g y i s e n h a n c e d.K e y w o r d s:e l e m e n t l o g g i n g,v o l c a n i cr o c k,c h a r t i d e n t i f i c aGt i o nm e t h o d,T A Sc h a r t,E x c e l f u n c t i o n,c h a r t f o r m u l a t i o n Q uS h u n c a i,D a t a A c q u i s i t i o n T e a m2,N o.1G e oGL o g g i n g C o m p a n y,D a q i n g D r i l l i n g&E x p l o r a t i o nE n g i n e e r i n g C o rGp o r a t i o n,R a n g h u l u D i s t r i c t,D a q i n g C i t y,H e i l o n g j i a n g P r o v i n c e,163411,C h i n aM e t h o d f o r c a l c u l a t i n g o i l a n d g a s u p w a r d f l o wv e l o c i t y i nd e e p w a t e rd r i l l i n g.J i a n gQ i a n t a o,C a oP e n g f e i,G u a nL i j u n,D u K e z h e n g a n dZ h o uZ h i j u n.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):40G43T h e o i l&g a su p w a r d f l o wv e l o c i t y i s a n i m p o r t a n t p aGr a m e t e r f o r h y d r o c a r b o n r e s e r v o i r e v a l u a t i o n a n dw e l l c o n t r o l641 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月s a f e t y a s s e s s m e n t.I n t h e p r o c e s so f d e e p w a t e r o p e r a t i o n i n t h eE a s t e r nS o u t hC h i n aS e a,i t i s f o u n d t h a t t h e c a l c u l a t i o n r e s u l t sw i l l p r o d u c e l a r g ee r r o r sw i t ht h ec o n v e n t i o n a l c o mGp u t i n g m e t h o do f o i l a n d g a su p w a r d f l o wv e l o c i t y.B y u s i n g t h em e t h o do f c o m b i n i n gp u m p s t r o k e r a t e a n dv o l u m e,a n d i n t r o d u c i n g t h ee f f e c t i v e p u m p s t r o k er a t ew h e nt h eb o o s t e r p u m p i s t u r n e d o n,t h e i n f l u e n c e o f s t a r t i n g b o o s t e r p u m p o n t h e c a l c u l a t i o no f o i l a n d g a su p w a r d f l o wv e l o c i t y i s s o l v e d.T h e f i e l d p r a c t i c a l a p p l i c a t i o no f s e v e r a l d e e p w a t e rw e l l s i n t h eE a s t e r nS o u t hC h i n a S e a s h o w s t h a t t h e c o m p u t i n g m e t hGo d i s c o r r e c t,r e l i a b l ea n de f f e c t i v e,a n d p r o v i d e sa n i m p o rGt a n t b a s i s f o r s a f e d r i l l i n g a n dd o w n h o l e s e r v i c i n g o p e r a t i o n.K e y w o r d s:p u m p s t r o k er a t e,d e e p w a t e r,b o o s t e r p u m p, d r i l l i n g t o o l d i s p l a c e m e n t,u p w a r d f l o wv