数字视频处理技术

数字视频处理技术
数字视频处理技术

多媒体CAI课件制作中的数字视频处理技术

摘要:在多媒体CAI课件中,视频是一种重要的多媒体元素。利用数字视频技术对视频材料进行编辑制作和加工处理,是多媒体课件开发中的重要一环。本文探讨了数字视频技术在多媒体CAI课件制作中的应用,着重从数字视频处理硬件技术、数字视频采集与压缩、数字视频编辑三方面进行了阐述。

关键词:多媒体数字视频处理非线性编辑

引言

多媒体CAI课件是由计算机对视频、音频、图像、动画、文字等进行处理,使之有机结合在一起成为应用于教学的信息载体。它突破了文字的限制,以更加自然、逼真的方式展示视听世界,对改善人机交互能力和知识表达能力起到了重要作用。

随着多媒体计算机性能的大幅度提高和视频技术的长足发展,数字视频技术在多媒体CAI课件中得到了越来越广泛的应用。尤其在展示事实性知识及实时操作方面有着其他媒体无法比拟的优越性:(1)视频画面是真实世界的记录,使教学更富客观性和真实性。(2)其运动连续的特点有利于表现事物的相互关系,变抽象为形象,有利于学生对知识的理解和巩固。多媒体CAI课件中的数字视频处理包括视频捕获、视频编辑、视频压缩/解压缩以及视频重放等环节。

一、数字视频处理硬件技术

PC机用来处理视频的硬件设备的功能包括:视频捕获、视频压缩、视频重放等。制作多媒体CAI课件的计算机在处理数字视频时要求相应的硬件支持。

1.多媒体计算机主机

对数字视频进行处理的多媒体计算机需要较高的配置。CPU选用PⅡ/400以上,最好能达到PⅢ/500,内存不能低于128M,256kB以上二级CACHE,以提高整体速度和处理能力。硬盘最好选用SCSI硬盘,平均存取时间要低于15ms,数据传输率要达到8000kB/s,这能较好地保证系统的稳定性。笔者选用市场上常见的7200rad/min的IDE硬盘进行试验,无法保证稳定连续的采集和回放。

2.视频采集卡

视频采集卡又称视频捕捉卡,用它可获取数码化视频信息,并将其存储和播放出来。多媒体课件制作时需用到的视频素材多为模拟信号,将模拟信号转化变为计算机能识别的数字信号,多采用视频采集卡来完成。有些视频采集卡还提供硬压缩功能,采集速度快,可成功实现每秒30帧,全屏幕视频数字化捕捉。

视频采集卡按档次不同,有不同的采集精度。专业用视频采集卡信号损失微小,如德国PINNACLE公司的TARGA3000专业视频采集卡,但价格昂贵。在多媒体课件制作中,推荐

选用OPTIBASE公司的XPRZSSS视频采集卡,此卡可以将模拟视频压缩成标准的MPEG-1的VCD格式,并且价格低,性能稳定,图象效果较好。

3.显示卡

显示卡是完成将数字信号转换成模拟信号功能的部件。它有三项最基本的指标,即最大分辨率、色深和刷新频率。显示卡应选用显存在8MB以上的24bit或32bit真彩色卡,要支持DirectDraw,这样才能保证信号采集和监视的同步。

4.压缩/解压缩卡

压缩/解压缩卡又称压缩/回放卡,是对动态视频图像进行实时压缩和回放的产品。在多媒体课件制作中,数字视频文件很大,而存储媒介的容量有限,因而必须对数字视频文件进行压缩。压缩/解压缩卡的特点是:压缩比越高,等效视频图像的质量越低,数据文件占用的存储空间越小。应根据需要综合考虑压缩后的文件质量、稳定性、价格、功能、易用性等因素选用适当的压缩卡/解压缩卡。

多媒体课件制作中的数字视频影像来源多为摄像机。摄像机分为模拟摄像机和数字摄像机。典型代表为BetaCam摄像机和DVCam摄像机。分解力、灵敏度和信噪比是衡量摄像机性能的三大技术指标,选购时应综合考虑。

由于模拟摄像机输出的是非数字格式的视频信号,原始影像在处理之前必须经过视频捕获卡采集和模/数转换,使其变为计算机可以接受的数字格式。

数字摄像机为新兴的摄像机,因其具有图象清晰,转录信号损失微小等优点,在课件制作系统中常用于拍摄实验演示资料片。高质量的视频源是高质量输出的前提。选用DV格式的数字摄像机,清晰度在500线,镜头和CCD的指标要高,以保证图象的最佳效果。选用带有DV数字输入/输出接口的数字摄像机,以保证与非线性编辑系统的数字无损传输。DV 信号经DV接口无须进行转换和压缩,制作成本低,效果好。

二、数字视频捕获和压缩技术

视频捕获指利用视频卡从视频源获取模拟视频信号,并将其转变为数字视频信号的过程,通常称之为桌面视频(计算机视频)捕获。在多媒体CAI课件制作中,常需要用该技术从信号源(摄像机等)采集视频影像进行编辑加工。

1.视频采集

视频捕获需要配备相应的视频输入设备,如摄像机、数码相机等;还需要视频捕获硬件——采集卡、采集压缩卡、1394卡和1394线及视频采集程序。视频采集程序可以是采集卡配套的应用程序,也可以是一个第三方厂家提供的应用程序。有的视频影像编辑软件的视频捕获(VideoCapture)是通过独立的程序完成(如MediaStudio),而有的捕获是集成的(如Premiere)。

视频采集卡是根据高速率下捕获不丢帧的能力来划分等级的,较高的速率会带来较好的影像质量。但是,当捕获速率设置得很高时视频采集卡在捕获过程中会发生丢帧现象。这

时可以降低捕获数据的速率,而捕获到完整的帧。笔者在制作中发现视频捕获速率最好设置为每秒10帧。每秒10帧和每秒15帧的视频速率肉眼几乎看不出有什么差别,图象质量和平滑度都比较好,但前者的文件大小是后者的三分之二。视频捕捉的时候应以最大尺寸768×576捕捉,即VideoFormat中选择Fullresolution和Bothfields选项,使视频信号的每个象素点都被数字化,所有区域都被捕捉到。

