对数与对数运算知识点及例题解析

合集下载

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )

A. 2
B.2 或12

B

C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,

∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B

图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.

性质 (4)当 a>1 时,在(0,+∞)是增函数;

B
当 0<a<1 时,在(0,+∞)上是减函数.
B

(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2

对数的运算法则及公式例题

对数的运算法则及公式例题

对数的运算法则及公式例题
对数的运算法则主要包括以下几个方面:
1. 对数的乘法法则:
logₐ(MN) = logₐM + logₐN
2. 对数的除法法则:
logₐ(M/N) = logₐM - logₐN
3. 对数的幂法法则:
logₐMᵇ= b * logₐM
4. 对数的换底法则:
logₐM = logᵦM / logᵦa
公式例题:
1. 求log₃(9)的值。

解:根据对数的定义,3的多少次方等于9,很明显3的2次方等于9,即log₃(9) = 2。

2. 求log₄(16)的值。

解:同样根据对数的定义,4的多少次方等于16,显然4的2次方等于16,因此log₄(16) = 2。

3. 求log₂(8)的值。

解:根据对数的定义,2的多少次方等于8,很明显2的3次方等于8,即log₂(8) = 3。

4. 求log₈(2)的值。

解:根据对数的定义,8的多少次方等于2,很明显8的-1次方等于2,因此log₈(2) = -1。

5. 求log₅(25)的值。

解:根据对数的定义,5的多少次方等于25,很明显5的2次方等于25,因此log₅(25) = 2。

对数及其运算基础知识及例题

对数及其运算基础知识及例题

对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。

2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。

自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。

典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论: ①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3 +log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

对数及其运算(附答案)

对数及其运算(附答案)