e l o c i t yJ i a n gQ i a n t a o,B l o c k A,C N O O C T o w e r,3168H o u h a i b i n R o a d,N a n s h a n D i s t r i c t,S h e n z h e n C i t y,G u a n g d o n g P r o vGi n c e,518067,C h i n aS i m u l a t i o nm o d e l i n g m e t h o do f d r i l l i n g e n g i n e e r i n gp a r a m e t e r s f o r e a r l y o v e r f l o w m o n i t o r i n g.Z h a n g B o,H u X u g u a n g,L i u G u i y i,L iY i j u n,S u n W e i f e n g a n dD a iY o n g s h o u.M u dL o gGg i n g E n g i n e e r i n g,2019,30(4):44G50T h er e s e a r c h s h o w st h a tt h ei n t e l l i g e n ti d e n t i f i c a t i o n m e t h o dc a n e f f e c t i v e l y i m p r o v e t h e a c c u r a c y o f e a r l y o v e r f l o w m o n i t o r i n g.H o w e v e r,b e c a u s e t h e o v e r f l o wi s a s m a l l p r o bGa b i l i t y e v e n t i nd r i l l i n gp r o c e s s,t h eo v e r f l o ws a m p l ed a t aaGv a i l a b l e i n t h e f i e l d i s v e r y l i m i t e d,w h i c h l i m i t s t h e a p p l i c aGt i o no f i n t e l l i g e n t i d e n t i f i c a t i o n m e t h o d.T os o l v e t h i s p r o bGl e m,b a s e do n t h ea n a l y s i so f t h e r e l a t i o n s h i p b e t w e e nc o mGm o no v e r f l o w m o n i t o r i n gp a r a m e t e r sa n dd r i l l i n g d e s i g n p aGr a m e t e r s,g e o l o g i c a lr e l a t e d p a r a m e t e r sa n dd r i l l i n g c o n d iGt i o n s,t h en u m e r i c a l s i m u l a t i o nm o d e l s o f c o mm o n l y u s e doGv e r f l o w m o n i t o r i n g p a r a m e t e r s u n d e rt h r e e c o n d i t i o n s o f d r i l l i n g,c o m eo u to f t h eh o l ea n d g o i nt h eh o l ea r ee s t a bGl i s h e d t o p r o v i d ed a t ab a s i s f o r t h ea p p l i c a t i o no f i n t e l l i g e n t o v e r f l o wi d e n t i f i c a t i o n m e t h o d.T h e m o d e l sa r ev e r i f i e db y t h em e a s u r e dd a t a i n t h e f i e l d.U n d e r t h e g i v e nd r i l l i n g c o nGd i t i o n s,t h es i m i l a r i t y b e t w e e nt h es i m u l a t e dd a t aa n dt h e f i e l dm e a s u r e dd a t a i su p t o83.85%,w i t hah i g hd e g r e eo f c o i n c i d e n c e.T h ei d e n t i f i c a t i o na c c u r a c y o fo v e r f l o wi n t e l l iGg e n t i d e n t i f i c a t i o n m o d e l i s23.1%h i g h e rt h a nt h a to ft h e e x p e r t e m p i r i c a