2.视频压缩

在视频信号数字化过程中需要解决的一个问题是存储容量。由于未经压缩的视频信号占用的存储空间非常大,所以视频压缩是关键的一个环节。通过压缩减少图像所要求的数据量,节省存储空间,提高存取速度。视频压缩技术除了利用空间冗余、频谱冗余和心理视觉冗余对视频图像进行帧内压缩外,还利用相邻图像帧之间的相似性而产生的时间冗余对视频图像进行帧间压缩,进一步提高压缩效率。

(1)Motion_JPEG压缩方式

Motion-JPEG通过帧内编码的过程单独地压缩每一帧,可使用户随机存取压缩视频的任意帧,也可以实现以很小的压缩比采集全尺寸的视频源。它的易编辑性及优于其他压缩方式的视频品质,使现在大多数视频非线性编辑产品均采用该压缩方式。

(2)MPEG压缩方式

MPEG(运动图像专家组)压缩标准是专门用于处理运动视频的。除使用JPEG帧内编码外,还利用帧间编码消除各帧间冗余信息。MPEG的压缩包括三部分:MPEG视频压缩、MPEG音频压缩、MPEG系统压缩。

在多媒体CAI课件制作中,常需要将文件刻录成VCD来保存。即需要将文件存储为MPEG -1标准。MPEG-1压缩算法以30帧/每秒、分辨率为350*240的标准图像格式(SIF)来处理NTSC视频信号;以25帧/秒、分辨率为352*288的SIF处理PAL制式视频信号。MPEG 压缩算法的压缩比可达200:1,其99%以上的数据要被丢掉。因此,MPEG压缩算法会导致图像细节的丢失而产生压缩失真,使压缩图像的质量有所下降。MPEG压缩图像的质量主要取决于视频输入图像的质量。因此要使MPEG图像的输出质量较好,应使用高质量的视频输入源。

三、数字视频编辑

在多媒体CAI课件制作过程中,视频媒体的编辑加工是提高课件质量的重要环节。通过对采集压缩后的视频媒体进行编辑,如剪辑、切换、特效制作等,使视频课件更富感染力、表现力。随着数字视频技术和多媒体计算机技术的融入,数码视频影像处理在传统的视频编辑基础上,产生了一种全新的编辑技术——计算机非线性编辑技术。

1.非线性编辑技术特点及典型过程

非线性编辑是数码视频技术与多媒体计算机技术相结合的产物。这里的非线性是指能够随机地访问视频制作的素材而不受素材存放时间的限制,这是相对于传统的基于磁带的模

拟视频编辑系统而言的。在非线性编辑中,计算机数字化地记录所有视频片断并将它们存储在硬盘上,由于计算机对媒体的交互性,人们可以对存储的数字化文件反复更新和编辑视频,方便快捷地完成剪辑、切换、数字特效等编辑工作。编辑完成后的视频课件即可保存在硬盘上或刻录成VCD保存。

典型的非线性编辑过程大致是:创建一个编辑的过程平台,将数字化的视频材料以拖曳的方式放入过程平台,这个平台可以自由设定视频展开的信息,可以逐帧展开,也可以逐秒展开,间隔可以选择。调用编辑软件提供的各种手段,诸如剪辑、重新排序、衔接素材、添加特效、运动叠加、中英文字幕等。这些过程的各种参数可反复任意调整,使用户便于对过程进行控制并对最终效果有所把握。

2.非线性编辑软件AdobePremiere介绍

笔者在制作视频课件过程中,试用了几款非线性编辑软件,如Videowave、Premiere、MediaStudio等。它们的主要功能可以概括为:(1)动态视音频信号采集;(2)视音频非线性编辑;(3)数字特技处理;(4)键控功能;(5)多种格式文件输入。通过对比,我最终选用了Adobe公司的Premiere软件。

AdobePremiere6.0是一款功能强大的数字视频非线性编辑软件。它集模拟编辑系统的最佳特性和数字编辑所固有的精确控制特性于一身,具有与设备无关的特性,利用了计算机CPU处理能力的非实时技术。它的处理时间取决于视频分辨率、特技的复杂程度以及计算机的处理能力。一旦处理完成,就可以实时观看效果并重新编辑。

Premiere支持全系列的Windows产品,从Win9X、Win2000至WindowsXP都可以很平稳地运行,机器配置要求也不苛刻,PII450以上即可运行,但它对内存的要求较高,装有Premeire6.0的机器要求的最低内存为128MB。Premiere支持最新的IEEE-1394接口,也支持外挂插件和滤镜。

Premiere有丰富的剪辑剪裁、特级应用、场景切换、字幕叠加、配音配乐等功能,能满足多媒体CAI课件制作的编辑需求。经过Premiere处理后的视频课件具有较好的视觉效果。

四、结语

在多媒体CAI课件制作中,数字视频处理是一项重要技术。视频的制作效果在很大程度上反映了多媒体CAI课件的水平。要提高视频的图像质量,应选择高质量的视频源及适当的硬件设备。为采集到良好的视频图像可适当降低捕获帧数并选择合适的视频压缩方式以节省存储空间。数字视频编辑软件建议选用AdobePremiere6.0。随着数字视频处理技术的发展,新的硬件设备及采集压缩软件的推出,将会给多媒体CAI课件带来新的生机和活力,创造出更加生动活泼的教学环境。

数字信号处理课程设计报告

抽样定理的应用 摘要 抽样定理表示为若频带宽度有限的,要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。 语音信号处理是研究用数字信号处理技术和语音学知识对语音 信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息手段,所以对其的研究更显得尤为重要。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用 软件,它可以将声音文件变换成离散的数据文件,然后用起强大的矩阵运算能力处理数据。这为我们的本次设计提供了强大并良好的环境! 本设计要求通过利用matlab对模拟信号和语音信号进行抽样,通过傅里叶变换转换到频域,观察波形并进行分析。 关键词:抽样Matlab

