浅谈焊接应力和变形的控制方法

合集下载

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。

(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。

(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。

(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。

2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。

(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。

但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。

(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。

(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。

但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。

浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法摘要:在焊接过程中,诸多因素的影响,使得焊接结构会产生和内应力和变形。

本文阐述了焊接应力产生的原因,若干种控制及消除焊接应力的措施,以及焊接变形的控制和矫正方法。

关键词:焊接应力,焊接变形,消除,控制Abstract: in the welding process, the influence of various factors, make welding structure can produce and internal stress and deformation. This paper expounds the reasons of the welding stress, some kind of control and eliminate the welding stress measures, as well as the welding deformation control and correction method.Key words: the welding stress, deformation, eliminate, control目前,国内外的工程结构大都属于焊接结构。

焊接工艺直接关系到工程质量。

而焊接应力是焊接裂纹及变形产生的原因,因此为了避免焊接结构破坏,因尽量减小和消除焊接应力。

1. 焊接应力的产生及危害焊接过程中焊接件热量传输的不平衡产生不均匀的温度场,使材料产生不均匀的膨胀与收缩,从而形成内应力场。

此外,焊件在热循环的作用下,焊缝内部金属组织发生变化,产生相变应力。

持此之外,刚性固定以及焊接件之间相互关联,也会产生焊接应力。

室温下,残存于焊接件中的内应力影响焊接结构的力学性能、受压稳定性、尺寸稳定性和加工精度等。

2. 控制焊接应力的措施2.1 设计合理的焊接顺序2.1.1 间断后退法常用于较短裂纹的焊缝。

施焊前把焊缝分成适当的小段,标明次序,进行间断焊接。

焊接技能培训中焊接残余应力与变形的控制

焊接技能培训中焊接残余应力与变形的控制

焊接技能培训中焊接残余应力与变形的控制焊接是常用的金属连接方式之一,但在实际应用中,常常会遇到焊接残余应力和变形的问题。

这不仅会影响焊接件的外观和尺寸精度,还可能导致焊接件的失真和性能下降。

因此,在焊接技能培训中,掌握焊接残余应力与变形的控制方法显得尤为重要。

一、焊接残余应力的形成及影响因素焊接残余应力是指焊接完成后,在焊接接头或焊接件内部产生的应力。

焊接残余应力的形成与以下几个因素密切相关:1. 温度梯度:焊接过程中,焊缝和母材的温度会发生梯度变化,由高温区到低温区,这导致焊接接头内部产生温度梯度。

温度梯度大的区域会产生较大的残余应力。

2. 冷却速度:焊接完成后,焊接接头会通过冷却过程逐渐降温。

冷却速度快会导致材料收缩不均匀,产生残余应力。

3. 焊接过程应力:焊接过程中,焊接接头受到的应力会造成临时的应力集中,这些应力在冷却过程中可能会转变为残余应力。

焊接残余应力的存在会对焊接件的性能造成诸多影响,主要包括以下几个方面:1. 引起焊接件的变形:焊接残余应力会导致焊接件发生变形,甚至出现失真。

特别是对于焊接构件尺寸要求较高的行业,如航空航天和造船业,焊接残余应力的变形问题更加突出。

2. 影响焊接接头的强度:焊接接头受到的应力过大,容易引起焊接接头的裂纹和断裂,降低焊接接头的强度。

3. 导致材料腐蚀和断裂:焊接残余应力会削弱材料的抗腐蚀性能,导致焊接件在使用过程中容易发生断裂。

二、焊接残余应力与变形的控制方法为了控制焊接残余应力与变形,以下是一些常用的方法:1. 预热与后热处理:通过预热可以减小焊接接头的温度梯度,使之更加均匀。

在焊接完成后,进行适当的后热处理,以缓解焊接残余应力。

2. 多道焊接:将焊接接头分成多段焊接,分多次进行焊接作业,以减小焊接接头的温度梯度和残余应力。

3. 应力消除:在焊接完成后,进行适当的热处理或机械加工,以消除焊接接头的残余应力。

4. 紧固装置:在焊接过程中,采用适当的紧固装置可以减小焊接接头的变形。

施工中如何控制焊接应力与焊接变形

施工中如何控制焊接应力与焊接变形

施工中如何控制焊接应力与焊接变形[摘要]如何采取措施减小金属构件在焊接工序中发生的应力与应变,从而提高焊接工序的精度。

本文对焊接结构的主要特点进行了描述并从焊接变形产生的机理、原因、焊接变形的主要形式、控制焊接变形所应采取的措施等方面进行了有益的探索,提出了几项措施减少焊接变形,并对焊接后如何减少接头焊接应力、焊接变形矫正等方面提出解决方法。

