EMI电源滤波器的设计

合集下载

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。

一种应用于dc28v电源信号emi滤波及雷电防护电路的制作方法

一种应用于dc28v电源信号emi滤波及雷电防护电路的制作方法

一种应用于DC28V电源信号EMI滤波及雷电防护电路的制作方法一、引言随着电子设备在各个领域的广泛应用,电源信号的电磁干扰(EMI)问题日益突出。

同时,雷电对电子设备的破坏性影响也不容忽视。

因此,设计一种能够同时实现EMI滤波和雷电防护的电路至关重要。

本文介绍了一种应用于DC28V电源信号的EMI滤波及雷电防护电路的制作方法。

二、电路设计1.EMI滤波器设计:EMI滤波器的主要功能是抑制电源线上的电磁干扰,提高电源质量。

本设计采用共模滤波器和差模滤波器结合的方式,共模滤波器主要用于抑制共模干扰,差模滤波器主要用于抑制差模干扰。

滤波器电路由电感器和电容器的组合构成,通过合理选择电感值和电容值,实现对不同频率干扰的抑制。

2.雷电防护电路设计:雷电防护电路的主要功能是保护电子设备免受雷电过电压和过电流的影响。

本设计采用气体放电管和压敏电阻相结合的方式。

气体放电管在雷电过电压作用下能迅速击穿放电,将过电压限制在较低水平;压敏电阻在雷电过电流作用下能迅速阻断电流,防止电流过大造成设备损坏。

通过合理选择气体放电管和压敏电阻的参数,实现对雷电过电压和过电流的有效防护。

三、制作工艺1.电路板制作:选用合适的FR4或CEM-1基材,进行覆铜处理,设置合理的线宽和间距,保证电路板的电气性能和散热性能。

2.元器件焊接:采用低温焊接工艺,确保焊接质量,防止元器件因高温而损坏。

3.电路板测试:对制作完成的电路板进行电气性能测试,确保各项指标符合设计要求。

四、应用实例本制作方法已成功应用于某型号舰载电子设备的DC28V电源信号处理中,有效提高了设备的电磁兼容性和防雷能力,保证了设备的稳定运行。

五、结论本文介绍了一种应用于DC28V电源信号的EMI滤波及雷电防护电路的制作方法,包括电路设计和制作工艺两个方面的内容。

通过实际应用证明,本制作方法能有效提高设备的电磁兼容性和防雷能力,具有较高的实用价值。

未来,我们将继续优化电路设计和制作工艺,为更多领域提供优质的电源信号处理解决方案。

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。

3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。

传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。

开关电源所产生的干扰以共模干扰为主。

产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。

注意:1. 避免电流过大而造成饱和。

2.Choke 温度系数要小,对高频阻抗要大。

3.感应电感要大,分布电容要小。

4.直流电阻要小。

B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究
EMI滤波器工作原理
被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配

直流电源EMI滤波器的设计原则、网络结构、参数选择

直流电源EMI滤波器的设计原则、网络结构、参数选择

直流电源EMI滤波器的设计原则、网络结构、参数选择1设计原则——满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。

设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。

所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。

同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。

即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。

负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。

对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。

如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。

2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM和差模干扰信号DM,CM和DM的分布如图1所示。

它可用来指导如何确定EMI滤波器的网络结构和参数。

EMI滤波器的基本网络结构如图2所示。

上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:l)双向滤波功能——电网对电源、电源对电网都应该有滤波功能。

2)能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。

3)最大程度地满足阻抗失配原则。

几种实际使用的电源EMI滤波器的网络结构如图3所示。

3电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。

降额系数为0.75 V,0. 6 W。

根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。

第二,经过雷击浪涌后有残压,其瞬时值一般在1000 V取值;其瞬时功率值不能超过额定功率值的4倍,也可求出R>(Vcy)2/(4Pe)。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计EMI滤波器(Electromagnetic Interference Filter)是一种用于抑制电磁干扰的电路。