目录 一、设计目的: (2) 二、设计原理: (2) 1、抽样定理 (2) 2、MATLAB简介 (2) 3、语音信号 (3) 4、Stem函数绘图 (3) 三、设计内容: (4) 1、已知g1(t)=cos(6πt),g2(t)=cos(14πt),g3(t)=cos(26πt),以抽样频率 fsam=10Hz对上述三个信号进行抽样。在同一张图上画出g1(t),g2(t),g3(t)及其抽样点,对所得结果进行讨论。 (4) 2、选取三段不同的语音信号,并选取适合的同一抽样频率对其进 行抽样,画出抽样前后的图形,并进行比较,播放抽样前后的语音。 (6) 3、选取合适的点数,对抽样后的三段语音信号分别做DFT,画图 并比较。 (10) 四、总结 (12) 五、参考文献 (13)

智能视频技术的现状及发展趋势探析

智能视频技术的现状及发展趋势探析 智能视频技术(IVT,Intelligent Video Technology),属于计算机视觉(CV,Com puter Vision)与人工智能(AI,Artificial Intelligent)领域研究的一个分支,融合了图像处理技术、计算机视觉技术、计算机图形学、人工智能、图像分析等多项技术,其发展目标在于在监视场景与事件描述之间建立一种映射关系。同大部分计算机系统一样,智能视频系统可以被分为构成智能视频监控的硬件,以及智能视频软件两个部分。 硬件设备主要包括:采集视频数据的摄像机、支撑摄像机以及整个系统运行的电力系统、用于存放拍摄到的视频数据的存储设备、承载智能视频分析软件的高性能计算机、能够高速传输视频以及分析结果等数据的网络接口。 智能视频软件是指通过硬件提供的输入信息,自动地提取并理解视频源的关键信息。智能视频软件具有其独特性,即专用性、多样性等。而不同的商业环境和用户对监控的功能需求大相径庭,对于不同的应用系统软件实现的算法也完全不同,甚至智能视频软件的实现平台也是可选的:既可以在X86的服务器上实施,也可以在基于DSP的嵌入式系统上实施。这一特点,也正是智能视频行业探讨的热点所在。 智能视频的发展现状 智能视频软件市场是一个成长非常快速的市场,根据IMS的市场研究分析,在未来3 年内有关视频技术的软件市场会成长到8亿美元的份额。注意,仅仅是在软件部分就有这么大的一个份额。 在视频智能分析软件的市场需求急剧增长的刺激下,国外提供视频智能分析软件产品的厂商已经有许多:Verint、Vidient、Westec、Interactive、Visual Defence、Nextiva、V istascape、NiceVision、ioimage、TASC、MATE、Ov、Dallmeier、Ivbox、Viseowave等,他们都能提供视频智能分析产品,大部分厂商提供的视频智能分析产品,都基于ObjectVid eo公司的图像分析技术,采用Object Video OnBoard平台来设计并创建自己品牌的OEM产品,这是大部分视频智能分析产品商以最小的投资成本及最快的时间来赢得市场的好办法。 在解决方案的提供上,国外也有许多成功的案例,比如旧金山国际机场采用了由Vidie nt公司提供的智能视频分析系统Smart Catch。Smart Catch与机场现有的闭路电视(CCTV)系统协同检测异常或可疑行为(如图1)。当智能视频分析软件识别出一个异常情况时,就立即将视频片段通过呼机、手提电脑、移动电话或其它通讯设备发送给响应者前来进行现场调查。 国内的众多企业也开始了对智能视频分析软件的尝试。比如上海世平伟业公司开发的I vbox智能视频分析系统,上海皓维推出的智能视频分析预警系统等等。

数字视频技术总复习题

数字视频技术总复习题 一基本概念填空题 1 摄像机在拍摄时,通过光敏器件,将光信号转换为电信号,这种电信号就是(RGB)信号。 2 模拟彩色电视机的制式主要有(NTSC制、PAL制和SECAM制);中国、朝鲜等国家采用(PAL)制式彩色电视机标准。 3 电视机的扫描方式有(隔行扫描和非隔行扫描(逐行扫描))之分。 4 行频f H是指(每秒钟扫描多少行);场频f f是指(每秒钟扫描多少场);每秒扫描多少帧称为(帧频)f F。 5 PAL制式电视的场扫描频率是(50 Hz),周期为(20 ms);帧频是25 Hz,是场频的(一半),周期为(40 ms)。 6 彩色电视中,用Y、C1, C2彩色表示法分别表示亮度信号和两个色差信号,C1,C2的含义与具体的应用有关。在NTSC彩色电视制中,C1,C2分别表示(I、Q)两个色差信号;在PAL彩色电视制中,C1,C2分别表示(U、V)两个色差信号;在CCIR 601数字电视标准中,C1,C2分别表示(Cr,Cb)两个色差信号。 7 电视图像数字化常用的方法有两种,一种是(从复合彩色电视图像中分离出彩色分量,然后数字化);另一种是(用一个高速A/D转换器对彩色全电视信号进行数字化,然后在数字域中进行分离,以获得所希望的YCbCr,YUV,YIQ 或RGB分量数据)。 8 NTSC制、PAL制和SECAM制共同的电视图像采样频率是fs=(13.5MHZ)。 9 目前数字电视图像使用(MPEG-2)video标准。 10 目前传输数字电视的主要方式是(卫星,地面广播和电缆);用它们传输的电视分别称为(卫星数字电视、地面数字电视和有线数字电视)。 11 数字彩色电视机的制式主要有(ATSC DTV、DVB和ISDB)。中国等国家采用(欧洲DVB)制式数字彩色电视机标准。 12 数字电视的视频接口主要有(DVI、HDMI、UDI和DisplayPort)四种接口。 13 模拟电视信号转换为数字电视信号的过程是(模拟/数字转换编码过程),称可为(PCM调制脉冲编码调制),由(A/D转换器实现)。数字电视信号转换为模拟信号则称(PCM解调过程),由(D/A转换器实现)。 14全数字电视系统的信源编码采用(MPEG-2标准对数字化视频信号进行)压缩编码,其目的是(降低数字信号的传输码率)。 15全数字电视系统压缩编码后的数字视频信号在调制前,为了保证在传输工程中尽可能减少差错,通常还要加入(用于纠错的RS码和卷积码)。其目的是(提高数字信号的传输的可靠性)。 16 为了在编码中实现最大的压缩比,MPEG使用三种类型的图像,分别是(I 帧、P帧和B帧)。 17 VCD视频压缩采用(MPEG-1)标准,图像分辨率为(352×240);DVD视频压缩采用(MPEG-2)标准,图像分辨率为(720×480). 18 信息熵表示的是(信源产生信息量的大小)。信息熵越大,不确定度越大,所含信息越多。