[关键词] 焊接变形焊接应力产生原因在焊接过程中,由于焊件局部的温度发生变化,产生应力变形。

进而导致了构件产生变形。

因此,通过对焊接结构及焊接变形的分析,通过对焊接工艺焊件结构设计等方面采取有效措施,从而提高焊接质量。

一、焊接应力与焊接变形的产生原因焊接应力,是焊接构件由于焊接而产生的应力。

焊接过程中焊件中产生的内应力和焊接热过程引起的形状和尺寸变化。

焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。

焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。

1、焊件的不均匀受热(1)对构件进行不均匀加热,在加热过程中,只要温度高于材料屈服点的温度,构件就会产生压缩塑性变形。

冷却后,构件就会有残余应力。

(2)焊接过程中焊件的变形方向与焊后焊件的变形方向相反。

(3)焊接加热时,焊缝及其附近区域将产生压缩塑性变形,冷却时压缩塑性变形区要收缩。

(4)焊接过程中及焊接结束后,焊件中的应力分布是不均匀的。

焊接结束后,焊缝及其附近区域的残余应力通常是拉应力2、焊缝金属的收缩焊缝金属冷却时,当它由液态转为固态时,其体积要收缩。

由于焊缝金属与母材是紧密联系的。

因此,焊缝金属并不能自由收缩,这将引起整个焊件的变形,同时在焊缝中引起残余应力。

另外,一条焊缝是逐步形成的,焊缝中先结晶的部分要阻止后结晶部分的收缩,由此也会产生焊接应力与变形。

3、金属组织的变化金属在加热及冷却过程中发生相变,可得到不同的组织,这些组织的比容不同,由此也会造成焊缝应力与变形。

浅析钢结构焊接变形与残余应力控制方法

浅析钢结构焊接变形与残余应力控制方法

浅析钢结构焊接变形与残余应力控制方法摘要:在国内建筑工程中,钢结构作为建筑结构主体结构框架,具有绿色环保、空间大和强度高等特点,在网架结构和塔桅建筑、超高层建筑以及大型工业厂房中等建筑工程中得到广泛应用。

随着建筑结构超高层化和大跨度化,高性能钢材应用增多,分析和讨论建筑钢结构焊接生产效率,对于提高建筑工程质量和效率具有重要意义。

关键词:钢结构; 焊接变形; 残余应力; 控制方法引言在钢结构工程的焊接施工中难免会出现焊接应力和焊接变形的情况,这对于焊接接头的强度以及焊接结构尺寸的精度都会产生一定的影响,严重的话会导致构件报废。

此外,钢结构在日后使用中的承载力也与焊接应力与焊接变形有着很大的关联。

因此相关施工人员要切实把握好焊接技术,加强对焊接重难点的技术控制,采取有效措施提高钢结构的质量。

1焊接变形和残余应力(1)焊接变形是焊接过程中不可避免的,施焊电弧高温引起钢构件在焊接处发生缩短、弯曲及角度等变化,即焊接变形。

焊接变形可分为两种形式,一种是因高温导致的变形,该变形在温度冷却后可恢复,为瞬时变形;第二种是因焊接作业产生的永久性变形。

焊接变形对结构安装的精确度影响较大,产生焊接变形极易导致结构无法安装。

(2)残余应力产生于钢构件的焊接及热影响区域,其对钢构件最直接的影响是降低构件的承载能力和增大开裂的可能性,钢构件的开裂大多发生在焊接区域。

在焊接区域,当构件的残余应力和荷载共同作用效果超过焊缝的承载力时,焊缝处就开始产生裂纹,并逐渐扩大成裂缝,构件也就易从裂缝处产生断裂,而此时构件承受的荷载并未达到其极限承载力,却因焊缝的断裂导致整个构件的失效。