3.2 对数与对数函数3.2.1 对数及其运算知识点一:对数的概念1.若对数log (x -1)(4x -5)有意义,则x 的取值范围是A.54≤x<2B.52<x<2 C.54<x<2或x>2 D .2≤x≤3 2.若log x 7y =z ,则A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x3.lg10+lg100+lg1 000等于A .10B .100C .1 000D .6 知识点二:积、商、幂的对数4.若a>0,a≠1,x>0,y>0,x>y ,下列式子中正确的个数是①log a x·log a y =log a (x +y)②log a x -log a y =log a (x -y)③log a x y=log a x÷log a y ④log a xy =log a x·log a yA .0B .1C .2D .35.lg8+3lg5的值为A .-3B .-1C .1D .36.若x·log 34=1,则4x +4-x 等于A.103 B .6 C.83 D.163 7.若lg(x -y)+lg(x +2y)=lg2+lgx +lgy ,则x y=__________. 8.lg20+log 10025=__________.知识点三:换底公式9.若log a b·log 3a =5,则b 等于A .a 3B .a 5C .35D .5310.设log 34·log 48·log 8m =log 416,则m =________.11.log 23log 89·e ln1的值是__________. 12.已知log 189=a,18b=5,求log 3645.(用含a ,b 的式子表示)能力点一:对数的运算13.计算2log 525+3log 264-8log 71等于A .14B .220C .8D .2214.若a>0且a≠1,则满足a x =lg0.3的x 值有A .0个B .1个C .3个D .无穷多个15.设5lgx =25,则x 的值为A .10B .±10C .100D .±10016.log (2-1)(3+22)=__________. 17.求log 52·log 79log 513·log 734+log 2(3+5-3-5)的值. 18.化简:lg3+25lg9+35lg 27-lg 3lg81-lg27.能力点二:对数与方程、对数与不等式的综合19.如果方程lg 2x +(lg2+lg3)lgx +lg2·lg3=0的两根为lgx 1、lgx 2,那么x 1·x 2的值为A .lg2·lg3B .lg2+lg3 C.16D .-6 20.若log (1-x)(1+x)2=1,则x =__________. 21.如果lgx +lgy lgx +lgx +lgy lgy +[lg x-y ]2lgx·lgy =0,求x ,y 及log 2(xy)的值.22.比较a =log 123,b =(13)0.2,c =213的大小.23.已知x ,y ,z 为正数,3x =4y =6z,2x =py.(1)求p ;(2)证明1z -1x =12y.24.设log a c ,log b c 是方程x 2-3x +1=0的两根,求log a b c 的值.答案与解析基础巩固1.C 2.B 3.D 4.A5.D 原式=lg8+lg53=lg(8×53)=lg1 000=lg103=3.6.A ∵x=1log 34=log 43, ∴4x +4-x =4log 43+4-log 43=3+13=103. 7.28.2 原式=lg20+log 10252=lg20+lg5=lg100=lg102=2.9.C 由换底公式,得lgb lga ·lga lg3=lgb lg3=log 3b =5, ∴b=35.10.9 11.3212.解:∵18b =5,∴b=log 185.∴log 3645=log 1845log 1836=log 185+log 189log 1818+log 182 =a +b 1+log 1818-log 189=a +b 2-a . ∴log 3645=a +b 2-a. 能力提升13.D14.A 设lg0.3=t ,则10t =0.3<1.∵t<0,即a x <0,∴不存在x 的值使a x =lg0.3.15.C16.-2 原式=log (2-1)(2+1)2 =2log (2-1)(2+1)=2log (2-1)12-1=2log (2-1)(2-1)-1=-2.17.解:原式=12·2log 52·log 73 -log 53 ·23·log 72+log 4(3+5-3-5)2=(-12log 32)·3log 23+log 42 =-32+12=-1. 18.解:方法一:原式=lg3+45lg3+910lg3-12lg34lg3-3lg3= 1+45+910-12 lg3 4-3 lg3=115. 方法二(逆用公式):原式=lg 3×925×2712×35×3-12 lg 8127=lg3115lg3=115. 19.C 由已知,得lgx 1+lgx 2=-(lg2+lg3)=lg 16. ∴lgx 1+lgx 2=lgx 1x 2=lg 16. ∴x 1x 2=16. 20.-3 x 满足⎩⎪⎨⎪⎧ x≠-1,1-x>0,1-x≠1, 1+x 2=1-x ,解得x =-3.21.解:去分母,得lgy(lgx +lgy)+lgx(lgx +lgy)+[lg(x -y)]2=0,即(lgx +lgy)2+[lg(x -y)]2=0,∴⎩⎪⎨⎪⎧ lgx +lgy =0,lg x-y =0. ∴⎩⎪⎨⎪⎧ xy =1,x -y =1.∴x,-y 是方程t 2-t -1=0的两个实根.又x ,y>0,且x≠1,y≠1,x>y , ∴x=5+12,y =5-12. ∴log 2(xy)=log 21=0.22.解:由指数函数y =(13)x 及y =2x 的性质可知, b =(13)0.2∈(0,1), c =213∈(1,+∞), ∴c>b.由对数的定义知,(12)a =3, 由函数y =(12)x 的性质知,a<0. 综上知,c>b>a.拓展探究23.解:(1)设3x =4y =6z =k(显然k>0且k≠1),则x =log 3k ,y =log 4k ,z =log 6k.由2x =py 2log 3k =plog 4k =p·log 3k log 34, 又log 3k≠0,∴p=2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y. ∴1z -1x =12y. 24.解:∵log a c ,log b c 是方程x 2-3x +1=0的两根,∴⎩⎪⎨⎪⎧ log a c +log b c =3,log a c·log b c =1.∴⎩⎪⎨⎪⎧ 1log c a +1log c b =3,log c a·log c b =1.∴⎩⎪⎨⎪⎧log c a +log c b =3,log c a·log c b =1. ∴log a b c =1log c a b=1log c a -log c b =1± log c a +log c b 2-4log c a ·log c b =1±5=±55.。

对数及对数函数知识点总结及题型分析

对数及对数函数知识点总结及题型分析

对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数 1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数a y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100⑵已知32a =,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>. 变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log a x x xxa >解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x =++的定义域是( )A 、1(,)3-+∞B 、1(,1)3-C 、11(,)33-D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭U B 、()1,11,2⎛⎫+∞ ⎪⎝⎭U C 、2,3⎛⎫+∞ ⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31x f x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u 是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0). ⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0)B 、(0,+∞)C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x,∴f (-x )=log 22+x 2-x=-log 22-x 2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A.变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝ ⎛⎭⎪⎫1-a x ,其中0<a <1.⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-a x,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝ ⎛⎭⎪⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a1-a,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域.随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+ C 、()()()a a a log xy log x log y =• D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、F G =∅I8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132ΛΛ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a --12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求xy的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( ) A 、N a b= B 、N b a= C 、b aN= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、10003、()[]0log log log 234=x ,那么21-x 等于( )A 、2B 、21 C 、4 D 、41 4、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m 7、若132log <a,则a 的取值范围是( ) A 、()+∞⎪⎭⎫ ⎝⎛,132,0Y B 、⎪⎭⎫⎝⎛+∞,32 C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,0Y8、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,3 9、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2 B 、51,103,34,2 C 、2,34,103,51 D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