数字信号处理课设+语音信号的数字滤波

语音信号的数字滤波 ——利用双线性变换法实现IIR数字滤波器的设计一.课程设计的目的 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 二.设计方案论证 1.IIR数字滤波器设计方法 IIR数字滤波器是一种离散时间系统,其系统函数为 假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它 是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。 2.用双线性变换法设计IIR数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=e sT转换 平面的-π/T~π到Z平面上。也就是说,第一步先将整个S平面压缩映射到S 1 /T一条横带里;第二步再通过标准变换关系z=e s1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。 图1双线性变换的映射关系 为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现

《数字视频创作》复习参考

《数字视频创作》复习思考题 笔试试卷包括填空、不定项选择题、问答题和应用题四种类型,其中填空题20分、选择题30分、问答题30分、应用题20分。闭卷考试,严禁携带任何与考试内容有关的资料或书籍进入考室! 一、选择部分,包括教材每章节所给出的选择题,并参考如下: 1.帧是构成影像的最小单位,所以,编辑时也是这个为准进行的。制作PAL制视频 节目时,采用的帧频是? 1.24帧/秒 2.25帧/秒 3.29.97帧/秒 4.30帧/秒 2.我国普遍采用的视频制式为: 1.PAL 2.NTSC 3.SECAM 4.其他制式 3.视频编辑中,最小的单位是? 1.小时 2.分钟 3.秒 4.帧 4.PremierePro中存放素材的窗口是? 1.Project窗口 2.Moitor窗口 3.Timeline窗口 4.AudioMixer窗口 5.时间线轨道上的两段相邻片段,片段A的入点为5秒,出点为12秒,片段B的入 点为12秒,出点为18秒。这两个片段之间施加一个矩形划像切换,切换的对齐方 式为End atcut,切像切换的入点为8秒。那么,划像持续的时间为: 1.3秒 2.4秒 3.8秒 4.10秒 6.执行下列哪个操作可以将单个素材文件导入Adobe Premiere的项目(Project)窗口 中? 1.执行File/Import命令 2.在Project窗口中双击 3.执行File/Import/Import Recent File 4.执行File/Open命令 7.要查找节目(Sequence)中的影片在Project窗口中的素材位置,应该使用下列哪个命 令?

1.Find 2.Reveal in Project 3.Edit Original 8.如何在PrimierePro中导入图片序列动画素材? 1.在Import窗口中选框需要导入的图片 2.在Import窗口中激活Numbered Still选项 3.选择菜单命令Automate to Sequence 4.在Import窗口中选择Import Folder,导入放置图片的文件夹 9..如果需要在轨道上调整画面的不透明度,需要使用下面的哪个工具? 1.Selection Tool 2.Razor Tool 3.Pen Tool 4.Hand Tool 10.下列哪个方法可以倒着播放一段影片? 1.Rate Stretch Tool 2.Speed/Duration对话框输入负值 3.Speed/Druation对话框中选择ReverseSpeed选项 4.Backwards特效 11..在时间线窗口中,可以通过哪个功能键配合鼠标对片断进行多选? 1.Alt 2.Ctrl 3.Shift 4.Esc 12.在两个素材衔接处加入转场效果(Transitions),两个素材应如何排列? 1.分别放在上下相邻的两个Video轨道上 2.两段素材在同一轨道上 3.可以放在任何视频轨道上 4.可以放在任何音频轨道上 13.PremierePro的切换提供了哪些对齐方式? 1.Center at Cut 2.Start atCut 3.End at Cut 4.Custom Start 14.PremierePro用什么来表示音量: 1.分贝 2.赫兹 3.毫伏 4.安培 15.给音频片段施加一个Highpass特效,其中Cutoff。参数设置为1000Hz,那么1.低于1000Hz的音频将被虑除

几种高带宽数字视频接口的发展及应用

几种高带宽数字视频接口的发展及应用 类别:电子综合阅读:1249 随着人们对图像显示质量要求的不断提升,传统的以模拟方式来传输和显示多媒体信号的技术已经不能满足人们的要求,广播电视行业数字化和数字电视的整体转换的实施、数字化、网络化、光纤化是IT行业的发展趋势。以高清数字电视为代表的消费类数字视频设备的应用越来越普遍,传统的模拟视频接口标准无法适应新的产品在带宽、内容保护、音频支持等方面的发展需求,使得HDMI、UDI和DisplayPort等新标准显得更能适应市场的需求,本文从传统模拟视频接口开始,简要介绍几种数字视频接口技术及标准,并重点介绍HDMI和DisplayPort两种数字视频接口。 模拟视频接口的发展   在我国,最简单、最原始、使用最广泛的视频接口是复合视频信号(CVBS、A/V)接口,就是通常所称的RCA接口,伴随着S-VHS摄录像机、VCD等激光视盘产品,出现了将亮度信号Y和色度信号C分离的S端子(Y/C、S-Video)接口,伴随着DVD、卫星数字电视机顶盒(IRD)出现了模拟分量视频信号(Y、U、V或Y、R-Y、B-Y)接口;而在PC通信领域,出现了通用接口D-SUB( 9芯)端口,也就是通常所说的VGA端子。 DVI、HDMI和UDI标准及应用 1 DVI标准 DVI全称为Digital Visual Interface,它是由数字显示工作组DDWG(Digital Display Working Group)于1999年4月推出的开展PC 和VGA显示器间连接的传输非压缩实时视频接口标准。它基于TMDS(最小化传输差分信号)技术来传输数字信号,如图1所示。图1 Single-link TMDS连接图 TMDS包括3个RGB数据和1个时钟,共计4个通道(称为1个TMDS连接或Single-link)的传输回路。TMDS是把8位的RGB视频数据变换成10位转换最小化、DC平衡的数据,再完成数据的串行处理;接收端设备对串行数据解串行变成并行数据,再转换成8位视频