2造成导致钢结构发生焊接变形的原因(1)焊接工艺。

即使是材料相同、设备相同,不同工人在焊接过程中,由于焊接工艺会造成焊接变形的出现。

比如焊接过程中,预热时应该结合当地的实际温度、光照亮度等多种因素进行确定等。

由此可见,钢结构的焊接变形受到焊接工艺的影响比较大。

减少焊接应力和焊接变形的方法。

减少焊接应力和焊接变形的方法。

减少焊接应力和焊接变形的方法。

焊接是常用的金属连接方法,但在焊接过程中常常会产生应力和变形。

这些问题会影响焊接件的质量和性能,因此需要采取措施来减少焊接应力和焊接变形。

一、合理设计焊接结构在焊接结构的设计中,应尽量避免出现大的焊接应力和变形。

首先要考虑结构的合理性,选择适当的焊接方法和焊接位置。

同时,还应合理设置焊缝形状和尺寸,以减少焊接应力的集中。

二、控制焊接参数焊接参数的选择对于减少焊接应力和变形非常重要。

首先,应选择合适的焊接电流和电压,以控制焊接热输入。

同时,还应控制焊接速度和焊接层数,避免过快或过慢导致的焊接应力和变形增加。

三、采用适当的焊接顺序焊接顺序的选择也可以影响焊接应力和变形的程度。

一般情况下,应从中心向两端均匀焊接,避免集中焊接导致的应力集中。

对于大型结构件,还可以采用分段焊接的方法,先焊接一部分,然后再焊接其他部分,以减少焊接应力和变形。

四、采用预热和后热措施预热和后热是减少焊接应力和变形的常用方法之一。

预热可以提高焊接件的热导性和延展性,减少焊接应力的集中。

后热可以使焊接件均匀冷却,减少应力和变形的产生。

预热和后热的温度和时间应根据焊接材料和结构的要求进行控制。

五、采用冷却措施在焊接完成后,可以采用冷却措施来减少焊接应力和变形。

常用的冷却方法有自然冷却、水冷却和气体冷却等。

选择合适的冷却方法可以使焊接件均匀冷却,减少应力和变形的产生。

六、使用焊接变形补偿措施在焊接过程中,难以完全避免焊接应力和变形的产生。

此时,可以采用焊接变形补偿措施来修复焊接件的形状。

常用的方法有机械修复、热修复和焊接补偿等。

选择合适的补偿方法可以恢复焊接件的形状和尺寸,提高焊接件的质量。

通过合理的设计、控制焊接参数、选择适当的焊接顺序、采用预热和后热措施、使用冷却措施以及采用焊接变形补偿措施,我们可以有效地减少焊接应力和焊接变形的产生。

这些方法可以提高焊接件的质量和性能,保证焊接结构的稳定性和可靠性。

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施1.选择适当的焊接参数:根据材料的种类和厚度选择合适的焊接电流、电压和焊接速度等参数,以降低焊接接应力和变形的风险。

同时,选择低温软化点的金属填充材料,如铜等,可以降低焊接接应力。

2.采用适当的焊接序列:通过改变焊接顺序,可以降低焊接过程中的接应力和变形。

在多次焊接时,从最中心的部位开始焊接,逐渐向两边延伸。

这样可以避免焊接热量集中在一个地方,减少局部热变形。

3.采用预热和后热处理:预热可以提高焊接材料的可塑性,改善焊接接头的焊接性能。

一般情况下,预热温度为焊接材料的临界温度的50%-70%。

预热后的焊接接头,在焊接完成后应进行后热处理,即将焊接接头加热至临界温度以下保温一段时间,然后缓慢冷却,以进一步消除焊接接头内应力。

4.使用焊接夹具:焊接夹具可以固定工件,减少焊接过程中的变形。

夹具应设计合理,以便保证焊接接头位置准确,但对于自由热变形而言,应当尽量减少夹具的使用。

5.控制焊接热输入量:合理控制焊接过程中的热输入量,以确保焊接接头不过热。

可以采用间歇焊接的方法,在焊接过程中适时停止加热,让工件冷却一段时间以减少热输入。

6.采用适当的接头形状:通过改变焊缝的形状,可以减少焊接过程中的接应力。

一般情况下,V型焊缝和锂阳角焊缝对于减少焊接变形效果较好。

7.选择适当的焊接方式:对于大型工件,可以采用多层焊接或间断焊接的方式进行,以减少焊接材料的热量。

对于特殊形状的工件,可以选择其他焊接方法,如电阻焊、激光焊等。

8.控制冷却速度:焊接完成后,要注意控制冷却速度,避免过快的冷却。

可以采用包裹式焊接,焊接完毕后用保温材料将焊接接头包裹起来,使其缓慢冷却,以减少残余应力。

焊接应力与变形控制方法

焊接应力与变形控制方法

焊接应力与变形控制方法摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。

各种各样的焊接工艺和焊接形式越来越多的被应用在实际的焊接工作过程中。

同时焊接使用的工作机械也在不断的更新及发展。

现在的焊接工相较于以前的焊接工作已经有了非常大的发展和创新。

基于此,本文主要对焊接变形与焊接应力进行了简要的分析,希望可以为相关工作人员提供一定的参考。

关键词:焊接变形;焊接应力;探讨引言在整个焊接的过程当中,由于焊接时温度分布不同,焊接材料之间也会呈现不同的收缩率。

这些因素的存在会在一定层面上导致焊接材料之间的变形。

这种变形有持久的也有暂时的。

目前,关于焊接变形与焊接应力相关的研究,在学术领域和实践领域并没有达成很大的共识。

因此,需进一步加强焊接变形和应力的分析。

1焊接应力与焊接变形的定义1.1焊接应力钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均的温度场,高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的影响,会在焊件内部产生较大的收缩应力。

在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。

1.2焊接变形焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均,焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。

这种焊件产生的变形,被称为焊接变形。

2焊接变形及焊接应力出现的主要原因2.1焊接件受热不均匀按照有关的实践分析可知,在焊接过程中出现焊接应力与变形的根本原因为在焊接操作时受力不均匀所导致。

焊接件焊接的位置引起焊接操作的实施而发生热涨状况,但是没有焊接的位置因不存在热涨现象进而阻止了热涨变形。

因此,导致焊接完成后发生严重的焊接变形。

并还会出现较大的焊接应力。

2.2焊接金属出现收缩焊接工作实际就是将要融化焊接母材然后再进行金属填充,在常态下是一种全塑状态,在焊接操作的过程中只会出现自身的变形而没有带动亦或拉动其它金属变形,从而导致金属发生收缩的现象,造成焊接变形的出现。