lm o d e lw i t h o u t t r a i n i n g s a m p l e s,a n dt h e iGd e n t i f i c a t i o na c c u r a c y i s s i g n i f i c a n t l y i m p r o v e d.K e y w o r d s:e a r l y o v e r f l o w m o n i t o r i n g,i n t e l l i g e n t i d e n t i f i c aGt i o n,d a t a s a m p l e,s i m u l a t i o nm o d e l i n gD a i Y o n g s h o u,C o l l e g eO f I n f o r m a t i o na n dC o n t r o lE n g i n e e rGi n g,C h i n aU n i v e r s i t y O fP e t r o l e u m(E a s tC h i n a),H u a n g d a o D i s t r i c t,Q i n g d a oC i t y,S h a n d o n g P r o v i n c e,266580,C h i n aA n a l y s i s o f d o l o m i z a t i o n c h a r a c t e r i s t i c s o fM5G5s u b m e m b e r i n D a n i u d iG a sF i e l db a s e do ne l e m e n t l o g g i n g t e c h n o l o g y.J i a n g H a i s h e n,Q i u T i a n m i n,W a n g X i a o y a n g,J i a n g R o n g a n d C h e n g H a o h u a.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):51G54D o l o m i z a t i o ni st h e k e y f a c t o ra f f e c t i n g t h er e s e r v o i r p h y s i c a l p r o p e r t i e s o f M5G5s u b m e m b e ro f D a n i u d i G a s F i e l d.T h e e l e m e n t l o g g i n g t e c h n o l o g y c a nd i r e c t l y a n dc o nGt i n u o u s l y d e t e r m i n e t h e e l e m e n t c o n t e n t i n t h e c u t t i n g s,d eGd u c e t h e t y p e a n d c o n t e n t o fm i n e r a l s i n t u r n,a n d t h e n r e a lGi z e t h e a c c u r a t e n a m i n g o f l i t h o l o g y a n d t h e e v a l u a t i o no f d oGl o m i z a t i o nd e g r e e.At o t a lo f28k e y w e l l si n D a n i u d iG a s F i e l dw e r e s e l e c t e d f o r e l e m e n t l o g g i n g i n t e r p r e t a t i o n a n d d oGl o m i z a t i o n c h a r a c t e r i s t i c sa n a l y s i s,a n dt h e f o l l o w i n g u n d e rGs t a n d i n g sw e r e o b t a i n e d.M o s t o f t h ew e l l s(a b o u t68%)i n t h e g a s f i e l d a r e ah a v e d i f f e r e n t d e g r e e s o f d o l o m i z a t i o n i n M 5G5s u b m e m b e r,a n d t h ed o l o m i t e i sc o n c e n t r a t e da t t h e t o p l o n g i t u d i n a l l y.T h e d o l o m i t e s i nM5G5s u b m e m b e r a r em a i nGl y d e v e l o p e d i n t h en o r t h w e s t a n dn o r t h e a s t o f t h e g a s f i e l d, a n da r eb a s i c a l l y d i s t r i b u t e d i n g i r d l e b a n d.T h e t