数字视频技术论文

多视点视频编解码 吕永超 [摘要]与二维视频编码有所不同,多视点视频编码还存在不同视点间的 空间冗余,因此除了进行运动估计和运动补偿外,还需要对立体视频进 行视差补偿预测,来消除视点间的空间冗余,提高视频压缩的效率。大 模块所占比率大,耗时少,小模块所占比例小,但是耗时多。而且,立 体视频编码中,小模块模式相对于平面视频编码所占的比例更少,这也 说明了立体视频编码中模式选择的重要性。JMVC测试模型遍历所有模式然后选择最优编码模式,致使编码速度低下。我们通过快速模式选择, 尽可能的减少小模块模式的预测,在保证图像质量和压缩效率的基础上,大幅度的提高了立体视频编码速度。CPU单独解码效率较低,最多仅能 支持6个视点1280X720P格式的高清视频实时解码。而基于本文提出的CPU和GPU混合解码技术,由于IDCT和彩色空间变换这些并行运算均有GPU完成,充分发掘了当前GPU的特点,CPU主要负责解码控制类型的 运算,整体解码运算效率较高,可以实时解码8个视点的1280X720P格 式的高清视频。 [关键词] 多视点视频快速帧间模式选择IDCT和图像彩色空间变换

目录 第一章绪论 (1) 第二章多视点视频编码 (1) 2.1多视点视频编码原理 (1) 2.2视频编码方案 (2) 2.3立体视频运动估计搜索算法 (3) 2.4快速帧间模式选择 (3) 2.5本章小结 (3) 第三章基于GPU和CPU混合运算的解码技术 (4) 3.1 IDCT运算在GPU上实现的基本原则 (4) 3.2图像彩色空间变化在GPU上的实现 (4) 3.3 本章小结 (4) 参考文献 (5)

数字信号处理课设共18页文档

数字信号处理课程设计 姓名:刘倩 学号:201014407 专业:信息与计算科学 实验一:常见离散信号产生和实现 一、实验目的: 1、加深对常用离散信号的理解; 2、掌握matlab 中一些基本函数的建立方法。 二、实验原理: 1.单位抽样序列 在MATLAB 中可以利用zeros()函数实现。 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: 2.单位阶越序列 在MATLAB 中可以利用ones()函数实现。 3.正弦序列 在MATLAB 中 4.复指数序列 在MATLAB 中 5.指数序列 在MATLAB 中

实验内容:由周期为10的正弦函数生成周期为20的余弦函数。 实验代码: n=0:30; y=sin(0.2*pi*n+pi/2); y1=sin(0.1*pi*n+pi/2); subplot(121) stem(n,y); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); subplot(122) stem(n,y1); xlabel ('时间序列n');ylabel('振幅'); title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); 实验结果: 实验二:离散系统的时域分析 实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。实验原理:离散系统 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应 则系统响应为如下的卷积计算式:

当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应。 实验内容:用MATLAB 计算全解 当n>=0时,求用系数差分方程y[n]+y[n-1]-6y[n-2]=x[n]描述的一个离散时间系统对阶跃输入x[n]=8μ[n]的全解。 实验代码: n=0:7; >> [y,sf]=filter(1,[1 1 -6],8*ones(1,8),[-7 6]); >> y1(n+1)=-1.8*(-3).^n+4.8*(2).^n-2; >> subplot(121) >> stem(n,y); >> title('由fliter 函数计算结果'); >> subplot(122) >> stem(n,y1); >> title('准确结果'); 实验结果: 结果分析:有图可得由fliter 函数得出的结果与计算出的准确结果完全一致。 实验三FFT 算法的应用

数字图像处理复习整理

《数字图像处理》复习 第一章绪论 数字图像处理技术的基本容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理 第二章数字图像处理基础 2-1 电磁波谱与可见光 1.电磁波射波的成像方法及其应用领域: 无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像 ☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要 红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用 可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域 ☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测 X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等 伽马射线(0.001nm-1nm)主要应用于天文观测 2-2 人眼的亮度视觉特征 2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力 2-3 图像的表示 3. 黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像 (黑白图像一定是二值图像,二值图像不一定是黑白图像) 灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。 彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、B、G是由不同的灰度级来描述的。 4.灰度级L、位深度k L=2^k 5.储存一幅M×N的数字图像所需的比特b=M×N×k 例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit) 2-4 空间分辨率和灰度级分辨率 6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。一种常用的空间分辨率的定义是单位距离可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。 7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂) 8.在图像空间分辨率不变的情况下,采样数越少,图像越小。同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小;

数字视频技术发展

3.11 数字视频处理技术的发展 一、DSP数字处理技术 从90年代起,人类社会步入信息时代,而信息时代一个重要特征就是数字化的产品大行其道,其中最典型的代表就是以DSP为核心的技术及其产品应用。DSP是数字信号处理的英文缩写,但是它的发展已经超越了其自身的表面含义,它已经成为一种新的数字处理技术。特点是DSP在摄像机中的成功应用掀开了现代摄像技术的新篇章。成为继CCD之后的又一个划时代的摄像机新技术应用成果。 DSP数字信号处理技术是数字信号处理、微电子学、计算机科学和计算机数学的综合科研成果。DSP芯片现已广泛应用于磁量驱动器,蜂窗式电话、调制解调器、无线电接收机、微控制器、光盘机、数码相机和数字摄像机等诸多领域,并将在绝大部分的电子设备中得以应用。 DSP数字信号处理器在彩色摄像机中的应用使其成为整个系统最核心的部件之一,它的功能是通过一系列复杂的数字算法,对数字图像信号进行优化处理,包括白平衡、彩色平衡、伽玛校正及边缘校正等,这些优化处理将直接影响图像信号的质量。 就任何一个DSP芯片来说,其本质上都是一个单片微型计算机,但它是专门用来处理数字信号的,其最大特点就是运算速度极快,比普通的微型计算机快2个数量级,能在短时间内完成复杂而繁琐的数学运算。DSP数字信号处理摄像技术于90年代中期开发,并首先在VHS-C格式摄录机中应用。图3-81就是这种摄录机中DSP处理电路的典型结构图。