焊接变形的原因及控制方法

焊接变形的原因及控制方法

焊接变形的原因及控制方法焊接变形是指焊接过程中产生的结构形状、尺寸和应力的改变。

变形对于焊接结构的质量和使用寿命都具有重要影响,因此需要采取控制措施来减少焊接变形。

1.熔融区的体积收缩:在焊接中,熔融区的温度升高,熔化的金属液体会发生体积收缩。

当焊接过程中发生多次的局部加热和熔化,熔融区收缩现象将会导致焊接件变形。

2.焊接应力:焊接过程中形成的焊接应力是导致焊缝及周边材料变形的重要原因。

焊接引起的应力主要有热应力和残余应力两种。

3.材料的热物理性质差异:焊接过程中,不同材料的热膨胀系数和热传导系数的差异也会导致焊件变形。

为了控制焊接变形,可以采取以下方法:1.合理设计焊接结构:通过合理设计焊接结构,可以减轻焊接变形产生的程度。

例如,在设计焊接结构时可以采用对称组织,增加长交叉焊缝间的连接来减轻焊接变形。

2.使用焊接工艺参数:调整焊接工艺参数,如焊接速度、焊接电流和电压等,可以减少焊接变形。

例如,在焊接速度控制方面,可以采用逆向焊接、速度波动焊接和脉冲焊接等方法来减少焊接变形。

3.采用预应力:对焊接材料进行预应力处理可以减少焊接变形的产生,常见的方法有热拉伸和压力留置法。

4.使用夹具和支撑物:采用夹具和支撑物对焊接结构进行支撑和固定,可以减少焊接变形的产生。

夹具可以限制材料的收缩和变形,支撑物能够提供必要的支撑力和刚度。

5.控制焊接热输入:通过控制焊接热输入来减少焊接变形。

可以采用分段焊接、小电流多道焊、局部加热等方法来降低焊接区域的温度梯度。

总之,焊接变形是焊接过程中难以避免的问题,但通过合理的设计和控制参数的调整,可以有效减少焊接变形的产生,提高焊接结构的质量和可靠性。

焊接变形原因及控制方法

焊接变形原因及控制方法

焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。

本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。

一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。

这种温度梯度会导致焊接件产生热应力,从而引起变形。

2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。

这些应力会引起焊接件的变形,尤其是在焊接接头附近。

3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。

例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。

二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。

2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。

3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。

例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。

4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。

5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。

6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。

在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。

三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。

为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。

只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。

通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。

焊接应力与变形产生的原因及对策

焊接应力与变形产生的原因及对策

焊接应力与变形产生的原因及对策
焊接过程中,由于焊接热量的作用,会引起材料的膨胀和收缩,从而产生应力和变形。

这些应力和变形会影响焊接件的尺寸精度、强度和耐久性,甚至导致焊接件出现裂纹和变形失效。

造成焊接应力和变形的原因主要有以下几个方面:
1. 热应力:焊接过程中,由于焊接热量的作用,使得焊接区域的温度急剧升高,从而引起材料的扩张和收缩。

这种温度差异会产生热应力,导致焊接件发生变形和应力。