o p o fM5G5s u b m e m b e r a n d t h en o r t h w e s t a n dn o r t h e a s t o f t h e g a s f i e l d s h o u l db e t h em a i n a r e a s f o r t h ew e l l l o c a t i o n a r r a n g e m e n t o f D a n i u d iG a sF i e l d i n t h e f u t u r e.K e y w o r d s:D a n i u d iG a sF i e l d,M5G5s u b m e m b e r,d o l o m i z aGt i o n,e l e m e n t l o g g i n gJ i a n g H a i s h e n,197F u n i uR o a d,Z h o n g y u a nD i s t r i c t,Z h e n gGz h o uC i t y,H e n a nP r o v i n c e,450000,C h i n aS t u d y o nm u d l o g g i n g i n t e r p r e t a t i o na n de v a l u a t i o n m e t h o do f s h a l e o i l i nG u l o n g s a g,S o n g l i a oB a s i n.Z h a n g L i y a na n d Q i n W e n k a i.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):55G61U n c o n v e n t i o n a l h y d r o c a r b o n r e s o u r c e s a r e an e wa r e a i n o i l a n d g a s e x p l o r a t i o na n dd e v e l o p m e n t i nD a q i n g O i l f i e l d a t p r e s e n t,i n w h i c hs h a l eo i le x p l o r a t i o na n dd e v e l o p m e n t i s a d v a n c i n gg r a d u a l l y.I no r d e r t or e a l i z e t h e r a p i d i n t e r p r e t aGt i o na n de v a l u a t i o n i ns h a l eo i l d r i l l i n g,t h r o u g ht h ea n a l y s i s o fw e l l b o r em u d l o g g i n g d a t a,t h e a p p l i c a t i o n o fm u d l o g g i n g r e l a t e dt e c h n i c a l p a r a m e t e r si ns h a l eo i lw e l l i n t e r p r e t a t i o n a n de v a l u a t i o n i s s t u d i e d.As e t o fm u d l o g g i n g i n t e r p r e t a t i o n m e t h o d s s u i t a b l e f o r s h a l e o i l e v a l u a t i o n h a s b e e n p r e l i m i n a r iGl y e s t a b l i s h e d.T h a t i s,t h e s h a l e o i l i s e v a l u a t e d f r o mt h e a sGp e c t so fl i t h o l o g y,p h y s i c a l p r o p e r t i e s(f r a c t u r e d e v e l o pGm e n t),p e t r o l i f e r o u s p r o p e r t i e s,s o u r c er o c k p r o p e r t i e sa n d b r i t t l e n e s sb y u s i n g t h e c o m b i n a t i o no fm u d l o g g i n gp a r a m eGt e r s s u c ha s g a s l o g g i n gp a r a m e t e r s,l i t h o l o g y a n dc o r e f r a cGt u r e o b s e r v a t i o n,g e o c h e m i c a l p y r o l y s i s p a r a m e t e r s,r e s i d u a l c a r b o na n a l y s i s a n d e l e m e n ta n a l y s i s,a n d t h e e v a l u a t i o