图中从CCD摄像头送出的图像信号经A/D变换成数字信号后就送进了DSP 数字信号处理集成电路。在集成电路中首先进行Y/C白平衡的调整,然后从Y/C 处理电路送出的数字信号经数字变焦后存入帧存储器。同时,数字变焦处理电路可根据不同比例,从帧存储器中取出放大或缩小的图像信号送到自动聚焦处理器,经过对信号中主频分量的分析,控制电机调整镜头距离,使信号中主频分量为最大,即最佳聚焦状态。 在掌中宝型摄录机的实际应用中一个重要的问题就是操作者手掌的晃动,由于晃动引起图像的不稳定,而不使手掌晃动又几乎是不可能的。因此,必须要在摄录机电路中解决这个问题,而电路中的模糊图像稳定处理,就是专门解决这个问题的。在图中,经Y/C处理的信号分出一路送运动检测电路,检测图像运动状态,并送入模糊处理电路。通过模糊逻辑分析,判断图像的运动是否由手抖引起的,电路根据手抖动的程度进行判断,认定是手抖动引起的晃动,则从储存器中选择读取图像信息去抵消图像的晃动。 经上述数字化处理后,再经D/A变换还原成模拟视频信号送入记录系统,并记录在磁带上。 经过几年的开发研制,DSP摄像技术已趋成熟。目前主要摄像机厂商代表当前最高水平的机型全部都采用了DSP摄像技术。如索尼公司3CCD DSP彩色摄像机DXC—D30Pjiushi比较突出的机型。(如图) 二、全数字化视频处理技术 目前数字摄像机仍有部分模拟处理电路,其发展方向是视频信号处理的全部数字化,而关键在于发展产量化。 比特的A/D转换器。目前最新一代的是14比特DSP数字信号处理的摄像机,如JYC公司的DY-90EC,DY-70EC(D9格式),SONY公司的DSR-PDX10P (DVCAM),松下公司的DVCPRRO50个市的AJ-D900等等,在性能上提高了图像清晰度,扩展了图像的细节校正,提供更为灵活的色度控制,增加了更大的过曝光信号的控制等等。 D Y-90 E C(D9格式)

数字信号处理课程规划报告

数字信号处理课程设计报告《应用Matlab对信号进行频谱分析及滤波》 专业: 班级: 姓名: 指导老师: 二0 0五年一月一日

目录 设计过程步骤() 2.1 语音信号的采集() 2.2 语音信号的频谱分析() 2.3 设计数字滤波器和画出其频谱响应() 2.4 用滤波器对信号进行滤波() 2.5滤波器分析后的语音信号的波形及频谱() ●心得和经验()

设计过程步骤 2.1 语音信号的采集 我们利用Windows下的录音机,录制了一段开枪发出的声音,时间在1 s内。接着在C盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。通过wavread函数和sound的使用,我们完成了本次课程设计的第一步。其程序如下: [x,fs,bite]=wavread('c:\alsndmgr.wav',[1000 20000]); sound(x,fs,bite); 2.2 语音信号的频谱分析 首先我们画出语音信号的时域波形;然后对语音信号进行频谱分析,在Matlab中,我们利用函数fft对信号进行快速傅里叶变换,得到信号的频谱特性性。到此,我们完成了课程实际的第二部。 其程序如下: n=1024; subplot(2,1,1); y=plot(x(50:n/4)); grid on ; title('时域信号') X=fft(x,256); subplot(2,1,2); plot(abs(fft(X))); grid on ; title('频域信号'); 运行程序得到的图形:

几种数字视频接口的技术标准和发展应用

几种数字视频接口的技术标准和发展应用 随着人们对图像显示质量要求的不断提升,传统的以模拟方式来传输和显示多媒体信号的技术已经不能满足人们的要求,广播电视行业数字化和数字电视的整体转换的实施、数字化、网络化、光纤化是IT行业的发展趋势。以高清数字电视为代表的消费类数字视频设备的应用越来越普遍,传统的模拟视频接口标准无法适应新的产品在带宽、内容保护、音频支持等方面的发展需求,使得HDMI、UDI和DisplayPort等新标准显得更能适应市场的需求,本文从传统模拟视频接口开始,简要介绍几种数字视频接口技术及标准,并重点介绍HDMI和DisplayPort两种数字视频接口。 模拟视频接口的发展 在我国,最简单、最原始、使用最广泛的视频接口是复合视频信号(CVBS、A/V)接口,就是通常所称的RCA接口,伴随着S-VHS摄录像机、VCD等激光视盘产品,出现了将亮度信号Y和色度信号C分离的S端子(Y/C、S-Video)接口,伴随着DVD、卫星数字电视机顶盒(IRD)出现了模拟分量视频信号(Y、U、V或Y、R-Y、B-Y)接口;而在PC通信领域,出现了通用接口D-SUB(9芯)端口,也就是通常所说的VGA端子。DVI、HDMI和UDI标准及应用 1 DVI标准 DVI全称为Digital Visual Interface,它是由数字显示工作组DDWG(Digital Display Working Group)于1999年4月推出的开展PC和VGA显示器间连接的传输非压缩实时视频接口标准。它基于TMDS(最小化传输差分信号)技术来传输数字信号,如图1所示。 图1 Single-link TMDS连接图 TMDS包括3个RGB数据和1个时钟,共计4个通道(称为1个TMDS连接或Single-link)的传输回路。TMDS是把8位的RGB视频数据变换成10位转换最小化、DC平衡的数据,再完成数据的串行处理;接收端设备对串行数据解串行变成并行数据,再转换成8位视频

