直流 直流变换器
直流直流变换器介绍课件
3
高频交流电经过变压器后,再通过整流 和滤波,将高频交流电转换为直流电。
4
直流直流变换器可以实现电压、电流和 功率的调节,以满足不同的应用需求。
应用领域
电动汽车:作为动 力系统的核心部件,
实现能量转换和分 1
配
航空航天:为航天 4
器提供稳定的电源, 确保航天任务的顺
利完成
太阳能发电:将太 阳能转化为电能,
直流直流变换器介绍课件
演讲人
目录
01. 直流直流变换器概述 02. 直流直流变换器分类 03. 直流直流变换器设计要点 04. 直流直流变换器发展趋势
直流直流变换器概述
基本概念
直流直流变换器: 将直流电转换为 直流电的设备
输入电压:变换 器接收的直流电 压
输出电压:变换 器输出的直流电 压
转换效率:变换 器将输入电压转 换为输出电压的 效率
拓扑结构:变换 器的电路结构, 如升压、降压、 升降压等
控制方式:变换 器的控制方式, 如PWM、PFM 等
应用领域:直流 直流变换器的主 要应用领域,如 电力电子、新能 源等
工作原理
1
直流直流变换器是一种将直流电转换为 直流电的设备。
2
其工作原理是通过控制开关管的通断, 将直流电转换为高频交流电。
考虑电路的损 耗和效率
考虑电路的稳 定性和动态性 能
考虑电路的体 积和成本
考虑电路的可 扩展性和可维 护性
控制策略设计
1
控制目标:实现直流直流变换器的稳 定、高效运行
2
控制方法:采用PID控制、模糊控制、 自适应控制等方法
3
控制参数:根据系统特性和需求,调 整控制参数以实现最佳性能
4
第3章 直流变换器
第3章 直 流 变 换 器直流变换器,即直流-直流变换器,是将一种直流电源变换为另一种具有不同输出特性的直流电源。
直流变换是为解决系统效率,特别是大功率系统的效率而提出的解决方案。
它是一种将直流电能变换成负载所需的电压或电流可控的直流电能的电力电子装置。
它通过对电力电子器件的快速通、断控制而把恒定直流电压斩成一系列的脉冲电压,通过控制比的变化来改变这一脉冲序列的脉冲宽度,以实现输出电压平均值的调节,再经输出滤波器滤波,在被控负载上得到电压或电流可控的直流电能。
直流变换器按照电路拓扑可以分为基本的不带隔离变压器的直流变换器和带隔离变压器的直流变换器两大类。
基本的直流变换器是通过开关管,再经电容、电感等储能滤波元件将输入的直流电压变换为符合负载要求的直流电压或电流。
这种变换器适用于输入输出电压等级相差不大,且不要求电气隔离的应用场合。
基本的直流变换器有多种电路接线形式,根据其电路结构及功能分类,本章将讨论以下四种基本类型:(1)Buck 直流变换器;(2)Boost 直流变换器;(3)Buck-Boost 直流变换器;(4)Boost-Buck 直流变换器。
其中,(1)、(2)两种是直流变换器最基本的结构;(3)、(4)是前两种基本结构的组合形式。
本章将详细分析上述四种变换器的基本原理和稳态工作特性,分析过程中,为便于理解把变换器中的功率器件看作理想开关,并且对电路中电感和电容的损耗忽略不计。
此外还假定变换器的直流输入电源为理想的恒压电压源。
直流变换器输出端所带负载常用一等效电阻来表示。
而在直流电机驱动中,电机负载可表示为直流电压与绕组电阻和电感的串联等效电路。
3.1 基本直流变换器3.1.1 Buck 直流变换器Buck 变换器(又称作降压变换器)就是将直流输入电压变换成相对低的平均直流输出电压。
它的特点是输出电压比输入的电压低,但输出电流比输入电流高。
它主要用于直流稳压电源中,在这些应用场合,变换器的输出电压可根据输入电压和负载阻抗进行调节。
buck直流变换器研究现状