电磁干扰是指电子设备之间相互干扰产生的电磁辐射或者干扰信号,会对设备的正常操作和性能产生负面影响。

EMI滤波器通过选择性地传递或者屏蔽指定频率范围内的信号,从而实现对电磁干扰的抑制。

一般来说,低通滤波器是指可以通过低于其中一特定频率的信号,而对高于该特定频率的信号进行滤波的电路。

低通滤波器常用于消除高频电磁干扰。

一个常见的低通滤波器电路是RC滤波器,由电容器和电阻器组成。

电容器对于高频信号具有很大的阻抗,从而将高频信号绕过电路,实现滤波作用。

选择合适的电容和电阻大小可以实现对于特定频率的信号滤波。

相比之下,高通滤波器是指可以通过高于其中一特定频率的信号,而对低于该特定频率的信号进行滤波的电路。

高通滤波器常用于消除低频电磁干扰。

一个常见的高通滤波器电路是RL滤波器,由电感器和电阻器组成。

电感器对于低频信号具有很大的阻抗,从而将低频信号绕过电路,实现滤波作用。

选择合适的电感和电阻大小可以实现对于特定频率的信号滤波。

除了RC和RL滤波器,还有其他各种类型的EMI滤波器电路,比如LC滤波器、二阶滤波器、传输线滤波器等,可以根据具体应用的需求进行选择和设计。

在EMI滤波器电路的设计中,首先需要确定需要滤波的频率范围,然后根据频率范围选择合适的滤波器类型。

其次,需要根据滤波器的阻抗特性和传输线的特性来选择适当的元件值。

还需要注意电路的功率和电流容量,以确保电路能够在正常工作范围内工作。

在实际应用中,EMI滤波器电路通常需要与其他电路结合使用,比如与电源、传输线路、信号线路等进行连接。

因此,需要特别注意电路的布局和接线,以减少电磁干扰的传播路径。

总之,EMI滤波器电路是一种用于抑制电磁干扰的重要电路,通过选择性地传递或者屏蔽指定频率范围内的信号,实现对电磁干扰的抑制。

在设计EMI滤波器电路时,需要根据具体应用需求选择合适的滤波器类型,并根据电路的阻抗特性和传输线的特性选择适当的元件值。

电源电路emi设计

电源电路emi设计

电源电路emi设计一、概述电源电路的EMI(电磁干扰)设计是确保电子设备稳定运行的关键环节。

以下介绍电源电路EMI设计的各个方面,包括输入滤波器设计、输出滤波器设计、接地设计、屏蔽设计、布局设计、电缆设计、去耦电容设计、电源模块选择、传导干扰抑制和辐射干扰抑制。

二、输入滤波器设计输入滤波器的主要目的是减小电源线上的传导干扰。

设计时应考虑使用低通滤波器,以减小高频率的噪声。

同时,要选择适当的元件参数,以在不影响正常工作电流的情况下,有效滤除噪声。

三、输出滤波器设计输出滤波器的目的是减小设备对外的电磁辐射。

应使用适当阶数和元件参数的滤波器,并根据设备的工作频率和可能的辐射频率来确定滤波器的特性。

四、接地设计良好的接地是EMI设计的关键。

应选择适当的接地方式,如单点接地、多点接地或混合接地,以减小接地阻抗,降低因地线导致的电压降,从而减小共模电流。

五、屏蔽设计屏蔽是减少电磁辐射的有效方法。

可以使用金属屏蔽材料对电源线和电源组件进行屏蔽,以减少外部电磁场对设备的影响和设备对外部的电磁辐射。

六、布局设计电源电路的布局设计对于EMI控制至关重要。

应合理安排电源电路中各元件的位置,尽量减小元件间的电磁耦合,降低噪声的传播。

七、电缆设计电缆是电磁干扰的主要传播途径之一。

应选择低阻抗、低感抗的电缆,并进行合理的电缆布局和捆扎,以减小电缆对电磁干扰的传播。

八、去耦电容设计去耦电容可以减小电源中的噪声,提高电路的稳定性。

在电路板上的关键元件附近应合理放置去耦电容,并选择适当的电容值和耐压值。

九、电源模块选择在电源模块的选择上,应优先考虑具有良好EMI性能的模块。

这可以大大简化EMI设计的难度,提高系统的稳定性。

十、传导干扰抑制传导干扰可以通过在设备的输入端加装滤波器来抑制。

根据干扰的频率和强度,可以选择使用各种不同类型的滤波器,如π型滤波器、级联滤波器等。

此外,合理选择和使用电容器、电感器等元件,也可以有效地抑制传导干扰。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。

开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。

EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。

EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。

EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。

不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。

2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。

选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。

3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。

4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。

此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。

总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试引言:随着电子设备的广泛应用,电源滤波器的重要性日益突出。