第18讲 对数及对数式运算

第18讲 对数及对数式运算

第18讲对数及对数式运算5大常考题型总结【知识点梳理】1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①特殊对数:1log 0a =;log 1a a =;其中0a >且1a ≠②对数恒等式:log Na a N =(其中0a >且1a ≠,0N >)③对数换底公式:log log log c a c bb a=如:252log 7lg7ln 7log 7=log 5lg5ln 7==.(4)对数的运算法则:①外和内乘原理:log ()log log a a a MN M N =+;②外差内除原理:log log log aa a MM N N=-;③提公次方法:log log m na a nb b m m=,)n R ∈;④指中有对,没心没肺:log a b a b =和b a a b =如:433log 81log 34==,2log 525=.(5)换底公式和对数运算的一些方法:①常用换底:log log log c a c b b a =如:252log 7lg7ln 7log 7=log 5lg5ln 7==.②倒数原理:1log log a b b a=如:321log 2log 3=.③约分法则:log log log a b a b c c ⋅=如:232log 3log 4log 4=2⋅=;35157log 15log 7log 5log 31⋅⋅⋅=.④归一法则:()2lg 2+lg51lg 2lg5+lg 2+lg5=lg 2lg5+lg 2+lg5=lg 5+lg 21=⇒⋅=.【题型目录】题型一:对数的定义题型二:指数对数的互化题型三:对数的运算求值题型四:换底公式的应用题型五:对数式的应用题【典型例题】题型一:对数的定义【例1】在()()31log 32a b a -=-中,实数a 的取值范围为______.【题型专练】1.使式子(31)log (3)x x --有意义的x 的取值范围是()A .3x >B .3x <C .133x <<D .133x <<且23x ≠2.若()()1log 1k k +-有意义,则实数k 的取值范围是______.题型二:指数对数的互化【例1】将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log 3127=-3.【题型专练】1.把下列指数式化为对数式,对数式化为指数式.(1)3128-=;(2)17ab ⎛⎫= ⎪⎝⎭;(3)1lg31000=-.2.指数式和对数式互相转化:(1)4e a =⇒____________.(2)31327-=⇒____________.(3)21log 416=-⇒____________.(4)2log 83=⇒____________.题型三:对数的运算求值【例1】已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【例2】设函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)(log 6)f f -⋅=()A .3B .6C .9D .12【例3】计算:(1)659log 25log 3log 6⋅⋅=_________.(2)()()24525log 5log 0.2log 2log 0.5++=_________.(3)235111log log log 2589⋅⋅=_________.(4)()24892log 3log 9log 27log 3log n n ++++⋅=L __________.(5)6log =__________.【例4】已知()122021log 5a x x x ⋅⋅⋅=,则222122021log log log a a a x x x ++⋅⋅⋅+=______.【例5】计算:0ln 221.1e 0.5lg 252lg 2-+-++=__________【例6】已知0x >,0y >,且lg 2lg8lg 2x y +=,则21x y+的最小值为___________.【题型专练】1.设3log 42a =,则4a -=()A .116B .19C .18D .162.若()()231log (1)x x f x x x ⎧≤=⎨>⎩,则()()016f f +=_________.3.计算:2log 321lg22log ln1162+++=______4.计算()32log 2lg 2lg 2lg 5lg 53-++-=___________6.设函数()()2log 4,22,2xx x f x x ⎧-+<=⎨>⎩,则()()24log 5f f -+=()A .5B .6C .7D .87.若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为()A .9B .8C .7D .68.计算:22log 4log 1323lg 3log 2lg 5+-⋅-=________.9.计算:(22lg lg 5++____.题型四:换底公式的应用【例1】已知53a =,32b =,则log ab -=()A .1B .2C .5D .4【例2】设25a b m ==,且112a b+=,则m =()A B .10C .20D .100【例3】已知lg 2a =,lg 3b =,则36log 5=()A .221a b a+-B .12a a b-+C .22a a b -+D .122a a b-+【例4】化简()()48392log 3log 3log 2log 2++的值为()A .1B .2C .4D .6【例5】若实数a 、b 、c 满足2540320152019a b c ===,则下列式子正确的是()A .122a b c+=B .221a b c+=C .112a b c+=D .212a b c+=【题型专练】1.已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是()A .d ac=B .a cd=C .c ab=D .d a c=+2.已知1a b >>,若5log log 2b aa b b a a b +==,则2+a b =___________.3.已知3log 2m =,用含m 的式子表示32log 18=_________.4.若23a b m ==,且112a b+=,则m =_____________.5.把满足()231log 3log 4log 2n n +⨯⨯⋅⋅⋅⨯+,*n ∈N 为整数的n 叫作“贺数”,则在区间()1,50内所有“贺数”的个数__.6.若b a ,均为不等于1的正数,且满足b a b a nm 821,22==⎪⎭⎫⎝⎛=,且,则=+221n m .题型五:对数式的应用题【例1】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg 2Em m E -=,其中星等为k m 的星的亮度为(12)k E k =,.