buck直流变换器研究现状(一)直流变换器当今科学技术日益发展,直流电源系统或直流驱动设备发展迅速,在各种场合中的应用越来越普遍。
对直流变换器的需求和对直流变换器的性能、参数指标要求都越来越高。
直流变换器的发展趋势是从大体积向小体积发展,功率密度、转换效率是从低到高发展。
效率的提高使发热减少,可靠性也就大大提高。
双向直流变换器的提出和应用,实现了上述要求。
双向dc-dc变换器是通过对传统的单向直流变换器改进而成,将有源开关代替无源开关,双向基本变换单元代替单向基本变换单元,通常把二极管D和开关管Q反向并联,在把电容分别并联在输出输入两端即能实现。
双向dc-dc变换器改进了单向dc-dc变换器,实现能量双向传输,在生产应用中减少了器件数目,降低了成本,提高了效率,提高了性能,是直流变换器发展历程中重要的改进。
上世纪八十年代,美国学者提出双向Buck/Boost直流变换器,主要用来应用于人造卫星。
上世纪九十年代,香港大学陈清泉教授进行了电动车用双向dc-dc变换器的研究实验。
同年,F.Caricchi教授提出了Buck-Boost级联型双向dc-dc变换器,克服了双向直流变换器因输出输入极性相反而不适合于电动车的问题。
98年,美国弗吉尼亚大学的李择元教授开展用于燃料电池的双向dc-dc 变换器的研究和试验工作。
综上可见,航天技术和电动车技术对直流变换器的发展应用产生了重要推动作用。
1994年Felix A.Himmelstoss 发表的文章阐述了不隔离双向直流变换器的拓扑结构。
主要有已下几种: Buck、Boost、Buck-Boost、Cuk 、Sepic、Zeta 双向直流变换器。
隔离式双向dc-dc变换器有:正激、反激、推免和桥式等拓扑结构。
在所有结构中,Buck和Boost是最基本的电路。
直流变换器应用很普遍,主要有:远程及数据通讯,计算机,工业仪器仪表,电动汽车,太阳能电池阵,分布式电站,军事航天等方面。
直流-直流变换器
直流-直流(DC/DC)变换器DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。
上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。
直流-直流变换器功能模块介绍直流-直流变换器(DC-DC converter)内部一般具有PWM(脉宽调制)模块,E/A(差错放大器模块),比较器模块等几大功能模块。
直流-直流变换器工作原理其工作原理为:输出经过FB(反馈电路)接到FB pin,反馈电压VFB与设定好的比较电压Vcomp比较后,产生差错电压信号,差错电压信号输入到PWM模块,PWM根据差错电压的大小调节占空比,从而达到控制输出电压的目的,振荡器的作用是产生PWM工作频率的三角波,三角波经过斩波电压斩波后,产生方波,其方波就是控制MOSFET的导通时间从而控制输出电压的。
直流变换器调制方法开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。
输出电压波形如上图所示,输出电压的平均值Uo为(4-1)式中Ts—开关周期D—开关占空比, 变负载端输出电压有3种调制方法:1.开关周期Ts保持不变,改变开关管导通时间ton。
也称为脉宽调制(PWM)。
2.开关管导通时间ton保持不变,改变开关周期Ts。
3. 改变开关管导通时间ton,同时也改变开关周期Ts。
方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有4-2(a)是脉宽调制方式的控制原理图。
三端口隔离型直流变换器的简化分析与性能优化方法