由于电子设备会产生较大的电磁干扰(EMI),这些干扰信号会传播到电源网络中,可能会干扰其他设备的正常运行。

因此,正确设计和测试EMI电源滤波器对于电子设备的稳定运行至关重要。

一、EMI电源滤波器的设计1.确定滤波器的类型:常见的滤波器类型有低通滤波器、带通滤波器和带阻滤波器。

根据特定应用的需求,选择合适的滤波器类型。

2.确定滤波器的频率范围:根据所需的高频抑制能力,选择适当的频率范围。

一般来说,电源干扰的频率范围为100kHz至100MHz。

3.确定滤波器的元件:根据所选滤波器类型和频率范围,选择适当的元件。

常见的元件包括电容器、电感器和阻抗。

4.设计滤波器电路:根据所选元件的电感值和电容值,使用传统的电路设计方法设计滤波器电路。

5.进行仿真和优化:使用电路仿真软件,对设计的滤波器电路进行仿真和优化。

通过调整元件值,使得滤波器在所选频率范围内具有最佳的抑制效果。

6.制作和组装滤波器:根据设计的滤波器电路,制作电路板并组装滤波器。

二、EMI电源滤波器的测试完成滤波器设计后,需要进行测试以确保其设计和性能的有效性。

以下是几个常见的EMI电源滤波器测试方法:1.静态电源测试:在电源线输入端与滤波器间,使用功率分配器和示波器测试静态电源特性。

测试过程中,记录电源线的电压和电流波形,评估滤波器阻尼和节能能力。

2.功率线谐波测试:使用功率线谐波测量仪器,测试滤波器是否能够有效抑制功率线谐波干扰信号。

测试过程中,记录功率线的谐波波形,并与滤波器前后的谐波波形进行比较。

3.射频干扰测试:使用射频信号发生器和射频频谱分析仪,测试滤波器是否能够有效抑制射频干扰信号。

测试过程中,调整射频信号的频率和幅度,记录射频信号在滤波器前后的幅度和频谱。

4.整体性能测试:测试滤波器的整体性能,包括频率响应、损耗和抑制能力等。

测试过程中,使用信号发生器和示波器记录输入和输出信号,并计算滤波器的传递函数、损耗和抑制程度。

EMI(1级2级)滤波器设计方法

EMI(1级2级)滤波器设计方法
N N
电压法:双LISN法,差共摸分离器 80dB
差模噪声
共模噪声
7
确定所需的插入损耗
原始差模噪声
105 100
ቤተ መጻሕፍቲ ባይዱ
DM limitpk
80
60
40 20 20 5 110 150 10 3 1106 1107 1108 100 10 6 80 60 80
滤波器所需的差模插入损耗
f1 f2
4) 一阶差模EMI滤波器的转折频率 fcdm为:
Vdmreq 60
-60dB/Dec 150kHz fcdm
所需要的IL(或) 所需要的IL
200
f cdm 10
fTdm 4.74kHz
100
0
5) 由fcdm选取Cx1, Cx2及 Ldm :
100 1 ´10
3
100 200
电应力
效率/功率密度
温升规范
EMI规范
3
二、EMI滤波器理想参数设计
4
滤波器插入损耗IL的定义
在滤波器的设计中,通常用插入损耗来反映使用该滤波 器和未使用前信号功率的损失和衰减程度。插入损耗越大, 表示衰减越多,滤波器的效果越好。
50
+
50 v
50
+
50 滤波器 v
v1
-
v2
-
插入损耗:
0
100 200
100
1 ´10
3
1 ´10
4
1 ´10
5
1 ´10
6
1 ´10
7
1 ´10
8
ff
VdmIL 90.149dB @ f 150kHz

三相emi滤波电路参数设计

三相emi滤波电路参数设计

三相emi滤波电路参数设计(实用版)目录1.三相 EMI 滤波电路的概述2.三相 EMI 滤波电路的设计参数3.参数设计时的注意事项4.应用场景正文一、三相 EMI 滤波电路的概述三相 EMI 滤波电路,是一种用于抑制和减少电磁干扰(EMI)的电路。

EMI 滤波器主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰。

它可以利用电感和电容的特性,使频率为 50Hz 左右的交流电可以顺利通过滤波器,但高于 50Hz 以上的高频干扰杂波被滤波器滤除。

因此,它又有另外一种名称,将 EMI 滤波器称为低通滤波器。

二、三相 EMI 滤波电路的设计参数在设计三相 EMI 滤波电路时,主要需要考虑以下参数:1.电流:根据电路的额定电流选择合适的电感值。

通常情况下,三相滤波器的额定电流为 3A 至 1600A。

2.电感值:电感值的选择需要考虑电路的频率响应和滤波效果。

一般来说,电感值越大,滤波效果越好,但同时会增大电路的体积和成本。

3.电容值:电容值的选择需要考虑电路的频率响应和滤波效果。

通常情况下,电容值越大,滤波效果越好,但同时会增大电路的体积和成本。

4.滤波器的阻抗:滤波器的阻抗需要与电路的阻抗相匹配,以保证滤波器能够有效地工作。

三、参数设计时的注意事项在设计三相 EMI 滤波电路时,需要注意以下几点:1.电感和电容的选择需要综合考虑电路的滤波效果、体积、成本等因素。

2.滤波器的阻抗需要与电路的阻抗相匹配,以保证滤波器能够有效地工作。

3.在设计过程中,需要考虑电路的可靠性和稳定性,以保证电路在长时间运行过程中不会出现故障。

4.在选择电感和电容的材质时,需要考虑其对电磁干扰的抑制能力以及其本身的稳定性。

四、应用场景三相 EMI 滤波电路广泛应用于各种电子设备中,如计算机机房、开关电源、测控系统等领域。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

