氯离子腐蚀及不锈钢知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化.本文分析了氯离子对金属腐蚀的机理,并针对热力系
统内部氯离子的来源,提出了相应的解决措施.
岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析
Analysis of Pitting Corrosions on 316L Stainless Steel Pipes of
Circulation Water Filtering System in Ling抋o Nuclear Power Station
简隆新1 ,时建华2
(1.中广核工程有限公司,广东深圳518124;
2.大亚湾核电运营管理有限公司,广东深圳518124)
简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况,分析了316L不锈钢的抗腐蚀性。详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。
316L不锈钢;管道;点腐蚀
Abstract: This paper gives a general introduction to the rotating drum filter back flushing system and the usage
of 316L stainless steel pipes. It also analyses the characteristic of anti-corrosion of 316L stainless steel. At the
same time, it gives a detailed introduction to the mechanism of forming pitting corrosion and the factors
affecting its formation. The analysis of the pitting phenomena and suggestion for the pipe material selection are
also discussed in this paper.
Key words: 316L Stainless steel; Pipe; Pitting corrosion
1 循环水旋转滤网反冲洗系统简介
循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚
7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物-6。1×10 滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在
2 316L不锈钢管道的使用情况
CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。
3 316L不锈钢的抗腐蚀性分析
316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不
锈钢抗氯离子点腐蚀的能力较差。
4 不锈钢的点腐蚀机理
在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。金属腐蚀按机理分为化学腐蚀和电化学腐蚀。点腐蚀属于电化学腐蚀中的局部腐蚀。一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
4.1 电化学腐蚀的基本原理
通过原电池原理可以更好地说明电化学腐蚀机理。当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K(25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。另外一个重要影响因素是金属表面覆盖着的薄膜。除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
4.2 不锈钢的耐腐蚀原理
不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。起完全保护作用所需的铬的比例取决于使用条件。在水溶液中,需要12%的铬产生自钝化作用
形成包含大量Cr2O3的很薄的保护膜。在气态氧化条件下,低于1000℃时,12%的铬有很好的
抗氧化性,在高于1000℃时,17%的铬也有很好的抗氧化性。当金属含铬量不够或某些原因造
成不锈钢晶界出现贫铬区的时候,就不能形成有效的保护性膜。
4.3 氯离子对不锈钢钝化膜的破坏
处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。当介质中含有活性阴离子(常见的如氯离子)时,平衡便受到破坏,溶解占优势。其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20~30μm),这些小蚀坑称为孔蚀核,亦可理解为蚀孔生成的活性中心。氯离子的存在对不锈钢的钝态起到直接的破环作用。图1表征了金属钝化区随氯离子浓度增大而减小。
A-不存在氯离子;B-低浓度氯离子;C-高浓度氯离子