已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为()A .10.110B .10.1C .lg10.1D .10.110-【例2】Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()1t K I t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193≈)()A .60B .63C .66D .69【例3】青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A .1.5B .1.2C .0.8D .0.6【例4】地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.里氏震级()M 是用距震中100千米处的标准地震仪所记录的地震波的最大振幅的对数值来表示的.里氏震级的计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,2021年7月28日发生在美国阿拉斯加半岛以南91公里处的8.2级地震的最大振幅约是2021年8月4日发生在日本本州近岸5.3级地震的最大振幅的()倍(精确到1).(参考数据:0.410 2.512≈,0.510 3.162≈, 2.810631≈)A .794B .631C .316D .251【例5】一热水放在常温环境下经过t 分钟后的温度T 将合公式:()012tha a T T T T ⎛⎫-=- ⎪⎝⎭,其中a T 是环境温度,0T 为热水的初始温度,h 称为半衰期.一杯85℃的热水,放置在25℃的房间中,如果热水降温到55℃,需要10分钟,则一杯100℃的热水放置在25℃的房间中,欲降温到55℃,大约需要多少分钟?()(lg 20.3010,lg 30.4771≈≈)A .11.3B .13.2C .15.6D .17.1【题型专练】1.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为0G G L L D=,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg 20.3010≈)()A .128B .130C .132D .1342.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为k E ()1,2k =.已知星A 的星等是 3.5-,星B 的星等是 1.5-,则星A 与星B 的亮度的比值为()A .4510B .4510-C .5410D .5410-3.某种类型的细胞按如下规律分裂:每经过1小时,有约占总数12的细胞分裂一次,分裂细胞由1个细胞分裂成2个细胞,现有100个细胞按上述规律分裂,要使细胞总数超过1010个,需至少经过()(参考数据:lg 20.3010=,lg30.4771=)A .44小时B .45小时C .46小时D .47小时4.地震学家里克特制定了一种表明地震能量大小的尺度,就是使用测振仪衡量地震能量等级,其计算公式0lg lg M A A =-,M 表示里氏震级,A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测振仪距实际震中的距离造成的偏差),计算7.8级地震的最大振幅是4.5级地震的最大振幅的倍数()(答案精确到个位,参考数据:lg398 2.6≈,lg1995 3.3≈,lg 7.80.89≈,lg 30.48≈)A .1995B .398C .89D .485.某公司为激励创新,计划逐年加大研发奖金投入。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.2、图像和性质1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数3、同底的指数函数xa y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100 ⑵已知32a=,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log ax x xxa > 解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x ++的定义域是( ) A 、1(,)3-+∞ B 、1(,1)3- C 、11(,)33- D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31xf x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0) B 、(0,+∞) C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x ,∴f (-x )=log 22+x 2-x =-log 22-x2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A .变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域. 随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、FG =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a -- 12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( )A 、N a b =B 、N b a =C 、b a N= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、1000 3、()[]0log log log 234=x ,那么21-x等于( )A 、2B 、21C 、4D 、414、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m7、若132log <a ,则a 的取值范围是( )A 、()+∞⎪⎭⎫ ⎝⎛,132,0B 、⎪⎭⎫ ⎝⎛+∞,32C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,08、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称 10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x-1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