02
EMI滤波器的工作原 理
EMI滤波器的电路组成
EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁 珠、二极管等其他元件。其中,电感和电容的作用是阻止特定频率的电磁波通过 ,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、 以及所需的滤波效果等因素来确定元件的参数和电路结构。
利用仿真软件对所设计 的滤波器电路进行仿真 验证,确保其性能指标 符合要求。
将所设计的滤波器电路 制作成样品,并进行测 试,确保其实际性能符 合设计要求。
参数选择与Leabharlann 算确定插入损耗插入损耗是指滤波器插入前后信 号电平的差值,是衡量滤波器性 能的重要指标之一。插入损耗的 计算方法包括频域法和时域法等
EMI滤波器的频带宽度表示其 能够抑制的电磁波频率范围。 频带越窄,表示滤波器对电磁 波的抑制效果越集中;频带越 宽,表示滤波器对电磁波的抑 制效果越广泛。
EMI滤波器的耐压等级表示其 能够承受的最大电压。在选择 滤波器时,需要根据开关电源 的最大输出电压来确定耐压等 级。
03
EMI滤波器的设计方 法
方法
根据电源的特性,选择合 适的EMI滤波器器件,包 括电容器、电感器、二极 管等,进行电路设计。
结果
通过优化设计,有效地降 低了电源的电磁干扰,提 高了电源的稳定性和可靠 性。
案例二
1 2 3
背景
某复杂电路板在运行过程中出现了信号失真和噪 声干扰问题,需要进行EMI滤波器优化设计。
方法
对电路板进行电磁兼容性分析,找出电磁干扰的 主要来源,选择合适的EMI滤波器器件和电路拓 扑结构,进行优化设计。
VS