n r a n g eo fe a c h p a r a m e t e ra n db r i t t l e n e s sc a l c u l a t i o n m e t h o d a r e d e t e r m i n e d.T h e r e s u l t s o f t h e s t u d y h a v e c e r t a i n g u i d i n g s i g n i f i c a n c e f o r t h e i n t e r p r e t a t i o na n de v a l u a t i o no f s h a l eo i l m u d l o g g i n g i nG u l o n g s a g,S o n g l i a oB a s i n,a n d a l s o p r o v i d e a r e l i a b l e b a s i s f o r t h e f u r t h e r d e v e l o p m e n t o f s h a l e o i l i n t h i s a r e a.K e y w o r d s:G u l o n g s a g,s h a l eo i l,i n t e r p r e t a t i o na n de v a l u aGt i o n,h y d r o c a r b o ne x p u l s i o n t h r e s h o l dv a l u eZ h a n g L i y a n,N o.8,C h e n g f e n g z h u a n g,R a n g h u l u D i s t r i c t, D a q i n g C i t y,H e i l o n g j i a n g P r o v i n c e,163411,C h i n aA p p l i c a t i o n o f g a s l o g g i n g i n r e s e r v o i r i n t e r p r e t a t i o n a n d e v a l uGa t i o no fY a n c h a n g f o r m a t i o n i nS a n b i a na r e a.L iY o n g s h e n g, D u Q i a o j u a n,L i uZ h i h e n g,H a oJ i n m e i,Z h u G e n g g e n g a n d W uM i n g s o n g.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):62G67T h e o i lGw a t e r r e l a t i o n s h i p i n t h e r e s e r v o i r so fY a n c h a n g f o r m a t i o n i nS a n b i a na r e ao fC h a n g q i n g O i l f i e l di sc o m p l e x a n d i t i s d i f f i c u l t t o i d e n t i f y t h e f l u i d p r o p e r t i e s.I t i su r g e n t t os t r e n g t h e nt h er e s e a r c h o fi n t e r p r e t a t i o na n de v a l u a t i o n m e t h o d sb e c a u s e o f t h e l o wc o i n c i d e n c e r a t e o f t h e t r a d i t i o n a l741第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀英文摘要。
后效气录井油气上窜速度的准确计算
算方法进行改进 , 得较准确的油气上窜速度 。 获
钻 井 液 泵 到 油 气 显 示 出 现 之 间 的 时 间 , 受 钻 头 下 它 钻到底开 泵循环 时开钻井 液泵数 量 、 冲数变化 、 泵 泵
l 油气 J窜 速 度的 常 规 计算 办法 :
录 井 工 程
・
工艺技 术 ・
后效 气 录井 油气 上 窜速 度 的准确 计算
张 瑞 强
中 国 石化 华 北 石油 局 录 井公 司)
张 瑞 强 .后 效 气 录 井 油 气 上 窜 速 度 的 准 确 计 算 . 录 井 工 程 , 0 0 21 4 : 4 1 2 1 , ( )l ~ 6
—
后 效 出 峰 时 间 , i; a r n 钻 头 所 在 井 深 的 迟 到 时 间 , i; a r n 井 内钻 井 液 从 上 次 停 泵 到 此 次 开 泵
之 间的静止 时间 ,。 h
£—— 下 钻 至 井 深 h时 的 开 泵 时 间 , n mi; t一 一 t— — 开 泵 到 后 效 出 峰 时 迟 到 时 间 , n 。 mi ;
到时间法[ 2 :
能使用小 排量循环 , 冲数较小 , 泵 循环一定 时间后再