三端口隔离型直流变换器的简化分析与性能优化方法汇报人:2024-01-10•引言•三端口隔离型直流变换器的基本原理目录•三端口隔离型直流变换器的简化分析方法•三端口隔离型直流变换器的性能优化方法•实验验证与结果分析目录•结论与展望01引言三端口隔离型直流变换器的特点三端口隔离型直流变换器具有三个独立的端口,可以实现能量的双向流动,具有较高的功率密度和能量转换效率。
简化分析与性能优化的重要性为了更好地应用三端口隔离型直流变换器,需要对其进行分析和优化,简化分析方法并提高其性能。
电力电子技术的快速发展随着电力电子技术的快速发展,直流变换器在能源转换、电机控制等领域的应用越来越广泛。
背景介绍1 2 3通过对三端口隔离型直流变换器的简化分析和性能优化,可以更好地解决实际应用中的问题,提高设备的效率和稳定性。
解决实际应用问题对三端口隔离型直流变换器的研究可以推动电力电子技术的发展,为相关领域的技术进步做出贡献。
推动电力电子技术的发展三端口隔离型直流变换器在新能源和节能技术领域有广泛的应用前景,对其的优化可以促进这些领域的技术进步。
促进新能源和节能技术的发展研究意义02三端口隔离型直流变换器的基本原理工作原理基于开关管的控制,通过改变开关管的导通和关断状态,实现电压和电流的转换。
开关管的控制信号通常由控制电路产生,控制电路根据输出电压或电流的反馈信号调整开关管的开关状态。
三个端口:输入、输出和辅助电源端口。
工作原理主要由输入滤波电路、主开关电路、输出滤波电路、辅助电源电路和控制电路等部分组成。
输入滤波电路用于减小输入电压的波动和抑制电磁干扰;主开关电路实现电压和电流的转换;输出滤波电路减小输出电压的纹波;辅助电源电路为控制电路提供工作电源;控制电路产生开关管的控制信号。
电路结构根据工作方式的不同,可以分为连续导通模式(CCM)和断续导通模式(DCM)。
根据输出电压和输入电压的关系,可以分为降压型、升压型和隔离型。
什么是直流pwm变换器
什么是直流pwm变换器
什幺是pwn
PWM是脉冲宽度调制的意思,PWM输出波形是一系列占空比变化的脉冲。
这里提到了调制的概念,也就是说,PWM波中包含了方波和一个调制信号。
通过解调(一般采用低通滤波器或积分器)可以获取调制信号。
比如说,变频器输出的PWM信号就是以方波为载波,以正弦波为调制信号的脉冲宽度调制波。
PWM电压信号施加在电机上,由于电机是感性负载,流过电机绕组的主要就是调制波(正弦波)。
从信号构成上看,PWM包含了基波(调制正弦波波)和谐波,由于载波是方波,因此,谐波含量很丰富,且具有很高频率的谐波。
DC-DC Converter (直流变换器)资料
Ui
D
L
iL iO
R
Uo C
L
S
导通 Ui
C
电感电流:
连续 (CCM-Continuous Current Mode)
临界 断续(DCM-Discontiuous Current Mode)
S 阻断
电压纹波、谐波、内阻 ……
L
iL 0
C
iL 0
C
R Uo
R
Uo
R Uo
1 电流的不同状态
★ 电流连续状态:
uL iC
S1
S1
T
S2
t
S1 S2
S2
★ 电流临界状态:
I LM
1 L
tON 0
uLdt
1 L
(U i
Uo )tON
DTUi (1 D) L
临界电流平均值:
I LC
1 2
I
LM
UiT D(1 D) 2L
4I LCM D(1 D)
I LCM
TUi 8L
Ui
UO
ton
toff
t
DT
D=0.1
D=0.5
D=0.9
★ 电流断续状态:
uL Ui -UO
(1-D)T
t
DT
1T
-UO
2T
(Ui Uo )DT 1TUo Uo D Ui D 1
D 1 1 Uo
续流时间=?