2. 冷却应力:焊接完成后,焊接件会迅速冷却,冷却速度过快会导致焊接件表面和内部温度梯度过大,产生冷却应力,进而引起应力和变形。

3. 材料不匹配:焊接材料的热膨胀系数、熔点、硬度等物理性质不同,容易导致焊接区域产生应力和变形。

4. 焊接结构设计不合理:焊接结构设计不合理,如焊接位置不当、焊接接头不够强壮等,容易导致应力集中和变形。

针对焊接应力和变形的问题,可以采取以下对策:
1. 控制焊接热量:采用合适的焊接参数,控制焊接热源的大小和位置,以减少焊接区域的温度梯度,从而降低应力和变形。

2. 加强冷却措施:在焊接完成后,采取适当的冷却措施,如缓慢冷却、局部加热等,以减少焊接件的冷却速度,从而降低冷却应力。

3. 选择合适的焊接材料:选择合适的焊接材料,如选择热膨胀
系数和熔点相似的材料,可以减少焊接区域的应力和变形。

4. 优化焊接结构设计:优化焊接结构设计,加强焊接部位的加强设计,采用适当的焊接方式和焊接技术,可以减少应力集中和变形。

总之,采取合适的对策,可以有效地控制焊接应力和变形,提高焊接件的质量和性能。

防止和减少焊接残余变形与应力的措施

防止和减少焊接残余变形与应力的措施

防止和减少焊接残余变形与应力的措施随着现代制造业的发展,焊接在各行各业中扮演着至关重要的角色。

无论是航空航天、汽车制造还是建筑工程,在这些领域中,焊接都是不可或缺的连接工艺。

然而,随之而来的焊接残余变形与应力问题也愈加引起人们的关注。

焊接过程中产生的残余变形与应力,不仅会影响工件的外观质量,还可能引发裂纹和变形等问题,严重影响其使用性能和寿命。

如何有效地预防和减少焊接残余变形与应力,成为了焊接工艺中的重要课题。

1.选材:材料的选择对于焊接残余变形和应力的控制至关重要。

在焊接过程中,通常会选择具有较高熔点和较小线膨胀系数的材料,以减少焊接时热影响区的热变形;还应根据实际情况选择合适的填充材料。

2.焊接方式:合理选择焊接方式是减少焊接残余变形和应力的关键。

一般来说,采用低热输入、低变形的焊接方式,例如脉冲焊、激光焊等,能够有效降低焊接工件的残余变形和应力。

3.焊接顺序:合理规划焊接顺序也是减少残余变形和应力的重要手段。

通常情况下,应该首先焊接边缘,然后逐渐向内焊接,以减少焊接区域的热输入,降低残余变形和应力。

4.预热和后热处理:在一些情况下,通过预热和后热处理也能有效减少焊接残余变形和应力。

预热能够降低材料的硬度,减少焊接残余应力;后热处理则能够通过回火或退火处理,消除残余应力,提高焊接接头的韧性和稳定性。

5.夹具和辅助装置:采用合理的夹具和辅助装置也能有效减少焊接残余变形和应力。

夹具的设计应在尽量避免约束工件的能够保证焊接接头的稳固性;而辅助装置则可以提供额外的支撑,减少工件在焊接过程中的变形。

总结回顾:在焊接工艺中,预防和减少焊接残余变形与应力是至关重要的。

通过合理选材、焊接方式、焊接顺序、预热和后热处理、夹具和辅助装置等措施,可以有效控制焊接过程中的残余变形和应力,保证焊接接头的质量和稳定性。

个人观点:作为焊接工艺的重要环节,防止和减少焊接残余变形与应力对于提高焊接接头的质量和稳定性至关重要。

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。

(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。

(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。

(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。

2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。

(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。

但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。

(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。

(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。

但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。

防止焊接变形的方法

防止焊接变形的方法

焊接变形是焊接过程中常见的问题之一,可能会导致焊接件的尺寸偏差、形状变形等问题。

以下是一些防止焊接变形的方法:
1. 预热焊接件:在进行焊接前,可以先对焊接件进行预热,以减少焊接时的热应力和变形。

预热温度和时间应根据材料和焊接方式来确定。