提 高 循 环 排 量 , 高 泵 冲 数 , 逐 渐 趋 于 平 稳 。简 单 升 并 地 以 开 泵 时 间 等 同 于 迟 到 时 间 , 使 油 气 上 窜 速 度 会 计 算 值 误 差 较 大 。 为 了较 好 地 解 决 此 问 题 , 使 用 可 总 泵 冲 数 换 算 迟 到 时 间 的方 法 。
在实 际应 用 中 , 经常 直接 使用 公式 中 f一t 的
钻井工程常用计算公式
钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。
岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。
气窜公式新
气体上窜速度计算公式
(中法录井)
上窜高度(m)
基本数据
套管直径 (mm) 339.7 油层深度(m) 2008
235.75
裸眼直径 (mm) 311.2 泵冲数 (s/min) 180
上窜速度(m/h)
钻具下井时对 有气时记录的泵 泥浆挤压所需 冲数 要的泵冲数 7 泵效率 0.97
7100
裸眼容量(l/m) 裸眼系数 62.7 926 裸眼需用泵冲数 5940 ## 1772 气窜深度(m) 1.19 ##### 气窜深度(m)
2008
油层深(m)
Page 5
套管容量(l/m) 66.1 926 裸眼需用泵冲数
套管长度(m)油层到套管长度(m) 泵容量 ( L) 496 1512 19.58
油层返到仪器房需用泵冲数 套管需用泵冲数 循环时钻具长度 (m) 1726 1000
8026
实际冲数与理论计算差值 167.04
Байду номын сангаас
井眼总容量 ( m3 )
迟到时间 (min)
48.86
注意:计算迟到时间时把油层深度改为井深
Page 1
气上窜公式
Page 2
气上窜公式
Page 3
气上窜公式
-5013.77 235.7542519 -1440.613071 0 -1204.859 235.7542519
Page 4
气上窜公式
算公式
4.29
气窜深度(m) 管线需要 泵冲数 360 静止时间 (h) 55 496 套管深(m)
油气上窜速度的现场计算
油气上窜速度的现场计算油气上窜速度当井眼空井静止时,因为钻井液液柱压力小于地层流体压力,以及两者之间存在密度差的原由 ,致使地层内流体(油气) 进入井眼,产生向井口方向的运移,其上涨的速度,称为油气上窜速度。
公式表示以下:H1vt s式中V———油(气)上窜速度,m/h;H1———油(气)在静止ts时间后上涨的高度,m;ts———钻井静止时间,h。
1、迟到时间法迟到时间法计算油气上窜速度的理论计算公式为:V上窜={H油层-[H钻头(T见-T开)/T 迟]}/T静式中:V上窜———油气上窜速度,米/ 小时;H油层———油气层显示井深,米;H钻头———循环泥浆时钻头所在的井深,米;T迟———钻头所在井深的迟到时间,分;T见———见到油气显示的时间,日、时、分;T开———钻头下到H钻头时循环泥浆开泵时间,日、时、分;T静———上回次停泵时间至本回次开泵时间,小时。
明显,上述理论计算公式是依据迟到时间这一重点参数来计算的。
但在实质作业时,因为泵排量的不稳固性,有时,泵排量甚至会成倍的增长或减少,进而使得T迟也成一变量,因此在实质中,上述理论计算所得的上窜速度的偏差较大。
依据这一实质现象,我们就利用一般录井仪都能检测到的累计泵冲数这一参数来将上边的理论计算公式加以修正。
2、累计泵冲数法其计算公式为:V上窜=(H油层-H1)/T 静=(H油层-17.4S1/23.6)/T 静或V上窜=(17.4/23.6) ×(S0-S1)/T 静式中,V上窜、H油层、T静解说同上;H1———丈量时油气层已上窜所至的井深,米;S0———正循环时自油气层返上至井口的累计泵冲数,冲;S1———正循环测上窜速度时,见到油气显示时的累计泵冲数,冲;4———每冲泵排量,升/冲;23.6———9-5/8”套管与5”钻杆间的环空容积,升/米。
以上所列的公式合用于在9-5/8”套管内射孔后的状况。
举一例子: H油层=3428米,S0=3428×23.6/17.4=4649冲,S1=4500冲,T静=2.5小时,则V上窜=44米/小时,油气返上至井口时间为78小时。
上窜速度计算公式
后 效 上 窜 速 度
油顶深度(m) 钻头下深(m) T2-T1(min) 钻头下深T0(min) 静止时间(h) T1:开泵时间; 6801.00 6829.38 155 172
上窜速度(m/h) 9.1 上窜高度(m) 646.62
停泵时间 开泵时间
年 年
71.2
T2:开始见到显示时间;
T0:钻头下深迟到时间;t:静止时间;H:钻头下深; H油顶:油顶深度; h:上窜高度; V:上窜速度
1.两种颜色 以中圆点描 述。2颜色深 浅用“+”、 “-”号代表 。
颜色 白色 红色 紫色 褐色 黄色 绿色 蓝色 灰色
04 月 03 日 09 时 40 分 静止时间 32.92 04 月 04 日18 时 35 分
Q+R K1bs K1bt2 K1bt1 K1ba J
第三系+第四系 赛汉塔拉组 腾二 腾一 阿尔善 株罗
h = H油顶-(T2-T1)÷ 0× T H
V = h÷ t
钻具视重表
外径(mm) 钻杆127 钻杆127 钻铤159 钻铤178 钻铤203 内径(mm) 109 105 75 75 75 视重(公斤/米) 26.19 31.47 121.2 164.3 219.3
颜色符号对比表
符号 0 1 2 3 4 5 6 7