Ui
iS ii S
D
L
iL iO
R
Uo C
Io
1 2
I LM
(D
1 )T
/T
Uo 2L
1T
(
直流直流变换器
率。
热设计
热分析
对变换器进行热分析,确 定关键发热元件和最高温 度点,为散热设计提供依 据。
散热设计
根据热分析结果,选择适 当的散热方式,如自然散 热、强制风冷或液冷等。
热管设计
利用热管的高效传热特性, 将热量从发热元件传导至 散热器,提高散热效果。
直流-直流变换器
目录
• 引言 • 直流-直流变换器的分类 • 直流-直流变换器的应用 • 直流-直流变换器的设计与优化 • 直流-直流变换器的挑战与解决方
案 • 未来展望
01
引言
定义与作用
定义
直流-直流变换器是一种将直流电 能转换为另一种直流电能的装置 。
作用
在电力电子、通信、仪器仪表、 工业自动化等领域,直流-直流变 换器广泛应用于电压调节、电流 控制和电源管理等方面。
电磁兼容性(EMC)设计
滤波设计
在变换器输入和输出端加入滤波电路,抑制电磁 干扰的传播。
屏蔽设计
对关键电路和元件进行屏蔽,以减小电磁干扰的 影响。
接地设计
合理设计接地网络,降低地线回路的干扰电压, 提高系统的电磁兼容性。
05
直流-直流变换器的挑战 与解决方案
效率与体积的权衡
挑战
在设计和制造直流-直流变换器时, 需要权衡效率和体积。通常情况下, 更高的效率需要更大的体积和更复杂 的电路设计。
THANKS
感谢观看
多路输出直流-直流变换器的发展
随着多路输出电源需求的增加, 多路输出直流-直流变换器的发
展成为未来的重要方向。
多路输出直流-直流变换器能够 同时提供多路稳定、可调的直流 电压,满足各种不同设备的电源
DC-DC直流变换器
DC-DC直流变换器第⼀章绪论本章介绍了双向DC/DC变换器(Bi-directional DC/DC Converter,BDC)的基本原理概述、研究背景和应⽤前景,并指出了⽬前双向直流变换器在应⽤中遇到的主要问题。
1.1 双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输⼊、输出电压极性不变的情况下,根据具体需要改变电流的⽅向,实现双象限运⾏的双向直流/直流变换器。
相⽐于我们所熟悉的单向DC/DC 变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上⼀般都需要⼆极管,因此单个变换器能量的流通⽅向仍是单向的,且这样的连接⽅式会使系统体积和重量庞⼤,效率低下,且成本⾼。
所以,最好的⽅式就是通过⼀台变换器来实现能量的双向流动,BDC就是通过将单向开关和⼆极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2 双向直流变换器的研究背景在20世纪80年代初期,由于⼈造卫星太阳能电源系统的体积和重量很⼤,美国学者提出了⽤双向Buck/Boost直流变换器来代替原有的充、放电器,从⽽实现汇流条电压的稳定。
之后,发表了⼤量⽂章对⼈造卫星应⽤蓄电池调节器进⾏了系统的研究,并应⽤到了实体中。
1994年,⾹港⼤学陈清泉教授将双向直流变换器应⽤到了电动车上,同年,F.Caricchi 等教授研制成功了⽤20kW⽔冷式双向直流变换器应⽤到电动车驱动,由于双向直流变换器的输⼊输出电压极性相反,不适合于电动车,所以他提出了⼀种Buck-Boost级联型双向直流变换器,其输⼊输出的负端共⽤。
1998年,美国弗吉尼亚⼤学李泽元教授开始研究双向直流变换器在燃料电池上的配套应⽤。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应⽤具有很⼤的推动⼒,⽽开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳⼤利亚Felix A.Himmelstoss发表论⽂,总结出了不隔离双向直流变换器的拓扑结构。
直流变换器工作原理
直流变换器工作原理小伙伴们!今天咱们来唠唠直流变换器这个超有趣的东西。
直流变换器呢,就像是一个超级魔法师,能把一种直流电压变成另外一种直流电压。
这可太酷了,就好像把一个小盒子里的东西变个模样再放到另一个小盒子里一样。