2. 采用合适的焊接方法:不同的焊接方法会产生不同的热影响区域和热应力,因此需要选择适合的焊接方法。

例如,对于较薄的材料,可以采用冷焊接方法,而对于较厚的材料,则可以采用热输入较小的热熔焊等焊接方法。

3. 采用预热夹具:在进行焊接前,可以采用预热夹具对焊接件进行预热,以减少焊接时的热应力和变形。

4. 控制焊接速度和热输入:焊接速度和热输入对焊接变形也有较大的影响。

应根据材料和焊接方式来控制焊接速度和热输入,以减少焊接变形的发生。

5. 采用反变形措施:在焊接完成后,可以采用反变形措施,例如对焊接件进行退火或加热,以消除焊接变形。

同时,也可以采用一些特殊的工艺措施,例如使用支撑物或夹具等,来减少焊接件的变形。

大型焊接结构件应力及变形控制工艺

大型焊接结构件应力及变形控制工艺

大型焊接结构件应力及变形控制工艺1. 研究背景与意义大型焊接结构件广泛应用于各种工业领域,如桥梁、船舶、石油化工等行业。

在焊接过程中,由于热损失不可避免地会导致材料的应力和变形,这些应力和变形直接会影响结构件的整体力学性能。

为了保证焊接结构件的质量和安全性,需要开发出一种有效的应力及变形控制工艺。

本文将探讨大型焊接结构件的应力及变形控制工艺,以提高其整体力学性能和服务寿命。

2. 应力及变形控制工艺的影响因素2.1 焊接温度焊接温度是影响焊接结构件应力和变形的重要因素。

当焊接温度过高时,会导致结构件的塑性变形增加,从而引起应力集中。

因此,在确定焊接工艺参数时,必须根据焊接结构件的材料和工艺要求来选择合适的焊接温度。

2.2 焊接速度焊接速度是另一个重要的影响因素。

当焊接速度过快、焊接宽度过窄时,会导致应力集中和变形过大。

因此,为了控制焊接应力和变形,需要在选定的焊接温度和材料条件下选择合适的焊接速度。

2.3 焊接材料焊接材料的性能对焊接结构件的力学性能影响很大。

选用性能匹配的焊接材料可以减小材料的应力和变形。

因此,在选择焊接材料时,必须根据焊接结构件的材料和工艺要求来选择合适的焊接材料。

3. 应力及变形控制工艺的措施3.1 预加应力技术预加应力技术是一种新型的应力及变形控制方法。

它可以在焊接前对结构件进行加应力处理,以减小焊接过程中的应力和变形。

预加应力技术分为热处理法和机械法。

热处理法是指在焊接之前对结构件进行热处理,使其分子结构发生变化,减小焊接过程中的应力和变形。

机械法是指在焊接之前对结构件施加机械应力,以达到减小焊接过程中应力和变形的目的。

3.2 合理的焊接顺序合理的焊接顺序也可以控制焊接结构件的应力和变形。

焊接顺序应从结构件的中心线开始,向两端逐渐扩展。

在焊接过程中应保证焊缝平行于应力主轴方向,同时逐层焊接。

这样可以有效地控制焊接过程中的应力和变形。

3.3 采用合适的夹具夹具在焊接过程中的作用非常重要。

焊接变形控制方法

焊接变形控制方法

焊接变形控制方法焊接变形是指在焊接过程中,由于焊接热量的作用,导致工件发生变形。

焊接变形不仅影响外观和尺寸精度,还可能导致工件的力学性能降低或破坏。

因此,控制焊接变形是焊接工艺中的一个重要问题。

焊接变形的控制方法可以分为几个方面:1. 选用合适的焊接工艺:合适的焊接工艺可以减小热输入,减少焊接变形。

一般来说,低热输入的焊接方法,如TIG焊、脉冲MIG焊等,会比高热输入的焊接方法,如电弧焊、气焊等,产生更小的变形。

2. 控制焊接参数:控制焊接参数,如电流、电压、焊接速度等,可以调节焊接热量的输入,从而控制焊接变形。

通常需要根据具体情况进行试验和优化,找到一个合适的参数组合。

3. 采用适当的焊接顺序:焊接顺序的选择可以减小残余应力和变形。

一般来说,从中心向两侧对称地焊接,或者采用逆序焊接等方法,可以减小焊接变形。

4. 使用夹具和焊接变形补偿:使用合适的夹具和焊接变形补偿方法,可以在焊接过程中限制工件的变形。

夹具可以限制工件的自由变形,而焊接变形补偿可以根据工件的预期变形,调整焊接过程中的维度和形状。

5. 控制焊接速度和温度:控制焊接速度和温度,可以调节焊接热量的输入和分布,从而减小焊接变形。

通常需要根据材料的热导率和热膨胀系数等参数,合理选择焊接速度和温度。

6. 采用预约束或后约束:预约束是在焊接前施加应力,限制工件的自由变形,后约束是在焊接后施加应力,矫正工件的变形。

通过预约束或后约束,可以控制焊接变形。

总之,焊接变形控制方法的选择应根据具体工作情况进行综合考虑,通过合适的焊接工艺、参数调节、焊接顺序、夹具使用等方法,最终实现对焊接变形的有效控制。

同时,需要注意在实际焊接过程中进行试验和优化,根据实际情况进行调整。

浅谈焊接结构件焊接变形的控制

浅谈焊接结构件焊接变形的控制

浅谈焊接结构件焊接变形的控制
焊接是一种常见的金属加工方法,广泛应用于制造业中的各种结构件的制造中。

焊接
过程中会产生焊接变形,严重影响焊接结构件的形状和精度。