数字视频技术及应用复习题

第一章数字视频概述 1.什么是复合视频?2页,可改为填空题 例如:黑白视频信号是一个已经经过加工处理并包含扫描同步和消隐的图像信号,通常也叫做复合视频,简称视频。由于频带范围在1-6MHZ人们又把它叫做电视基带视频。 2.什么是视频技术?它主要应用在哪些领域?3页,可以改为填空题 例如:在不考虑电视调制发射和接收等诸多环节时,单纯考虑和研究电视基带信号的摄取、改善、传输、记录、编辑、显示的技术就叫做视频技术。 主要应用领域:广播电视的摄录编系统、安全及监控、视频通信和视频会议、远程教育及视听教学、影像医学、影音娱乐和电子广告。 3.什么是数字视频?5页 广义的数字视频表述为数字视频是指依据人的视觉暂留特性,借着计算机或微处理器芯片的高速运算,加上Codec技术、传输存储技术等来实现的以比特流为特征的,能按照某种时基规律和标准在显示终端上再现活动影音的信息媒介。狭义的数字视频时指与具体媒体格式所对应的数字视频。 第二章彩色数字视频基础 1.彩色电视系统是根据色光三基色原理来再现彩色图像的。按照此原理,任何一种色光颜色都可以用R G B三个彩色分量按一定的比例混合得到。7页 2.匹配兼容制彩色电视亮度信号的公式是:8页(2-2) 3.两个色差信号正交调制的目的是什么?10页 4.电视扫描分为逐行扫描和隔行扫描两种。 5.电视基带视频有复合视频、亮色分离视频和分量视频三种。13页 6.彩色电视制式有哪三种?制式差异主要体现在哪些方面?14页或改为填空 世界上现行的彩色电视制式有NTSC制式、PAL制式和SECAM制式三大制式。制式差异主要体现在亮度合成公式、色差信号提取、色副载选取及其正交调制类型、扫描方式、同步时基确定等方面的参数。 7.彩色电视图像的数字化有信号上游数字化和信号下游数字化两种。 8.A/D转换主要包括哪些环节?量化的实质是什么?编码的实质是什么?17,18页,可改为填空 A/D转换就是指对幅值连续变化的模拟视频电信号进行脉冲抽样保持、量化、编码等环节后形成二进制码流的技术处理过程。 9.一般常用的线性D/A转换器,其输出模拟电压U和输入数字量D之间成正比关系。19页 10.YCbCr信号和YUV信号是正比关系。21页,或选择A正比B反比C非线性D平方11.CCIR601标准为NTSC、PAL、和SECAM制式规定了共同的图像采样频率是13.5MHZ。21页 12.PAL制NTSC制的现行标准数字电视有效显示分辨率(清晰度)各为720X576像素和720X480像素。公用中分辨率为352X288像素。23页 第三章广义数字视频及分类 1.广义数字视频的定义?28页 2.广义的数字视频是依据人的视觉暂留特性,借助计算机或微处理器芯片的高速运算加上Codec编解码技术、传输存储技术等来实现的比特流为特征的全新的信息媒介。 3.图像序列的特点有哪些?33页 特点是每帧的分辨率相同,图像内容相关、图像文件名连续编号,而且有表示开始的图像序列头和表示结束的图像终止码。

数字信号处理课程设计

数字信号处理 课 程 设 计 院系:电子信息与电气工程学院 专业:电子信息工程专业 班级:电信班 姓名: 学号: 组员:

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB 窗函数法巴特沃斯

目录 摘要 (1) 1 引言 (1) 1.1课程设计目的 (1) 1.2 课程设计内容及要求 (1) 1.3课程设计设备及平台 (1) 1.3.1 数字滤波器的简介及发展 (1) 1.3.2 MATLAB软件简介 (2) 2 课程设计原理及流程 (4) 3.课程设计原理过程 (4) 3.1 语音信号的采集 (4) 3.2 语音信号的时频分析 (5) 3.3合成后语音加噪声处理 (7) 3.3.1 噪声信号的时频分析 (7) 3.3.2 混合信号的时频分析 (8) 3.4滤波器设计及消噪处理 (10) 3.4.1 设计IIR和FIR数字滤波器 (10) 3.4.2 合成后语音信号的消噪处理 (13) 3.4.3 比较滤波前后语音信号的波形及频谱 (13) 3.4.4回放语音信号 (15) 3.5结果分析 (15) 4 结束语 (15) 5 参考文献 (16)

视频监控技术简介与发展趋势

视频监控技术简介与发展趋势 https://www.360docs.net/doc/a27469959.html, ( 2007/5/15 09:34 ) 摘要视频监控作为一种传统视频技术与现代通信技术相结合的应用,目前在国内外已引起了越来越多的关注。本文对视频监控业务作了简单的介绍与回顾,指出当前视频监控业务与传统视频监控业务在需求上的转变,以及与视频监控相关的一些技术的进展情况,然后指出当前视频监控系统所面临的主要问题,以及为了解决这些问题所带来的未来技术发展趋势。 1、引言 视频监控业务具有悠久的历史,在传统上广泛应用于安防领域,是协助公共安全部门打击犯罪、维持社会安定的重要手段。近年来,随着宽带的普及,计算机技术的发展,图像处理技术的提高,视频监控正越来越广泛地渗透到教育、政府、娱乐、医疗、酒店、运动等其他各种领域。 2、业务简介 视频监控的基本业务功能是提供实时监视的手段,并对被监视的画面进行录像存储,以便事后回放。在此基础上,高级的视频监控系统可以对监控装置进行远程控制,并能接收报警信号,进行报警触发与联动。业务功能如图1所示。 图1视频监控业务功能示意图 最早的视频监控系统是全模拟的视频监控系统,也称闭路电视监控系统(CCTV)。图像信息采用视频电缆,以模拟方式传输,一般传输距离不能太远,主要应用于小范围内的监控,监控图像一般只能在控制中心查看。全模拟视频监控系统以模拟视频矩阵和磁带式录像设备VCR为核心。 随着数字技术的发展,数字视频监控系统从20世纪90年代中期开始出现,以数字控制的视频矩阵替代原来的模拟视频矩阵,以数字硬盘录像机DVR替代原来的长延时模拟录像机,将原来的磁带存储模式转变成数字存储录像,实现了将模拟视频转为数字录像。DVR 集合了录像机、画面分割器等功能,跨出数字监控的第一步。在此基础上产生了全数字的视频监控系统,可以基于PC机或嵌入式设备构成监控系统,并进行多媒体管理。这类系统是目前视频监控市场的主流。