对数及对数函数 知识点总结及典例

对数及对数函数 知识点总结及典例

对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。

对数与对数运算(附答案)

对数与对数运算(附答案)

2.2 对数函数2.2.1 对数与对数运算知识点一:对数的概念与性质1.以下说法不正确的是A .0和负数没有对数B .对数值可以是任意实数C .以a(a >0,a ≠1)为底1的对数等于0D .以3为底9的对数等于±22.设log 34·log 48·log 8m =log 416,那么m 等于A.92B .9C .18D .27 3.2211+log 52⋅的值等于A .2+ 5B .2 5C .2+52 D .1+52 4.若log 31-2x 9=0,则x =__________. 5.给出以下三个命题:①对数的真数是非负数;②若a >0且a ≠1,则log a 1=0;③若a >0且a ≠1,则log a a =1.其中正确命题的序号是__________.知识点二:指数式与对数式的互化6.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x =100;④若e =lnx ,则x =e 2.其中正确的是A .①③B .②④C .①②D .③④7.下列指数式与对数式互化不正确的一组是A .e 0=1与ln1=0B .813-=12与log 812=-13C .log 39=2与912=3 D .log 77=1与71=78.已知lg3=α,lg4=β,求10α+β、10α-β、10-2α、105β.9.已知log a 2=m ,log a 3=n ,求a 2m +n .知识点三:对数的运算性质及换底公式10.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数为 ①log a x·log a y =log a (x +y) ②log a x -log a y =log a (x -y) ③log ax y=log a x÷log a y ④log a (xy)=log a x·log a yA .0B .1C .2D .311.log 56·log 67·log 78·log 89·log 910的值为A .1B .lg5 C.1lg5D .1+lg2 12.若a >0,a 23=49,则log 23a =__________. 13.设3a =4b =36,求2a +1b的值.能力点一:求值问题14.计算2log 525+3log 264-8log 71的值为A .14B .8C .22D .2715.2log a (M -2N)=log a M +log a N ,则M N的值为 A.14B .4C .1D .4或1 16.(2010河南洛阳高一期中)华南虎是我国一级保护动物,为挽救濒临物种,国家建立了华南虎繁殖基地,第一年(1986年)只有20只,由于科学的人工培养,华南虎的数量y(只)与培养时间x(年)间的关系可近似符合y =alog 2(x +1),则到2016年时,预测华南虎约有__________只.17.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lgE -3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于__________颗广岛原子弹.18.求下列各式中的x 值:(1)log 8x =-23;(2)log x 27=34;(3)x =log 128.能力点二:对数运算性质的综合问题19.已知lga 、lgb 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值是 A .4 B .3 C .2 D .120.lg2=a ,lg3=b ,用a 、b 表示lg 458=__________. 21.(1)lg2+lg5-lg8lg50-lg40; (2)log 34273log 5[412log 210-(33)23-7log 72].22.已知x ,y ,z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz)a =12,求log x a.23.甲、乙两人解关于x 的方程:log 2x +b +c·log x 2=0,甲写错了常数b ,得到解为14和18;乙写错了常数c ,得到解为12和64,求b ,c 都正确的情况下该方程的解.答案与解析基础巩固1.D2.B ∵log 416=2,∴log 34·log 48·log 8m =2,即lgm =lg9.∴m =9,应选B.3.B 原式=21+log 22log 2 5.4.-4 由已知可得1-2x 9=1, ∴1-2x =9.∴2x =-8.∴x =-4.5.②③ ①对数的真数为正数,故①错;②∵a 0=1,∴log a 1=0,②对;③∵a 1=a ,∴log a a =1,③对.6.C 7.C8.解:由条件得10α=3,10β=4,则10α+β=10α·10β=12,10α-β=10α10β=34,10-2α=(10α)-2=19, 10β5=(10β)15=415. 9.解:log a 2=m ,log a 3=n ,由对数定义知a m =2,a n =3,∴(a m )2=4,即a 2m =4.∴a 2m +n =a 2m ·a n =4×3=12.10.A11.C 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5. 12.3 a >0,由a 23=49,知(a 13)2=(23)2,∴a 13=23. 两端取对数得log 23a 13=log 2323=1,即13log 23a =1, ∴log 23a =3.13.解法一:由3a =4b =36,得log 336=a ,log 436=b ,∴由换底公式a =log 336=1log 363,b =log 436=1log 364.∴2a +1b=2log 363+log 364=log 3636=1. 解法二:对已知条件的两边取以6为底的对数,得alog 63=2blog 62=2,∴2a =log 63,1b=log 62. ∴2a +1b=log 63+log 62 =log 66=1.能力提升14.C 原式=2×2+3×6-8×0=22.15.B 由题意,得M >0,N >0,M -2N >0.故M N>2,显然只有B 符合条件. 16.100 当x =1时,y =alog 2(1+1)=20,∴a =20.∴y =20log 2(x +1),到2016年时,培养时间为(2 016-1 986)+1=31(年),则到2016年时,预测华南虎的数量约为y =20log 2(31+1)=100(只).17.1 000 设里氏8.0级,6.0级地震释放的能量分别为E 2,E 1,则8-6=23(lgE 2-lgE 1),即lg E 2E 1=3. ∴E 2E 1=103=1 000,即汶川大地震所释放的能量相当于1 000颗广岛原子弹.18.解:(1)由log 8x =-23,得 x =823-=(23) 23-=2-2=14. (2)由log x 27=34,得x 34=27=33, ∴x 14=3.∴x =34=81.(3)由x =log 128,得(12)x =8=23=(12)-3,∴x =-3. 19.C lga +lgb =2,lga·lgb =12,(lg a b)2=(lga -lgb)2=(lga +lgb)2-4lga·lgb =4-2=2. 20.1-4a +2b 原式=lg45-3lg2=lg5+2lg3-3lg2=1-4lg2+2lg3=1-4a +2b.21.解:(1)原式=lg 2×58lg 5040=lg 54lg 54=1. (2)原式=log 33433·log 5[22log 10-(332)23-77log 2] =(34log 33-log 33)log 5(10-3-2)=(34-1)·log 55=-14. 22.解:由log z a =24得log a z =124, 由log y a =40得log a y =140, 由log (xyz)a =12得log a (xyz)=112, 即log a x +log a y +log a z =112. ∴log a x +140+124=112, 解得log a x =160. ∴log x a =1log a x=60. 拓展探究23.解:由甲可知2142181log log 20,41log log 20,8b c b c ⎧++⋅=⎪⎪⎨⎪++⋅=⎪⎩即⎩⎨⎧ -2+b -12c =0,①-3+b -13c =0. ②由①-②,得1-16c =0,∴c =6. 由乙可知2122641log log 202log 64log 20b c b c ⎧++⋅=⎪⎨⎪++⋅=⎩ 即⎩⎪⎨⎪⎧-1+b -c =0, ③6+b +16c =0. ④由③+④×6,得7b +35=0, ∴b =-5.综上,方程为log 2x +6log x 2-5=0,即(log 2x)2-5log 2x +6=0, ∴log 2x =2或log 2x =3.∴x =4或x =8,即原方程的解为4或8.。