那它到底是怎么做到的呢?这得从它的内部结构说起啦。
直流变换器里面有好多小零件,它们就像一个小团队一样合作得特别默契。
咱们先来说说电感这个小成员。
电感呀,就像是一个小仓库,它可以储存能量呢。
当电流通过电感的时候,电感就开始储存电能啦,就像小松鼠储存松果一样,把电能一点一点地攒起来。
还有电容这个小可爱。
电容就像是一个小水库,它可以储存电荷。
当直流变换器工作的时候,电容就起到了稳定电压的作用。
如果电压有波动,就像小水波动荡一样,电容就能把这些波动给抚平,让电压变得更稳定。
那在直流变换器里,还有一个非常重要的东西,那就是开关管。
这个开关管就像一个小门卫,它一会儿打开,一会儿关上。
当开关管打开的时候,电流就可以通过电感流向负载,同时电感开始储存能量。
这时候,电容也在旁边帮忙稳定电压呢。
可是当开关管突然关上的时候,有趣的事情就发生了。
电感因为之前储存了能量,它可不想就这么把能量憋在自己肚子里呀。
于是,电感就会释放它储存的能量,继续给负载供电。
这个过程就像是一个接力赛,开关管和电感配合得超级好。
你看,通过这样不断地打开和关闭开关管,直流变换器就能够把输入的直流电压进行调整,变成我们想要的直流电压啦。
而且呀,直流变换器还有不同的类型呢。
有一种是降压型的直流变换器,就像是把一个高高的台阶变成矮矮的台阶一样,把高的直流电压降下来,变成比较低的直流电压。
这种在很多电子设备里都很常见呢,比如说手机充电器,它就把家里的高电压变成手机能接受的低电压,这样手机才能安全地充电呀。
还有一种是升压型的直流变换器。
这就像是把小土坡变成大山一样,把低的直流电压升高。
像有些移动电源,当它给一些需要高电压的设备充电的时候,就会用到升压型的直流变换器,把它自身的低电压升高到合适的数值。
直流直流变换器设计背景与意义
直流直流变换器设计背景与意义
直流直流变换器(DC-DC Converter)是一种将一种直流电压转换为另一种直流电压的电子器件。
它的设计背景与意义如下:
1. 电力供应:由于电网中常用的是交流电,但很多电子设备需要使用直流电供电,如计算机、手机等。
因此,需要将电网中的交流电转换为需要的直流电,这时就需要使用直流直流变换器进行转换。
2. 电能转换:在一些电力系统中,需要将电能从一个直流电源传输到另一个直流负载,如电动车、电动机等。
直流直流变换器能够实现这种电能的高效转换,提高能量转移的效率。
3. 电压匹配:不同的电子设备或电子组件需要不同的电压供电,直流直流变换器能够将一个直流电源的电压转换为所需的电压,满足不同设备的需求。
4. 节能降耗:直流直流变换器能够提高能量的传输效率,减少能量转换过程中的能量损耗。
在一些需要长时间工作的设备中,使用直流直流变换器可以显著降低耗能,延长设备的使用寿命。
5. 转换器拓扑:直流直流变换器的设计主要涉及转换器的拓扑结构选择、功率集成电路的选用、控制算法的设计等方面。
这些设计是电力电子领域的重要研究内容,对提高电力转换效率、减少成本、改善系统可靠性具有重要意义。
总之,直流直流变换器的设计背景与意义在于实现不同电压间的转换,满足电子设备、电力系统中的电能转换与供电要求,提高能量转换效率、降低能量损耗,并推动电力电子领域的研究和应用。
UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍
UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍逆变器在电路中常被使用,本文中,小编将对UPS中的逆变器予以介绍。
本文介绍内容包括直流变换器、半桥逆变器、单相全桥逆变器以及三相全桥逆变器等知识,如果你对逆变器相关内容具有兴趣,不妨在本文下述内容中进行探索哦。
一、直流变换器直流变换器是一种最简单最基本的逆变器电路,主要应用于后备式UPS 中,它分为自激式和它激式两种。
1、自激式推挽变换器图1 自激式直流推挽变换器图1(a)所示是自激式直流推挽变换器电路,所谓自激就是不用外来的触发信号,UPS就可以利用自激振荡的方式输出交流电压,其交流电压的波形为方波,如图1(b)所示的波形UN。
UN是当电源电压E为额定值时的输出情况(其中阴影部分除外)。