EMI电源滤波器的设计

EMI电源滤波器的设计

EMI电源滤波器的设计EMI电源滤波器通常由三部分组成:差模滤波部分、共模滤波部分和终端滤波部分。

差模滤波器主要用于滤除差模模式的干扰信号,共模滤波器主要用于滤除共模模式的干扰信号,而终端滤波器用于进一步滤除残余的高频干扰信号。

在设计EMI电源滤波器时,首先需要确定所需的滤波频率范围以及所能容忍的最大干扰水平。

然后,选择合适的滤波器拓扑结构和元件。

常用的拓扑结构包括RC滤波器、LC滤波器、Pi型滤波器、T型滤波器等。

具体的设计步骤如下:1.确定滤波频率范围:根据应用需求和电磁兼容性(EMC)标准要求,确定滤波器应该滤除的频率范围。

2.选择滤波器拓扑结构:根据滤波频率范围选择合适的滤波器拓扑结构。

RC滤波器适用于低频滤波,LC滤波器适用于高频滤波,Pi型滤波器和T型滤波器适用于中频滤波。

3.计算元件数值:根据滤波器的拓扑结构和所需的滤波频率范围,计算出所需的电阻、电容和电感元件的数值。

这些元件的数值可以通过经验公式或者电路仿真工具进行计算。

4.选取合适的元件:根据计算的元件数值,选取合适的电阻、电容和电感元件。

在选取电感元件时,需要考虑元件的电流和电压容量,以保证滤波器的可靠性和稳定性。

5.组装滤波器电路:根据设计的滤波器电路图,组装电阻、电容和电感元件。

在组装过程中,需要确保元件的良好焊接和连接,以避免电流或电压泄漏。

6.测试和优化:组装完成后,对滤波器进行测试和优化。

通过使用示波器或者频谱分析仪等测试设备,可以检测滤波器的滤波效果和性能,并进行必要的优化调整。

总结起来,EMI电源滤波器的设计需要经过确定滤波频率范围、选择滤波器拓扑结构、计算元件数值、选取合适的元件、组装滤波器电路和测试优化等步骤。

通过合理的设计和优化,可以有效降低电源中的电磁干扰,提高电子设备的可靠性和稳定性。

EMI电源滤波器的设计

EMI电源滤波器的设计

EMI电源滤波器的设计EMI(Electromagnetic Interference)电源滤波器是一种用来减少或阻止电源上的电磁干扰的设备。

电磁干扰可能会来自电源本身,也可能是外部电源信号通过电源线传播进来。

在电气和电子设备中,EMI电源滤波器的设计是非常重要的,它可以有效地减少电磁干扰对电子设备正常运行的干扰。

本文将介绍EMI电源滤波器的设计过程和相关考虑因素。

首先,EMI电源滤波器的设计需要明确滤波器的目标和要求。

不同的应用场景和要求可能需要不同类型或不同参数的滤波器,因此在设计之前需要明确这些要求。

一般来说,EMI电源滤波器的主要目标是滤除电源线上的高频干扰信号,保证电源线上的电能传输稳定和可靠。

接下来,设计者需要考虑滤波器的工作频率范围。

EMI电源滤波器一般工作在几十kHz至几十MHz的范围内,设计时需要选择适当的频率范围,并且根据实际应用场景确定滤波器的通带和阻带要求。

在设计过程中,选择合适的滤波器拓扑结构是非常重要的。

常见的EMI电源滤波器拓扑结构包括低通滤波器、带通滤波器和带阻滤波器等。

低通滤波器用于滤除高频干扰信号,常见的结构包括RC低通滤波器和LC低通滤波器等。

带通滤波器可以滤除一定范围的频率信号,常见的结构包括LC带通滤波器和RL带通滤波器等。

带阻滤波器可以滤除一些特定频率范围的信号,常见的结构包括LC带阻滤波器和RL带阻滤波器等。

根据实际应用需求,选择合适的滤波器结构。

在滤波器的具体参数设计中,设计者还需要考虑滤波器的阻抗匹配问题。

滤波器与电源或负载间的阻抗匹配是保证滤波器正常工作的重要因素。

通过合适的阻抗匹配,可以最大限度地减小传输线上的能量反射,提高滤波器的传输效率,并减少干扰信号的发射和接收。

此外,设计者还需要根据实际应用场景确定滤波器的输入和输出连接方式。

常见的连接方式包括串联连接、并联连接和混合连接等。

选择合适的连接方式可以提高滤波器的实际性能和可靠性。

最后,为了确保EMI电源滤波器的正确设计和工作,设计者需要进行相关的测试和验证。

开关电源emi滤波器原理与设计

开关电源emi滤波器原理与设计

1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚

(word完整版)emi滤波器设计规范

(word完整版)emi滤波器设计规范

EMI滤波器设计规范一、目的:1、抑制设备内部EMI,通过电源线,对电网和其他电子设备的干扰,通过EMC的传导和辐射试验测试;2、抑制电网和外部设备EMI通过电源输入线对设备的干扰,通过EMC的抗扰度试验测试;二、参考标准:GJB 151A-97 军用设备和分系统电磁发射和敏感度要求GB/T 17626.1-1998 电磁兼容实验和测量技术抗扰度实验总论GB 17625.1-2003 电磁兼容限值谐波电流发射限值(设备每相输入电流镇≤16 A)GB/T 14472—1998 抑制电源电磁干扰用固定电容器三、设计原则:1、阻抗失配原则:源内阻是高阻抗的,则滤波器的输入阻抗就应该是低阻抗的,反之也同样成立;2、干扰分离原则:共模干扰与差模干扰分开测量,分开设计滤波参数;四、设计要求:1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);2)对电网频率低衰减(满足规定的通带频率和通带低衰减);3)低成本.五、滤波器模型及阻抗失配端接要求:滤波器设计一般含有共模电感和差模电感,如果差模电感以共模电感的漏感代替,设计电路为下图:N2CY2CY 1CY1CY1CX2CXL图1:EMI滤波器典型结构设计电路的模型为下图50Ω50ΩCX1CYLCCX2CYLNLD骚扰源图2:一般模型共模模型如下25Ω2CYL N共模LC LD/2噪声图3:共模模型L CM =LC+LD/2 (1)C CM =2CY (2)2CyL 21)2Cy 2/LD (LC 21f C CM R,⨯≈+=ππ (LC 〉〉LD/2)差模模型如下:100ΩCY/2L N共模LC2LD噪声CX1CX2图4:差模模型 L DM =2LD+LC (3)C DM =C x1/2=C x2/2(4) (C Y /2可省略)X1C DM DM R,)C L L 2(221f +⨯=π差模和共模的衰减曲线如下:图5:衰减曲线六、滤波器设计:1、 测量干扰源等效阻抗Z source 和电网等效阻抗;2、 测量出未加滤波器前的干扰噪声频谱,并利用噪声分离器将共模噪声V MEASUREE,CM 和差模噪声V measure ,CM 分离,做出相应的干扰频谱;3、 计算滤波器所需要的共模、差模衰减:(V req,CM )dB=(V measure ,CM )-(V standard,CM )+3dB(V req ,DM )dB=(V measure,DM )-(V standard ,DM )+3dB4、 斜率分别为40dB/dec 和60dB/dec 的两条斜线与频率轴的交点即为f R ,CM 和f R ,DM 。

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试
EMI(电磁干扰)电源滤波器是用于减少电源中的噪声和电磁干扰的一种装置。