如何控制焊接变形成为焊接
技术中的一个重要问题。

焊接变形的产生主要有三个原因:热应力、组织相变和收缩。

焊接过程中,焊接区域
受到高温的热影响,导致焊接区域的材料膨胀,形成一定的热应力。

在焊接过程中,由于
材料的物理状态发生改变,可能会引起组织相变,进而产生焊接变形。

在焊接完成后,焊
缝周围的材料会发生冷却收缩,导致结构件发生变形。

为了控制焊接变形,可以采取以下几种措施。

可以采用后焊加热的方法。

通过在焊接
完成后对焊接区域加热,可以使焊接区域重新达到高温状态,减少焊接变形。

可以选择适
当的焊接顺序。

焊接顺序应该从内向外进行,以减少引起热应力和收缩的影响。

还可以通
过预设焊接变形来控制焊接变形。

预设焊接变形是通过在设计和加工过程中,根据结构件
的形状和要求,预先设置焊接变形的方式。

可以采用剪切焊接或者滚焊接等焊接方法,以
减少焊接变形的产生。

除了以上控制焊接变形的方法外,还可以通过选择合适的焊接工艺参数来控制焊接变形。

可以调整焊接速度、焊接电流和焊接角度等参数,以控制焊接过程中的热应力和收缩。

还可以采用预热和后热处理的方法,通过控制材料的温度分布和组织结构,减少焊接变
形。

减少焊接应力和焊接变形的方法

减少焊接应力和焊接变形的方法

减少焊接应力和焊接变形的方法
焊接是一种常见的金属加工方法,但是在焊接过程中,由于热量的作用,会产生焊接应力和焊接变形,这会对焊接件的质量和性能产生不良影响。

因此,减少焊接应力和焊接变形是焊接过程中需要注意的重要问题。

选择合适的焊接方法和焊接参数是减少焊接应力和焊接变形的关键。

不同的焊接方法和参数会产生不同的热影响区域和热应力,因此需要根据具体情况进行选择。

例如,在焊接薄板时,可以选择脉冲焊接或者激光焊接,这些方法可以减少热影响区域和热应力,从而减少焊接应力和焊接变形。

采用适当的焊接顺序和焊接顺序也可以减少焊接应力和焊接变形。

一般来说,焊接顺序应该从中心向两侧进行,这样可以避免焊接件的变形。

同时,在焊接过程中,应该采用交替焊接的方法,即先焊接一侧,然后焊接另一侧,这样可以使焊接件的应力分布更加均匀,减少焊接应力和焊接变形。

采用适当的夹具和支撑物也可以减少焊接应力和焊接变形。

夹具和支撑物可以固定焊接件,防止其在焊接过程中发生变形。

在选择夹具和支撑物时,应该根据焊接件的形状和大小进行选择,确保其能够有效地固定焊接件。

焊接后的热处理也是减少焊接应力和焊接变形的重要方法。

热处理
可以通过改变焊接件的组织结构和应力状态来减少焊接应力和焊接变形。

在进行热处理时,应该根据焊接件的材料和焊接方法进行选择,确保其能够达到预期的效果。

减少焊接应力和焊接变形是焊接过程中需要注意的重要问题。

通过选择合适的焊接方法和参数、采用适当的焊接顺序和焊接顺序、使用适当的夹具和支撑物以及进行适当的热处理,可以有效地减少焊接应力和焊接变形,提高焊接件的质量和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈焊接应力和变形的控制方法
浅谈焊接应力和变形的控制方法
摘要:常温下,金属结构是稳定的,但在焊接过程中,受热部位会产生焊接应力和变形,这种情况如不采取措施控制,产品质量将得不
到保证,甚至使产品报废。

为有效的控制由于焊接热过程引起的应力和变形,对焊接应力产生的原因和形成焊接变形的基本规律进行分析,并提出相应的控制措施。

关键词:焊接变形;焊接应力;产生原因;控制措施
中图分类号:P755文献标识码: A
引言
随着科技的进步和工业的发展,各种焊接机械和焊接方法日新月异,但在施工过程中,由于焊接过程产生的内应力,引起了焊件变形,
严重影响了工程质量、工程进度和焊接的使用性能。

因而,应采取必要措施,通过分析焊接结构和焊接变形,焊接工艺和焊接结构设计等,提高焊接质量。

一、焊接应力的产生及危害
焊接过程中焊接件热量传输的不平衡产生不均匀的温度场,使材料产生不均匀的膨胀与收缩,从而形成内应力场。

此外,焊件在热循环的作用下,焊缝内部金属组织发生变化,产生相变应力。

持此之外,刚性固定以及焊接件之间相互关联,也会产生焊接应力。

室温下,残存于焊接件中的内应力影响焊接结构的力学性能、受压稳定性、尺寸稳定性和加工精度等。

二、焊接应力与焊接变形产生的原因
1、焊件不均匀受热
焊接整体在焊接时温度是不均匀的,焊接部分温度高,膨胀量大,同一焊体中,其他部位温度低,膨胀量小,受此影响,在焊件内出现内
应力,使温度区的材料受到挤压,产生局部压应变。

在冷却过程中,已经形成压应变的材料,由于不能自由收缩而受到拉伸,于是焊件中又
出现与焊接加热时方向大致相反的应力。

2、焊缝金属的收缩
当焊缝金属由液态变为固态时,此时由于受冷,体积收缩,而焊缝金属与母材料是一体的,这便限制了焊体的收缩,这种情况将使整个
焊件变形,而且在焊缝中会引起残余应力。