自激直流变换器电路主要用于对电压稳定度要求不高但不能断电的地方,如电冰箱、紧要照明用的白炽灯、高压钠灯和金属卤素灯等,供电条件差的农村居民也有不少采用了这种电路作不间断电源。
由于它的电路简单、价格便宜、可靠性高,故也很受欢迎。
该电路的工作原理如下:在时间t=t0加直流电压E,这时由于晶体管V1和V2的基极电压Ub1=Ub2=0,(1)所示二者不具备开启条件,但在它们的集电极和发射极之间却都有漏电流,如图中的I1和I2所示,且二电流在变压器绕组中的流动方向相反,由于器件的分散性,使得I1-I2=ΔI≠0,(2)这个差值电流ΔI就在绕组中产生一个磁通量,于是就在基极绕组中感应出电压Ub1和Ub2,由同名端的标志可以看出,这两个电压的极性是相反的,即一个Ub给晶体管基极加正电压,使其开通,另一个Ub给另一个晶体管基极加负压,使其进一步截止。
电路的设计正好是漏电流大的那一个晶体管基极所感应出的Ub给自己基极加正压,而漏电流小的那一个晶体管基极所加的是负压,基极加正压管子的集电极电流进一步增加,又进一步使它的基极电压增大,这样一个雪崩式的过程很快使该管(设为V1)电流达到饱和值,即V1集电极-发射极之间的压降UCE1=0,绕组N1和N2上的电压也达到了最大值UN1=UN2=E,此后由于磁芯进入饱和阶段,磁芯中磁通的变化量减小,各绕组感应的电压也相应减小,原来导通的管子由于集电极电流增大(磁芯饱和所致)和基极电流减小而脱离饱和区,使绕组感应的电压进一步减小,这样一个反变化过程使得V1雪崩式地截止而V2达到饱和,如图1(b)t1所示。
dcdc工作原理
dcdc工作原理
DCDC工作原理是指直流-直流变换器的工作原理。
它的主要
功能是将输入直流电压转换为输出直流电压,同时保持输出电压的稳定性。
DCDC变换器由输入端、输出端、开关管和滤波电感组成。
当输入电压加到开关管时,开关管将打开并导通,将电流通过滤波电感传递到输出端。
此时能量存储在滤波电感中,电容也开始储存能量。
当开关管导通时,滤波电感的电流增加,同时输出电容的电压也随之增加。
当开关管关闭时,滤波电感中的电流不能瞬间消失,而是继续流过输出电容,维持输出电压的稳定。
同时,滤波电感和输出电容中储存的能量也开始驱动输出端的负载。
DCDC变换器通过不断地开关管的导通和关闭,实现了将输入直流电压转换为输出直流电压的过程。
通过控制开关管的开关频率和占空比,可以调节输出电压的大小。
同时,通过反馈回路,可以实现对输出电压的稳定控制。
总之,DCDC变换器通过利用开关管的导通和关闭,通过电感和电容储存和传输能量,将输入直流电压转换为输出直流电压,并通过控制开关管和反馈回路实现输出电压的稳定控制。
这种工作原理使得DCDC变换器在许多电子设备中得到广泛应用。
直流变换器课程设计
实验结束后,按照操作规程关闭 设备,并整理好实验台
设计规范和标准遵守
遵守相关国家和行业标准,如GB/T 18488.1-2015《电动汽车用驱动电机系统 第1部分:技 术条件》等。
确保设计符合安全、环保、能效等方面的要求,避免使用有害材料和违规设计。
在设计过程中应充分考虑电磁兼容性(EMC)问题,采取相应措施降低干扰。
直流变换器的基本原理
直流变换器是一种将直流电能转换为其他直流电压或电流的电路设备。
基本原理基于磁耦合原理,通过变压器实现电压转换。
直流变换器具有较高的转换效率,可实现快速响应和宽范围电压调节。
在实际应用中,直流变换器广泛应用于各种电子设备和电力系统中,如开关电源、电动汽车、航 天器等。
03
仿真分析
仿真软件介绍: MATLAB/Simuli nk
仿真模型建立: 基于电路原理图 或模块化设计
仿真参数设置: 输入电压、输出 电压、工作频率 等
仿真结果分析: 波形、效率、温 升等
实验验证
实验目的:验证直流变换器的性能指标 实验设备:直流电源、负载、测量仪表等 实验步骤:按照设计要求搭建电路,进行测试和数据记录 实验结果:分析实验数据,评估直流变换器的性能表现
感谢观看
汇报人:
测试方法:采用 合适的测试仪器 和设备进行测试
注意事项:确保 安全操作,遵循 测试规范和安全 准则
总结和报告撰写
总结设计过程和 经验教训
整理和汇总实验 数据
编写设计报告, 包括电路图、原 理说明、实验结 果等