在电源系统中,由于电源设备的运行,会产生电磁干扰并向电源线路传播。

这些干扰信号可能会影响其他设备的正常运行,因此需要采取措施来减少这些干扰。

首先,需要确定滤波器的频率范围。

根据要滤除的干扰信号的频率范围,可以选择适当的滤波器类型。

常见的滤波器类型包括:低通滤波器、带通滤波器和带阻滤波器。

其次,需要选择合适的滤波器参数。

滤波器参数包括:滤波器的截止频率、阻抗特性和衰减特性等。

这些参数的选择需要根据具体的应用需求和电源系统的特点来确定。

然后,需要进行EMI电源滤波器的设计。

可以使用模拟电路设计软件进行电路设计和模拟仿真,以验证滤波器的性能。

设计时需要考虑电容和电感的选择、滤波器电路的布局和组成部分之间的连接方式等。

设计完成后,需要进行EMI电源滤波器的测试。

测试可以使用仪器设备来进行,如频谱分析仪、信号发生器和示波器等。

测试时需要验证滤波器的频率响应、衰减特性和滤波效果等。

在测试中,可以通过调整滤波器参数和组成部分,进一步优化滤波器的性能。

如果测试结果不理想,可以尝试采取其他设计方法或更换滤波器元件。

总之,EMI电源滤波器的设计与测试是一项复杂的工作,需要综合考虑多个因素。

通过合理的设计和精确的测试,可以实现对电源中噪声和电磁干扰的有效滤除,提高电源系统的稳定性和可靠性。

三相emi滤波电路参数设计

三相emi滤波电路参数设计

三相emi滤波电路参数设计一、引言随着现代电力电子技术的快速发展,电磁干扰(EMI)问题日益严重。

三相EMI滤波电路作为抑制电磁干扰的有效手段,在各种电子产品和系统中得到了广泛应用。

本文将探讨三相EMI滤波电路的原理及参数设计方法,以期为相关领域的研究和应用提供参考。

二、三相EMI滤波电路原理1.滤波原理三相EMI滤波电路主要用于抑制电源侧和负载侧的电磁干扰,其滤波原理主要是利用电感和电容对电流的谐波进行滤波。

在三相系统中,滤波器需承受三相电压的谐波分量,因此需要设计合理的电感和电容参数以达到较好的滤波效果。

2.电路组成三相EMI滤波电路主要由电感、电容和电阻组成。

电感主要用于抑制高频谐波,电容主要用于抑制低频谐波,电阻主要用于限制滤波后的电流。

在实际应用中,电感、电容和电阻的选取和组合对滤波效果具有重要影响。

三、三相EMI滤波电路参数设计1.电感参数设计(1)电感量选择:电感量越大,滤波效果越好,但电感器的体积和重量也会相应增大。

在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电感量。

(2)电感寄生参数影响:电感器的寄生电阻和电容会影响滤波效果。

在设计时,应尽量选择低电阻、低电容的电感器,以提高滤波效果。

2.电容参数设计(1)电容量选择:电容量越大,滤波效果越好,但电容器的体积和重量也会相应增大。

在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电容量。

(2)电容寄生参数影响:电容器的寄生电阻和电感会影响滤波效果。

在设计时,应尽量选择低电阻、低电感的电容器,以提高滤波效果。

3.电阻参数设计(1)电阻值选择:电阻值越大,滤波后的电流越小,但电阻产生的热量也会相应增大。

在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电阻值。

(2)电阻寄生参数影响:电阻的寄生电感和电容会影响滤波效果。

在设计时,应尽量选择低电感和低电容的电阻,以提高滤波效果。

四、电路调试与优化1.调试方法电路调试主要包括元件参数测量、滤波效果测试等环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
5.2.3 滤波器的主要特性
滤波器最主要的特性参数有额定电压、额定电流、 频率特性、输入输出阻抗、插入损耗以及传输频 率特性等。 额定电压 指输入滤波器的最高允许电压值。若输入滤波器 的电压过高,会使内部电容损坏。 额定电流 指在额定电压和规定环境温度条件下,滤波器所 允许的最大连续工作电流。一般使用温度越高其 允许的工作电流越小。同时,工作电流还与频率 有关:工作频率越高,其允许电流越小。
U o ( j ) 衰减系数= 20 lg (单位dB) U i ( j )
式中:U o —— 滤波器的输出信号, U—— 滤波器的输入信号, i 信号的角频率。 ——
20
5.2.4 滤波器的分类 按滤波器的作用对象分类
根据滤波器的作用对象可以分为电源滤波器和信 号滤波器。