油顶深度m680100上窜速度mh年钻头下深m68293891年t2t1min155上窜高度m钻头下深t0min17264662静止时间h712外径mm内径mm视重公斤米钻杆1271092619钻杆1271053147钻铤159751212钻铤178751643钻铤203752193符号颜色0白色1红色2紫色3褐色4黄色5绿色6蓝色7灰色后效上窜速度h油顶
钻井液现场有关计算
钻井液现场有关计算1、表观粘度公式:A V=1/2×∮600式中:A V——表观粘度,单位(mPa.s)。
∮600 —— 600转读数。
2、塑性粘度公式:PV= ∮600 -∮300式中:PV——塑性粘度,单位(mPa.s)。
∮600 —— 600转读数。
∮300 —— 300转读数。
3、动切力(屈服值)公式:YP= 0.4788×(∮300-PV)式中:YP——动切力,单位(Pa)。
PV——塑性粘度,单位(mPa.s)。
∮300 —— 300转读数。
例题1:某钻井液测得∮600=35,∮300=20,计算其表观粘度、塑性粘度和屈服值。
解:表观粘度:A V=1/2 ×∮600=1/2×35=17.5(mPa.s)塑性粘度:PV= ∮600-∮300=35-20=15(mPa.s)屈服值:YP=0.4788×(∮300-PV)=0.4788×(20-15)=2.39(Pa)答:表观粘度为17.5mPa.s,塑性粘度15mPa.s,屈服值为2.39Pa。
4、流性指数(n值)公式:n= 3.322×lg(∮600÷∮300)式中:n ——流性指数,无因次。
∮600 —— 600转读数。
∮300 —— 300转读数。
5、稠度系数(k值)公式:k= 0.4788×∮300/511n式中:k ——稠度系数,单位(Pa.S n)。
n ——流性指数。
∮300 —— 300转读数。
例题2:某井钻井液测得∮600=30,∮300=18,计算流性指数,计算稠度系数。
解:n=3.32×lg(∮600/∮300)=3.32×lg(30/18)=0.74K=0.4788×∮300/511n=0.4788×18/5110.74=0.(Pa.s0.74)答:流性指数是0.74 。
稠度系数为0.085Pa.s0.74。
油气上窜速度计算
复杂情况下的油气上窜速度计算后效录井是指工程停钻或起下钻时钻井液静止一段时间后,下钻到需要的深度进行钻井液循环时,测定通过扩散和渗透作用进人井筒钻井液中的烃类气体的含量(或在钻具抽吸作用下进人钻井液中的油气含量)。
在气井特别是重点探井的钻进中,当上部打开一个气层后,会在后面的钻进过程中不可避免地多次出现后效气。
根据多年来的实践结果来看,后效气的气测值往往比打开气层时的值高的多,特别是一些地层压力较高的气层,往往能达到全烃99.9%这样满值的情况。
这极大加强了井控工作的难度。
事实上最近几年发生在川东北的绝大多数溢流事故都是在起下钻过程中由于后效气导致的溢流。
现场录井之中,准确的计算出油气上窜速度对于安全钻井,对于油气层的保护和后期的测试、油气产能评价意义重大。
目前录井常用的油气上窜速度方法为迟到时间计算法。
计算公式为:V=(H油-H钻*(T1-T0)/T迟到)/T静其中:V 油气上窜速度m/hH油新打开油气层顶部深度mH钻开泵循环时钻头所在井深mT1 循环气测值明显升高时间(见显示时间)minT0 开泵时间minT迟到在钻头位置所在井深的迟到时间minT静静止时间h在一般的情况下,油气层深度、钻头位置、开泵时间、见显示时间、静止时间都是确定的,唯一影响计算准确性的只有迟到时间这一个变量。
计算迟到时间的理论公式T迟到=V/Q,其中V是井底钻具与井壁的环空容积m3,Q为循环时的泵排量m3/min。
在钻具和井筒结构没有大的变化情况下,T迟到只与钻头位置和排量呈线性相关。
在实际录井过程中,每钻进到一定深度录井人员会利用停泵的机会采用实测法得到一个迟到时间。
在做迟到时间实测实验时,一般要求井队保持泵排量稳定在正常钻进时的排量。
在正常情况下,泵的排量只与泵的泵冲转数有关。
我们定义,在这种情况下得到的T迟到为标准迟到时间,这时候的泵冲转数为标准泵冲转数,标准迟到时间与标准泵冲数是呈反比关系。
在使用综合录井仪的录井条件下,录井人员可以调整设置使仪器的迟到时间在标准泵冲转数下与标准迟到时间一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油气上窜速度(测后效)计算方法
在揭开油气层后,由于某种原因停止钻井,在起下钻过程中或静止时间,如果井底压力小于地层压力,油气进入井筒并上行。
通过测后效的方法观察地层油气是否进入井筒,以便及时调整钻井液性能,保证钻井的安全。
具体的做法是,在静止一段时间后下钻到底,循环钻井液,通过观察井口返出泥浆的情况,若有油气返出的显示(比如:泥浆中有油花或气体),泥浆密度下降,表明油气进入井筒。
通过计算,可知道油气的上窜速度。
计算油气上窜速度有两种方法:迟到时间法和容积法
1、迟到时间法:
V={H-[T1-T2]×h÷t}÷T0
注:V—油气上窜速度,m/s;
t—钻头所在井深的迟到时间,秒;
h—循环时钻头所在的井深,m;
H—油气层的深度,m;
T1—见到油气显示时间; h:min;
T2—下到井深h时开泵时间; h:min;
T0—井内泥浆静止时间; h:min;
2、容积法
V={H- [T1-T2] ×Q÷v0}÷T0
注:V—油气上窜速度,m/s;
T1—见到油气显示时间; h:min;
T2—下到井深h时开泵时间; h:min;
Q—泥浆泵的排量; l/s;
v0—下如钻具外径和井径的单位环空容积,l/m;。