提交设计报告, 进行答辩或评审
05
直流变换器课程设计注意事项
安全注意事项
确保电源断开,避免触电危险
案例一:DC-DC变换器设计
交流-直流变换器(整流器1PPT培训课件
电动车充电桩中的整流器应用需要综合考虑充电的安全性 、稳定性和效率,以确保电动车电池能够得到安全、高效 的充电。
实际应用案例三
案例名称
案例描述
案例分析
案例总结
风力发电系统中的整流器应用
风力发电系统中,发电机发出 的交流电需要通过整流器转换 为直流电,再通过逆变器转换 为交流电供用户使用。
在风力发电系统中应用整流器 需要考虑发电效率、电压稳定 性和可靠性等问题。整流器需 要具备过载保护、短路保护等 功能,以确保风力发电系统的 正常运行。
04
交流-直流变换器(整流器)的参数和性
能指标
主要参数
输入电压范围
整流器正常工作的交 流输入电压范围。
输出电压
整流器输出的直流电 压值。
最大输出电流
整流器能够提供的最 大直流输出电流。
效率
整流器将交流电转换 为直流电的效率,通 常以百分比表示。
开关频率
整流器中开关元件的 开关次数或工作频率。
性能指标
汽车电子应用
车载电器供电
灯光控制
汽车内部许多电子设备都需要直流电 才能正常工作,整流器能够将汽车电 池的交流电转换为直流电,为车载电 器提供稳定的电源。
汽车前大灯、转向灯等都需要直流电 源才能正常工作,整流器能够将交流 电转换为直流电,为灯光控制系统提 供稳定的电源。
发动机控制
整流器在发动机控制系统中发挥着重 要作用,将交流发电机发出的交流电 转换为直流电,为发动机控制模块提 供稳定的电源。
电压调整率
整流器输出电压的变化 范围与输入电压的变化
范围之比。
电流调整率
整流器输出电流的变化 范围与输入电压的变化
范围之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? = 1 TS
V dt Ton 2
Ton 2 i
= Vi ?Ton Ts
= D ?Vi
CT
E Io vo
ii
G
Vg D
R F
Vi
iD
io L
O
(a)电路
Vg
Ton
Toff
Ton
Ts
(b)驱动信号
vo (vEO )
O
t
Vi - p
p 2p
- Ts 0
2
Ts Ts 2
(c)输出电压波形
Vo = DVi w t(t)
i c
1 + Di
L
2
2 2 2 8f
t
DV0
= V0max
-
V0min
=
DQ C
=
(1- D)V0 8LCf 2
- 1 Di L
直流-直流变换器
? 直流-直流降压变换器( Buck变换器) ? 直流-直流升压变换器 (Boost 变换器) ? 全桥直流-直流变换器 ? 带隔离变压器的直流 —直流变换器
3.1直流-直流降压变换器(Buck变换器)
io VO
R
R
RCE
Ig
io VO R
Vi
L
Vi
L
Vi
T
Ig
io VO
i
i
R
L Vi
v g
T
T off
on
t
i
i
T
E
v EO
+
v l
-
V o
i
i
L
o
V+
i
-
G
V g
D
i L
L
i
C
C
C
R
i
i
T
o
o
o
T s
I L max
I =I
L
o
I
L min
t
i
T
I
L max
i
D
i T
I
L min
t
v
? 电容C在一个开关周期内的充 EO
v
i
电电荷为:
v i t
DQ = 1 ?DiL ?Ts = DiL
+ -
T
E
vEO
+
v l
-
V o
i
G
V g
D
i
L
L C
i
CC
o R
i o
o
o
buck 电路图
电路的开关状态和工作波形
i i
V+
i
-
o
T
E
v EO
+
v l
-
V o
i
o
G
V g
D
i
L
L
i
C
CC
R
i o
o
v
i
+ l-i
V o
i
l
V i
L C
I o
iR
C
(b) 开关状态 1,T导通D截止等值电路
T
- v+
? 偶函数(奇函数):正弦(余弦)项系数为零;
? 半波对称函数:偶次谐波为零;
? ? 对称函数:偶次谐波为零,余弦项的系数为零;
直流分量、基波、谐波、纹波
? 在直流电路中分解后的常量可看成所需要的直流量,谐波
都是不需要的量。
vEO
=
DV1
+
?
?