21
滤波器的分类
由于电磁干扰滤波器的作用是抑制干扰信号的通 过,所以它与常规滤波器有很大的不同。 (1) 电磁干扰滤波器应该有足够的机械强度、安 装方便、工作可靠、重量轻、尺寸小及结构简单 等优点。
15
(2) 电磁干扰滤波器对电磁干扰抑制的同时,能 在大电流和电压下长期工作,对有用信号消耗要 小,以保证最大传输效率。 (3) 由于电磁干扰的频率是20Hz到几十GHz,故 难以用集总参数等效电路来模拟滤波电路。 (4) 要求电磁干扰滤波器在工作频率范围内有比 较高的衰减性能。 (5) 干扰源的电平变化幅度大,有可能使电磁干 扰滤波器出现饱和效应。 (6) 电源系统的阻抗值与干扰源的阻抗值变化范 围大,很难得到使用稳定的恒定值,所以电磁干 扰滤波器很难工作在阻抗匹配的条件下。
28
29
低通滤波器 :它是最常用的一种电磁兼
容滤波器,主要用在干扰信号频率比工作 信号频率高的场合。电源线滤波器也是低 通滤波器,它仅允许50Hz的电流通过,对 其他高频干扰信号有很大的衰减。低通滤 波器的频率特性如下图所示,其中ωC为截 止频率。
30
31
5.2.6 低通滤波器的分类
常用的低通滤波器是用电感和电容组合而成的, 电容并联在滤波器的信号线与信号地线之间(滤除 差模干扰电流)或信号线与机壳地或大地之间(滤 除共模干扰电流),电感串联在要滤波的信号线上。 按照电路结构分,有单电容型(C型)、单电感型(L 型)、Γ型和反Γ型、T型和Π型。不同结构的滤波 电路主要有两点不同: (1) 电路中的滤波器件越多,则滤波器阻带的衰 减越大,滤波器通带与阻带之间的过渡带越短。
22
23
按照对不需要的信号能量的抑制方式分类
按照对不需要的信号能量的抑制方式分类又可分 为反射式滤波器和吸收式滤波器。
5.2.5 反射式滤波器 带阻滤波器
带阻滤波器是指用于对特定窄频带(在此频带内可 能产生电磁干扰)内的能量进行衰减的一种滤波器。 其频率特性如下图所示,其中ωC1和ωC2为截止频 率。带阻滤波器是用作串联在负载和干扰源之间 的抑制器件。
第5章 电磁干扰滤波器
刘 洋 应用物理教研室
1
滤波器的特性
• 滤波是抑制传导干扰的一种重要方法 • 采用滤波器的目的是分离信号、抑制干扰。 • 滤波器是由集中参数或分布参数的电阻、 电感和电容构成的一种网络。
2
电磁兼容滤波器设计是电磁兼容设计工程中的一 个非常重要的环节。有时候设计的滤波器性能如 何会决定整个电器设备是否能够正常工作。但因 为电磁兼容滤波器的设计涉及的知识面非常广, 设计出一个性能较好的滤波器并不是一件容易的 事情。
I L (S )
频率特性为 A( j ) U L ( j ) jL I L ( j ) 对数幅频特性为
5.1 干扰的分类
5.1.1 按噪声产生的原因分类 放电噪声
主要是因为雷电、静电、电动机的电刷跳动、大 功率开关触点断开等放电产生的噪声。
3
高频振荡噪声
主要是中频电弧炉、感应电炉、开关电源、直 流—交流变换器等产生高频振荡时形成的噪声。
浪涌噪声
主要是交流系统中电动机启动电流、电炉合闸电 流、开关调节器的导通电流以及晶闸管变流器等 设备产生涌流引起的噪声。 这些干扰对微机测控系统都有严重影响,必须认 真对待,而其中尤以各类开关通、断电时所产生 的干扰最难以抑制或消除。
7
在这个地电压的驱动下产生电流;第三
从定义容易理解:共模电流本身并不会对电路产 生影响,只有当共模电流转变为差模电流(电压) 时,才会对电路产生影响,这种情况发生在电路 不平衡的情况下。 另外,如果设备在其电缆上产生共模电流,则电 缆会产生强烈的电磁辐射,造成设备不能满足电 磁兼容标准中对辐射发射的限制要求,或对其他 设备造成干扰。
12
脉冲列
脉冲列多以最高幅值、前沿上升陡度、单个脉冲 宽度、脉冲序列持续时间等特征值表示,如接点 分断电感负载和接电反复重燃过电压等。该类噪 声呈现一定的周期性,能量较大,一般较难消除。 噪声中的主要能量是由干扰引起的。 • 消除有用信号中的噪声,从根本上来说,就是要 消除或降低干扰对电路的影响。我们可以针对不 同的噪声类型,设计或选用不同的防干扰滤波器。
4
5.1.2 按噪声传导模式分类
对于传导噪声,按其传导模式分为差模噪声和共 模噪声。
差模噪声
又称线间感应噪声或对称噪声。有些书中也称其 为串模噪声或常模噪声、横向噪声等。如下图所 示,噪声往返于两条线路间,N为噪声源,R为受 扰设备,UN为噪声电压,噪声电流IN和信号电流 IS的路径在往返两条线上是一致的。
35
对数幅频特性为:20 lg A( ) 20 lg 1 20 lg C C
显然,随着频率 = 2π f