5对数运算与对数函数(解析版)Word版

5对数运算与对数函数(解析版)Word版

第五讲 对数运算与对数函数一 知识要点1、对数概念:一般地,如果)1,0(≠>=a a y a x且,那么数x 叫做以a 为底y 的对数,记作y x a log =,其中a 叫做对数的底数,y 叫做真数关系式指数式底数指数幂(值)对数式底数指数真数axyya x =xy a =log )1,0(≠>a a )1,0(≠>a a )(R x ∈)(R x ∈)(+∈R y )(+∈R y备注:由于正数的任何次幂都是正数,即)0(0>>a a x ,故0>=xa y ,因此对数符号)1,0(log ≠>a a y a 且只有0>y 时才有意义,例如:0log 2,)2(log 2-无意义。

2、对数恒等式与对数的性质根据对数的定义,可以得到下面的对数恒等式:y aya =log根据对数的定义,对数)1,0(log ≠>a a N a 且具有下列性质: (1)零和负数没有对数,即0>N ; (2)1的对数为零,即01log =a (3)底的对数等于1,即1log =a a 3、常用对数与自然对数对数)1,0(log ≠>a a N a 且,当底数 (1)10=a 时,叫做常用对数,记作N lg ;(2)e a =时,叫做自然对数。

记作)71828.2(ln ≈e N 4、对数的运算性质:如果0,0,1,0>>≠>N M a a 且,那么:(1)N M N M a a a log log )(log +=⋅;(积的对数等于对数的和) (2)N M NMa a alog log log -=;(商的对数等于对数的差) (3))(log log R M M a a ∈=ααα5、换底公式:)0,1,,0,(log log log >≠>=N b a b a bNN a a b6、对数函数的图像和性质:函数)0,10(log >≠>=x a a x y a 且的图像特征和性质备注:对数函数x y a log =的底a 越大,函数图像在x 轴上方部分越偏居右侧。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