2V1 sin( nDp ) cos nwt
n=1 n T S
0
? ? an
=
2 T
T
F
(t
)
cos(
nwt
)
dt
=
1Байду номын сангаас
0
p
2p F (wt) cos( nwt)d (wt)
0
? ? bn
=
2 T
T
F
(t
)
sin(
nwt
)dt
=
1
0
p
2p F (wt) sin(nwt)d (wt)
0
用傅立叶分解方法求变压比和谐波分量 (续)
? F(ωt)
?
? F (wt) = C0 + Cn cos(nwt + ?n ) n =1
l
D
i l
L
V i
C
V o i o
R
(c)开关状态 2,D导通 T阻断等值电路
v
g
T
T off
on
t
T
s
i
I
L
L max
I =I
L
o
I
L min
t
iT
i
T
I
L max
i
D
i
T
I
L min
t
vEO vi
vi
t
i c
+ 1 Di L 2
t
v-
1 2
DiL
o
DQ
Ts 2
V o
t
T on
T off
T s
变压比、导通比的定义
i
o
o
v
i
ii
l
l
+
-
Vo
V
L
I
i
C
o
i
R
C
用电感电流表达式求变压比(续1)
? T 截止、 D导通
L?diL dt = - V0
DiL-
= V0 L
?(Ts
-
Ton )
= V0 L
?(1 -
D) ?Ts
i
i
V+
i
-
o
v
T
EO v
E
+ l-
V
oi
G
V g
D
o
i L
L
i
C
C
C
R
i
o
o
T
+ v-
V o
l
变压比 :
M = V0 / Vi
导通比(占空比): D = Ton / TS
Ton = DTs
Toff = (1 - D)Ts
变压比与电路结构和导通比都有关系, 他们之间的关系可用多种方法推导。
用波形积分的 方法求变压比
? vEO的直流分量 V0为:
? V0
=
1 Ts
v dt Ts 2
- Ts 2 EO
? ? C0
=
a0
=
1 T
T
F (t)dt =
1
0
2p
2p F (wt )d (wt )
0
Cn =
a
2 n
+
bn2
用傅立叶分解方法求变压比和谐波分量(续)
vEO
=
DV1
+
?
?
2V1
n=1 nT S
sin(nDp ) cos nwt
在许多实际的电力电子变换器中,由于电路开关通 断状态在时间上的 对称性 ,使电压、电流波形具有某些 特定的对称性,从而 使其付立叶级数表达式中某些项系 数为零,且其它项系数的计算也变得比较简单。 物理上 这种情况就是这时电流或电压波形中不存在某些电流或 电压分量。
i
D
iL l
o
V
i
C
R
(c) 开关状态 2,D导通 T阻断等值电路
用电感电流表达式求变压比(续2)
? 稳态时:
DiL-
= V0 ?(1 L
D) ?Ts
=
DiL+
=
Vi
- V0 L
?D ?Ts
故有 V0 = M Vi = DVi
电流连续时,变压比M等于导通 比D,与负载大小无关。
输出电压波动量计算
用傅立叶分解方法求变压比和谐波分量
? 周期性函数可以分解为无限项三角级数——付立叶级数:
?
? F (wt) = a0 + ?an cos(nwt) + bn sin( nwt)? n=1
? ? ? a0
=
1 T
T
F
(t )dt
=
1
0
wT
2p F (wt)d (wt) = 1
0
2p
2p F (wt)d (wt)
?在交流电路中一般不会有直
流分量,分解出的最低次谐波
i
i
常常称为基波,其他谐波一般
都是不需要的分量。
Vi
+ -
? 谐波一般用滤波器滤掉, o
滤波器的输出电压有纹波。
T
E
vEO
+
vl
-
V o
i
G
V g
D
i
L
L C
i
CC
o R
i o
o
buck 电路图
滤波
i
i
滤波器电抗对谐波
的阻抗为: wL
滤波器电容对谐波
? 电感电流; ? 电感磁通; ?电容电压; ? 电容电荷;
用电感电流表达式求变压比
? T导通、D截止
L ?dii dt = L ?diL dt = Vi - V0
DiL+
=
Vi
- V0 L
?Ton
=
Vi
- V0 L
?D