滤波器的输出电压衰 减逐渐增加,起到了 低通滤波效果。其输 入输出特性如下图(d) 所示。
滤波器的电容要有耐压高、 绝缘好、温度系数小和自 谐振频率高等特性。
36
下图(a)所示的滤波器结构最简单,接在干 扰源线间能衰减串模噪声;接在干扰源和 地线间能衰减共模噪声;接在印刷电路板 中的直流电源线和地线间能抑制电源噪声。
13
14
5.2 电磁干扰滤波器 5.2.1 电磁干扰滤波器的工作原理
电磁干扰滤波器的工作原理与普通滤波器一样, 它能允许有用信号的频率分量通过,同时又阻止 其他干扰频率分量通过。其方式有两种:一种是 不让无用信号通过,并把它们反射回信号源;另 一种是把无用信号在滤波器里消耗掉。
5.2.2 电磁干扰滤波器的特殊性
共模噪声转化成差模噪声
从本质上讲,共模噪声是可以除掉的。但是由于 线路的不平衡状态,共模噪声会转化成差模噪声。 可用下图来说明共模噪声转化成差模噪声的原理。
9
在上图中,N为噪声源,L为负载,Z1和Z2是导线1 和导线2的对地阻抗。如果Z1 = Z2,则噪声电压
10
VN1和噪声电压VN2相等,从而噪声电流IN1 和IN2相 等,即噪声电流不流过负载。然而当Z1 ≠Z2 时, 则VN1 ≠ VN2,从而IN1≠IN2,于是VN1 - VN2= VN, VN /ZL=IN (ZL为负载阻抗),这是常模噪声。
5.1.3 按噪声波形及性质分类 持续正弦波
持续正弦波多以频率、幅值等特征值表示,是一 种典型的周期噪声。最常见的该类噪声就是50Hz 的工频噪声。这种噪声出现在直流电源上表现为 纹波,出现在声音信号中,表现为惹人烦的交流 声,出现在视频影像信号中,为横条干扰。
偶发脉冲电压波形
这种噪声多以最高幅值、前沿上升陡度、脉冲宽 度以及能量等特征值表示。例如雷击波、接点分 断电压负载和静电放电等波形。该类噪声周期性 不明显,在通信信号中,容易引起突发误码。
17
频率特性
滤波器的频率特性是描述其抑制干扰能力的参数, 通常用中心频率、截止频率以及上升和下降斜率 表示。
输入输出阻抗
从信号源到滤波器输入的阻抗称为输入阻抗,滤 波器输出到接收电路的阻抗称为输出阻抗。选择 滤波器需要考虑阻抗匹配,以防止信号衰减。
插入损耗
描述滤波器性能的最主要参量是插入损耗,插入 损耗的大小随工作频率不同而改变。插入损耗的 定义是:
因此,当发现常模噪声时,首先考虑它是否由于 线路不平衡状态而从共模噪声转化来的。通常, 输入输出线与大地或机壳之间发生的噪声都是共 模噪声,信号线受到静电感应时产生的噪声也多 为共模噪声。抑制共模噪声的方法很多,如屏蔽、 接地和隔离等。抗干扰技术在很多方面都是围绕 共模噪声来研究其有效的抑制措施。
11
24
25
带通滤波器
带通滤波器正好和带阻滤波器相反,它是指作用 于对特定窄频带外的能量进行衰减的一种滤波器。 带通滤波器是并接于干扰线和地之间,以消除电 磁干扰信号,达到兼容的目的。其频率特性如下 图所示,其中ωC1和ωC2为截止频率。 它用在信号频率仅占较窄带宽的场合,如通信接 收机的天线端口上要安装带通滤波器,仅允许通 信信号通过。
26
27
高通滤波器
在降低电磁干扰上,高通滤波器虽不如低通滤波 器应用广泛,但也有用途。特别是这种滤波器一 直被用于从信号通道上滤除交流电流频率或抑制 特定的低频外界信号。设计高通滤波器时,均采 用倒转方法,凡满足倒转原则的低通滤波器可以 很方便地变成所需要的高通滤波器。倒转原则就 是将低通滤波器的每一个线圈换成一个电容器, 而每一个电容器换成一个线圈,就可变成高通滤 波器。 高通滤波器用在干扰频率比信号频率低 的场合,如在一些靠近电源线的敏感信号线上滤 除电源谐波造成的干扰。它的频率特性如下图所 示,其中ωC为截止频率。
18
V1 Lin 20 lg V2
式中:V1---信号源通过滤波器在负载阻抗上 建立的电压(V); V2---不接滤波器时信号源在同一负载 阻抗上建立的电压(V); Lin---插入损耗(dB)。
19
传输频率特性
滤波器最重要的是其传输频率特性,可用对数幅 频特性20lgA来表示。在抗干扰技术中又称为衰 减系数,即:
按滤波器对频率的选择性能来分类,则可分为低 通、高通、带通和带阻四种滤波器. 按频带来分,滤波器分为低频、高频、甚高频、 超高频和微波滤波器. 按网络中是否含有电源来分,滤波器分为有源和 无源滤波器。 按组成滤波器的元件特征来分,滤波器分为 LC 滤波器,晶体滤波器,机械滤波器,陶瓷滤波器, 螺旋滤波器等。 按滤波器的功能来分,滤波器分为反射滤波器和 损耗滤波器两类。
相关文档
最新文档