(完整版)对数及对数函数知识点及习题,推荐文档

(完整版)对数及对数函数知识点及习题,推荐文档

对数及对数函数学习目标:(一)对数1.对数的概念一般地,如果,那么数叫做以为底的对数,记作:N a x=)1,0(≠>a a x a N 其中:是底数,是真数,是对数式N x a log =a N N a log 2、两个重要对数:常用对数:以10为底的对数;○1N lg 自然对数:以无理数为底的对数的对数.○2 71828.2=e N ln 3、对数式与指数式的互化xN a =log ⇔Na x =对数式指数式 对数底数← → 幂底数⇔a对数← → 指数真数←→ 幂x N 4、对数的性质(1)负数和零没有对数; (2)1的对数是零:;01log =a (3)底数的对数是1:; (4)对数恒等式:;1log =a a N aNa =log (5).n a n a =log5、对数的运算法则:()()log log log a a a MN M NM N R =+∈+,()log log log aa a MNM N M N R =-∈+, ()()log log a n a N n NN R =∈+()log log a naN nN N R =∈+16、对数换底公式:log log log log (.)log b a a n e g N N bL N N e N L N N ====其中…称为的自然对数称为常数对数27182810由换底公式推出一些常用的结论:(1) (2)log log log log a b a b b a b a ==11或·log log a m a nb mnb =(3) (4)log log a na nb b =loga m na mn=(二)对数函数(一)对数函数的概念1.定义:函数,且叫做对数函数其中是自变量,函数的定0(log >=a x y a )1≠a x 义域是(0,+∞).(二)对数函数的图象和性质在同一坐标系中画出下列对数函数的图象○1(1) (2) x y 2log =xy 21log =(3) (4) x y 3log =xy 31log =○2一、选择题:1.3log 9log 28的值是( )A .32 B .1C .23 D .22.已知x =2+1,则lo g 4(x 3-x -6)等于()A.23 B.45 C.0D.213.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .b a b a +++12 B .b a b a +++12C .ba ba +-+12D .ba ba +-+124.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1]D .(-∞,1)5.已知f (e x )=x ,则f (5)等于()A .e 5B .5eC .ln5D .log 5e6.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于()A .}1|{>x xB .}0|{>x xC .}1|{-<x x D .}11|{>-<x x x 或7.计算:log 2.56.25+lg1001+ln e +3log 122+= .8.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为.9.已知f (x )=x 2+(lg a +2)x +lg b ,f (-1)=-2,当x ∈R 时f (x )≥2x 恒成立,求实数a 的值,并求此时f (x )的最小值?10.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;11.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.。

对数函数知识点及典型例题

对数函数知识点及典型例题
解:先证明 (x)是单调函数.设-1<x <x <1,则
( x )- ( x ) = lg + -lg - = lg + ,
∵-1<x <x <1,∴ x -x >0, 1-x >1-x >0,1 + x >1 + x >0,
∴ >1, >0,即 ( x )- ( x )>0,
∴函数 (x)是单调递减函数.
(3) lg - lg +lg .
解:(1)方法一 利用对数定义求值
设 =x, 则(2+ )x=2- = =(2+ )-1,∴x=-1.
方法二 利用对数的运算性质求解
= = (2+ )-1=-1.
(2)原式=lg (2lg +lg5)+ =lg (lg2+lg5)+|lg -1|
=lg +(1-lg )=1.
⑴当-4<a<0时, <0,恒有g(x)>0,函数y的定义域为R,又y与g(x)单调性一致.所以在(-∞, ]上,y单调递减;在[ ,+∞)上,y单调递增;
⑵当a=-4时, = 0,y = lg(x + 1) ,其定义域为{x | x≠-1,x∈R},
∴在(-∞,-1)上y单调递减;在(-1,+∞)上,y单调递增;
⑶当a= 0时, = 0,y = lg(x-1) ,其定义域为{x | x≠1,x∈R},
∴在(-∞,1)上y单调递减;在(1,+∞)上,y单调递增;
⑷当a<-4或a>0时, >0,函数的定义域为:
(-∞, )∪( ,+∞).
∴在(-∞, )上,y单调递减;在( ,+∞)上,y单调递增.
例7 已知函数 (x) = lg + ,x∈(-1,1 ),问y = (x) 的图象上是否存在两个不同的点A、B,使AB⊥y轴,若存在,求A、B的坐标,若不存在,说明理由.