数字视频技术基础复习题

数字视频技术考复习题 一、填空题 1、MPEG-1视频流采取分层式数据结构,包括视频序列、、图像、 像条、、块共六层。 2、已知HDB3码为-1000-1+1000+l-l+l-100-1+l,原信息代码 为。 3、以在上一帧图像中找到相似的块,这两个宏块之间的位移,称为。 4、数字复接过程中,按各支路信号的交织情况来分,可以分为复 接、复接和复接。 5、视频基本码流(ES)层次结构由视频序列层、、、像条层、 宏块层和。 6、当前宏块与它匹配的宏块之间的差值称为。 7、模拟彩色电视信号,世界存在三种制式,它们分别是制、制 和制。 8、PAL制式彩色电视信号中,为了节省频带宽度,一般将色度信号调制在 -----MHZ的频率上,再安插在信号中。 9、在NTSC制式电视信号中,色度矢量的幅度代表,初 相位代表。 10、标准清晰度电视演播室标准规定,亮度信号每行的取样点 数,取样频率为MH Z。 11、基带传输时,接收波形满足取样值无串扰的充要条件是:仅在本码元的取 样时刻上有,而在其他码元的取样时刻,本码元的值为。 12、准同步复接中一般采用正码速调节,其方式为当缓存器即将读空时,禁止 读时钟输出,使缓存器读出一位,在输出码流中插入一个,可以把码速调高。 13、某一信道传输二进制时,速率为a,如果利用这一信道传输8进制时, 传输速率将是。 14、MPEG-2结构可分为和层,针对不同的环 境,MPEG-2规定了两种系统编码句法,分时是流和流。 15、H.264标准算法在概念上分为2个层次,分别是层和层。 16、H.264除了有I、P、B帧之外,还有2个切换帧,分别是帧 和帧。 17、SDH帧结构由和两大部分组成,他们的字长分别 ()和。 18、在一个STM-1中,可包容的基群个数为。

HD-SDI数字视频信号处理及传输的FPGA设计与实现

《单片机原理与接口技术》期中论文 论文题目HD-SDI数字视频信号处理及传输的FPGA设计与 实现 姓名 学号 学院电气工程学院 专业班级2008级通信工程

目录 引言 (3) 1.HD-SD I卡电路结构 (4) 2.HD-SD I数字行、场定时关系 (5) 3.视频数据的提取及处理 (9) 4.DMA控制模块 (13) 5.PLX9656局部总线到Avalon总线转换模块 (13) 6.实验调试 (14) 7.结束语 (15) 参考文献: (16)

HD-SD I数字视频信号处理及传输的FPGA设计与实现专业:通信工程姓名:黄鑫 摘要:设计了一种符合SMPTE292M标准的高清晰度数字电视信号采集传输用的HD-SD I卡,介绍了其电路结构,对HD-SD I中的视频数据、视频定时基准码、行号数据、校验码进行了分析,并就数字视频识别和提取模块、DMA传输模块和PLX9656 局部总线到Avalon总线的转换模块进行了设计。FPGA采用Altera公司的StratixEP1S25,实验调试结果表明, HD-SD I数字视频信号处理及传输工作稳定可靠。 关键词:高清晰度电视; 比特串行数字接口; HD-SD I; 现场可编程门阵列 FPGA design and implementation of HD-SD I digital video signal processing and transport Abstract: This paper designed a newly developed SDI card for HDTV of SMPTE292M, and gave the construction of the HD-SD I card’s circuits. Gave detailed analyses of video data, timing reference codes, line number data, DMA transport,conversion between PLX9656 local bus and Avalon bus. This paper also p resented the design of these model.The design adopted Altera’s Stratix EP1S25 as FPGA, and experimental results show that the processing and transport of HD-SD I card isstabilization and trustiness. Key words: HD-SD I; FPGA; bit-serial digital interface

数字信号处理课程设计 1

(一)用窗函数法设计FIR数字滤波器 一、设计题目用窗函数法设计FIR数字低通滤波器 二、设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波特性的影响。 4. 学会根据指标要求选取合适的窗函数。 三、设计原理 窗函数法又称为傅里叶级数法,FIR数字滤波器的设计问题就是要所设计的FIR数字滤波器的响应H(ejw)去逼近所要求的理想滤波器的响应Hd(ejw)。从单位取样响应序列来看,就是使所设计的滤波器的h(n)逼近理想单位取样响应序列hd(n)。而且Hd(ejw)=逐段恒定的,且在频带边界处有不连续点,因此序列hd(n)是无限长的,通过直接截取无限长序列以得到有限长序列的办法,可以形象的比喻为h(n)通过一个窗口所看到的一段hd(n)。因此,h(n)也可以表达为hd(n)和一个窗函数w(n)的乘积,h(n)=w(n)hd(n)。这里的窗函数就是矩形序列RN(n)。 四、实现方法 用MATLAB编程实现给定指标要求的滤波器设计 五、设计内容及要求 1、各窗函数图(假设N=67;) N=67;

n=0:N-1; wn1=ones(1,N); stem(n, wn1);矩形窗 figure; wn2=hamming(N); stem(n, wn2);海明窗 figure; wn3=BARTLETT(N); stem(n, wn3);巴特列特 figure; wn4= Hanning(N); stem(n, wn4);汉宁窗 将窗函数分别画出来 2、计算理想低通滤波器单位冲激响应的源程序function[hd]=ideal(wc,N) q=(N-1)/2; n=0:N-1; m=n-q+eps; hd=sin(wc*m)./(pi*m); 3、计算频率响应的源程序 function[H]=fr(b,a,w); m=0:length(b)-1; l=0:length(a)-1; num=b*exp(-j*m'*w); den=a*exp(-j*l'*w); H=num./den;

相关文档
最新文档