(1)金属组织的变化
由于构成焊件组织的比体积不同,当焊件受热或遇冷时,会使焊
接应力和变形。

加热及冷却过程中发生金相组织变化
(2)焊件的刚性和拘束
刚性是指焊件抵抗变形的能力。

拘束是指焊件周围物体对焊件变形的约束。

焊件自身的刚性及受周围的拘束程度越大,焊件变形越小,焊接应力越大。

三、防止和减小焊接变形和应力的措施
1、焊接结构的合理设计
避免焊接残余变形与应力,需采用合作的设计方案。

在焊接结构设计时要考虑到以下事项:焊缝数理和尺寸是引起焊接变形与应力的因素之一,因此,在保证结构有足够强度的基础上,应减少其数理、尺寸。

在特殊情况下,预留适当收缩余量及使用冲压结构也是有效措施。

2、合理选择焊接规范合理选择焊接规范,对减少焊件变形影响很大。

如随着电流强度的增加,焊件变形相应增大。

为了尽量焊接过程中的热影响,根据实际情况,合适的情况下采用小直径焊条和小电流焊接,可以减少焊接残余应力。

3、消除焊接应力的方法
(1)热处理法
整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。

低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。

局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。

可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。

低合金高强钢,一般在焊缝两侧各100-200mm。

(2)机械锤击法
在长焊缝焊接过程中,趁着焊缝和堆焊层在赤热状态,用手锤敲
打,可以抵消焊缝的收缩和减少内应力,减小或矫正变形。

锤击施焊部位,可以提高金属的机械性能和耐蚀性。

延展性能较好的金属,采用这个方法效果较好。

对于底层和表面层的焊缝一般不锤击。

锤击时必须注意选择合适的温度范围。

比如钢铁材料温度在300℃-500℃时有蓝脆性,也不能进行锤击。

铝加热到400℃-500℃时,强度几乎丧失,此时,锤击会损坏焊件。

含磷高的钢铁材料,冷态锤击时也易产生裂纹。

(3)振动时效法
振动时效作为目前比较常用的一种时效方式,已经越来越多的应用于各个机械制造行业。

振动时效适用于碳素结构钢、低合金钢、不锈钢、铸铁、有色金属等材质的焊接结构;可插在任何工序之间多次处理;几十米长、数百吨重、上千条焊缝的工件都可适用。

具有低能耗、短周期、无污染等优点。

4、控制焊接残余变形的工艺措施
(1)选着合理的装焊顺序
采用不同的装配、焊接顺序,焊后会产生不同的变形效果。

简单的焊件可以采用先总装后焊接的控制结构焊后变形的工艺措施。

对于结构较复杂的焊件,一般不能整体装配焊接,而是要将构件适当的分成若干部件,分别装配、焊接,最后组焊成整体,这要处理,即使是收缩量大、不对称的焊缝也可以自由收缩,不影响整体效果。

(2)采取合理的焊接顺序
对称焊接:如焊接结构的焊缝是对称的,首选对称焊接不对称焊缝:焊缝少的先烤焊,这样可以减少焊缝产生的变形采用不同的焊接顺序:对于长焊缝,采用连续的直通焊,会造成较大的变形。

因此要采用不同的焊接顺序来控制变形。

其中分段退焊法、分中分段退焊法、跳焊法和交替焊法,常用于长度为1m以上的焊缝;长度为0.5-1m的焊缝可用分中对称焊法。

(3)反变形法根据理论计算和实践经
验,先根据焊件的结构,估计可能会产生的变形方向与大小,在焊接装配时,加装一个预置变形,预置变形的大小要与结构焊接变形的一样,方向相反,加装这个是为了抵消焊后所产生的变形。

(4)刚性固定法焊接时将焊件加以刚性固定,焊完后让焊件冷却,定型后去刚性固定,以防止角变形与波浪变形。

(5)此法是在焊接时将焊区里的热量强迫带走,从而使温度骤降,焊件受热面积减少,可最大程度的减少变形。

并非所有材料都适用于散热法,如淬硬倾向较高的材料。

5、焊接变形的控制及矫正方法
(1)刚性加固法
刚度大的焊件,焊后变形一般都较小。

因此,施焊前如果加强焊件的刚性,则可防止被焊件在焊接时产生变形。

对于壁厚小于等于2mm的薄壁零件和折断零件的焊接,常需加以刚性固定,以防变形或错位。

固定的方法有很多形式,有时采用专用的焊接夹具,有时点焊固定在刚性工作台上,有时利用焊件本身构成刚性结构。

(2)反变形法
预加反变形法是根据经验和焊件金属性质,预先凭经验估计出焊修后发生变形的方向和收缩量,在焊修前,将工件用机械方法预先使焊件向相反方向变形,或将焊件布置成相反的位置,使焊修后的变形恰好和预变形抵消,达到所需要的正常状态。

(3)合理控制焊接线能量
焊接线能量是一个非常重要的参数,对焊接变形有着明显的影响。

焊接过程中,线能量的提高会导致变形程度的增大。

所以在保证焊接质量的前提下,选择尽可能小的线能量。

因此恰当的焊接坡口形式尤为重要。

在保证焊接质量的前提下,破口应尽可能小,甚至不开坡口,比如超窄间隙的焊接,线能量很小,热输入小,很好地控制了焊接变形。

(4)矫正法
整体热矫正是指将整体构件加热至锻造温度以上再进行矫正的方法,可用以消除较大的形状偏差。

但是焊后整体加热容易引起冶金方面的副作用,限制了该方法的进一步推广及应用。

局部热矫正多采用火焰对焊接构件局部加热,在高温处,材料的热膨胀受到构件本身刚性制约,产生局部压缩塑性变形,冷却后收缩,抵消了焊后部位的伸长变形,达到矫正目的,火焰加热法采用一般的气焊焊炬,不需要专门
的设备,方法简便灵活,因此在生产上广为应用。

四、结束语
在实际生产中,焊接变形和焊接应力的产生还有很多复杂的原因,但只要了解了焊接工艺,采用合理的焊接方法和控制措施,在实践中
积累经验,总结工作,综合的考虑分析各方面因素,使焊接的质量能够得到保证。

参考文献:
[1]董涛,李兴春.焊接变形的控制方法[J].现代制造技术与装备,2010(2).
[2]尹妍.车载式电子设备机柜结构轻型化设计[J].指挥信息系
统与技术,2010(4).
[3]白艳玲.指挥方舱设备装载形式[J].指挥信息系统与技术,2011(4).
------------最新【精品】范文。

相关文档
最新文档