对数与对数运算知识点总结与例题讲解

对数与对数运算知识点总结与例题讲解

(2)1 的对数等于 0,即 loga 1 0 ( a 0 且 a 1 ).
(3)底数的对数等于 1,即 loga a 1( a 0 且 a 1 ).
(4)对数恒等式 a loga N N ( a 0 且 a 1 ). (5) loga a x x ( a 0 且 a 1 ).
例 13. 设 loga 2 m , loga 3 n ,则 a 2mn 的值为__________.
解:∵ loga 2 m , loga 3 n ,∴ a m 2, a n 3 .
a ∴ 2mn a m 2 a n 22 3 12 .
对数与对数运算知识点总结与例题讲解 第 5 页
16 .
点评 指数运算与对数运算互为逆运算,在解题过程中,互相转化是解决相关问题的重要途
径,但一定要记清 a, x, N 在两种形式中的准确位置:指数式 a x N ,对数式 x loga N .
需 要 说 明 的 是 , 并 不 是 所 有 的 指 数 式 都 可 以 化 为 对 数 式 , 如 24 16 , 就 不 能 化 为
5 3x ,∴ 4 x 3

5,x

log 4
3
5.
例 11. 若 4a 2 , lg x a ,则 x __________.
解:∵ 4a 2 ,∴ 22a 2 , 2a 1 , a 1 . 2
1
∵ lg x a ,∴ x 10a 10 2 10 .

3 2
.
∴ log9
27

3 2
;
(2)设 log4 3
81
x ,则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数运算知识点及例题解析
1、对数的定义
①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.
②负数和零没有对数.
③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .
3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N
4、对数的性质:
(1)log 10,
log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).
5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N
-= ③数乘:log log ()n
a a n M M n R =∈ ⑤log a m M n =n m log a M .
⑥换底公式:log log (0,1)log b a b N
N b b a
=
>≠且 特殊情形:log a b =
1
log b a
,推广log a b ·log b c ·log c d =log a d .
类型一、指数式与对数式互化及其应用
例1、将下列指数式与对数式互化:
(1);(2);(3)
;(4);(5);(6).
思路点拨:运用对数的定义进行互化.
解:(1);(2);(3);(4);(5);(6).
例2、求下列各式中x 的值:
(1) (2) (3)lg100=x (4)
思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.
解:(1)

(2)

(3)10x =100=102,于是x=2; (4)由
例3、若x=log43,则(2x-2-x)2等于()
A.9
4 B.
5
4 C.
10
3 D.
4
3
解由x=log43,得4x=3,即2x=3,2-x=
3
3,所以(2
x-2-x)2=





23
3
2=
4
3.
类型二、利用对数恒等式化简求值
例4、求值:解:.
总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数
例5、求的值(a,b,c∈R+,且不等于1,N>0)
思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.
解:.
类型三、积、商、幂的对数
例6、已知lg2=a,lg3=b,用a、b表示下列各式.
(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15
解:(1)原式=lg32=2lg3=2b
(2)原式=lg26=6lg2=6a
(3)原式=lg2+lg3=a+b
(4)原式=lg22+lg3=2a+b
(5)原式=1-lg2=1-a
(6)原式=lg3+lg5=lg3+1-lg2=1+b-a
例7、(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2
解:
(1)
(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1
(3)原式=2lg5+lg2(1+lg5)+(lg2)2
=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.
例8、已知3a=5b=c,,求c的值.
解:由3a=c得:
同理可得
.
例9、设a、b、c为正数,且满足a2+b2=c2.求证:.
证明:
.
例10、已知:a2+b2=7ab,a>0,b>0. 求证:.
证明:∵ a2+b2=7ab,∴ a2+2ab+b2=9ab,即 (a+b)2=9ab,∴ lg(a+b)2=lg(9ab),∵ a>0,b>0,∴ 2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即.
类型四、换底公式的运用
例11、(1)已知log x y=a,用a表示;
(2)已知log a x=m, log b x=n, log c x=p,求log abc x.
解:(1)原式=;
(2)思路点拨:将条件和结论中的底化为同底.
方法一:a m=x, b n=x, c p=x


方法二:.
例12、求值:(1);(2);(3).解:
(1)
(2);
(3)法一:
法二:.
总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.
类型五、对数运算法则的应用
例13、求值
(1) log89·log2732
(2)
(3)
(4)(log2125+log425+log85)(log1258+log254+log52)
解:(1)原式=.
(2)原式=
(3)原式=
(4)原式=(log2125+log425+log85)(log1258+log254+log52)
例14、已知:log23=a, log37=b,求:log4256=?
解:∵∴,。

相关文档
最新文档