电路常识性概念(5)-上拉电阻下拉电阻拉电流灌电流扇出系数
什么是灌电流和拉电流
欢迎进入老古论坛对拉电流输出和灌电流输出进行讨论在使用数字集成电路时,拉电流输出和灌电流输出是一个很重要的概念,例如在使用反向器作输出显示时,图1是拉电流,即当输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
图2为灌电流输出,即当反向器输出端为低电平时,发光二极管处于正向连接情况,在这种情况下,反向器一般能输出5~10mA的电流,足以使发光二极管发光,所以这种灌电流输出作为驱动发光二极管的电路是比较合理的。
因为发光二极管发光时,电流是由电源+5V通过限流电阻R、发光二极管流入反向器输出端,好像往反向器里灌电流一样,因此习惯上称它为“灌电流”输出。
电子学中“拉电流”与“灌电流”的含义悬赏分:0 - 提问时间2006-8-11 15:40 问题为何被关闭谁知道电子学中“拉电流”与“灌电流”的含义,知道的详细说来!提问者:jzy19840914 - 助理二级答复共4 条垃,既通过器件向电源索取。
灌,既通过器件向电源回输(流)。
回答者:老瓢虫- 高级魔法师七级8-11 16:35器件通过负载接电源称为灌;器件通过负载接地称为拉。
回答者:lnaslzt - 同进士出身七级8-11 18:59拉电流即元气件从它的负载输入电流;灌电流即该元气件向负载输出电流。
回答者:lncysun - 助理三级8-13 10:48数字电路中的0,1,是根据电位的高低来区分的。
在电位高时,下一级电路会从本级电路中拉出一部分电流,在电位低时,上一级电路会向本级电路中灌入一部分电流,这就是你所谓的:电子学中“拉电流”与“灌电流”的含义回答者:高级电灯泡- 见习魔法师二级8-13 21:17什么是灌电流,拉电流和扇出系数当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
电阻之上拉电阻与下拉电阻详解(转)
电阻之上拉电阻与下拉电阻详解(转)上拉(Pull Up )或下拉(Pull Down)电阻(两者统称为“拉电阻”)最基本的作⽤是:将状态不确定的信号线通过⼀个电阻将其箝位⾄⾼电平(上拉)或低电平(下拉),⽆论它的具体⽤法如何,这个基本的作⽤都是相同的,只是在不同应⽤场合中会对电阻的阻值要求有所不同,从⽽也引出了诸多新的概念,本节我们就来⼩谈⼀下这些内容。
如果拉电阻⽤于输⼊信号引脚,通常的作⽤是将信号线强制箝位⾄某个电平,以防⽌信号线因悬空⽽出现不确定的状态,继⽽导致系统出现不期望的状态,如下图所⽰:在实际应⽤中,10K欧姆的电阻是使⽤数量最多的拉电阻。
需要使⽤上拉电阻还是下拉电阻,主要取决于电路系统本⾝的需要,⽐如,对于⾼有效的使能控制信号(EN),我们希望电路系统在上电后应处于⽆效状态,则会使⽤下拉电阻。
假设这个使能信号是⽤来控制电机的,如果悬空的话,此信号线可能在上电后(或在运⾏中)受到其它噪声⼲扰⽽误触发为⾼电平,从⽽导致电机出现不期望的转动,这肯定不是我们想要的,此时可以增加⼀个下拉电阻。
⽽相应的,对于低有效的复位控制信号(RST#),我们希望上电复位后处于⽆效状态,则应使⽤上拉电阻。
⼤多数具备逻辑控制功能的芯⽚(如单⽚机、FPGA等)都会集成上拉或下拉电阻,⽤户可根据需要选择是否打开,STM32单⽚机GPIO模式即包含上拉或下拉,如下图所⽰(来⾃ST数据⼿册):根据拉电阻的阻值⼤⼩,我们还可以分为强拉或弱拉(weak pull-up/down),芯⽚内部集成的拉电阻通常都是弱拉(电阻⽐较⼤),拉电阻越⼩则表⽰电平能⼒越强(强拉),可以抵抗外部噪声的能⼒也越强(也就是说,不期望出现的⼲扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越⼩则相应的功耗也越⼤,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这⼀⽅⾯,拉电阻是绝不会有所偏颇的,如下图所⽰:对于上拉电阻R1⽽⾔,控制信号每次拉低L都会产⽣VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2⽽⾔,控制信号每次拉⾼H也会产⽣VCC/R2R 电流消耗(本⽂假设⾼电平即为VCC)。
影响逻辑门电路扇入扇出数目的相关因素
影响逻辑门电路扇入扇出数目的相关因素Factors related to the number of fan-in and fan-outof logic gate【摘要】数字电路中逻辑门电路部分是数字电子技术和模拟电子技术中结合最紧密的部分,其中的难点之一就是门电路的结构和扇出系数的计算。
若扇入扇出数不当门或是扇出与门电路所带负载不匹配,则会损害电路,甚至烧坏。
电路的扇入扇出受多种因素影响,其中最主要的便是灌电流和拉电流以及上下拉电阻。
【关键词】扇入、扇出、灌电流、拉电流、上下拉电阻【Abstract】Digital circuit is part of the logic gates and analog digital electronic technology combined with electronic technology in some of the most closely,one of the difficulties which the structure is the gate and fan-out factor calculations.If the number of fan-in or fan-out is wrong or the door does not match the load carried by circuit,then it will damage the circuit, and even burned.Fan-in and fan-out of the circuits affected by many factors, chief among which is the current and sink current and the pull-up or pull-down resistors.【Key word】fan-in、fan-out、sink current、pull current、pull-up or pull-down resistor引言在逻辑系列中,门电路所具有的输入端数目称之为该逻辑系列的扇入。
上拉电阻和下拉电阻的作用是什么?
什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。
那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。
上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。
下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。
最全讲解上下拉电阻
1. 拉电流和灌电流电子元器件在广义上分为有源器件和无源器件。
有源器件需要电源(能量)才能实现其特定的功能,比如运算放大器在有输入信号的前提下,如果不提供电源,运算放大器无法实现其放大功能。
无源器件在工作时,不需要外加电源,只要输入信号就能正常工作,比如在信号线上串联33Ω的电阻,无论是否提供电源,只要有信号经过,电阻就能实现限流的作用。
通常定义流入器件的电流为正,流出器件的电流为负。
器件输入端有电流流进时,称为吸电流,属于被动;器件输出端有电流流出时,称为拉电流,属于主动;器件输出端有电流流入时,称为灌电流,属于被动。
下面以运算放大器工作为例。
对电源来说,运算放大器属于负载,电源提供电流让其正常工作,此时运算放大器在吸收电流。
对运算放大器来说,当它输出高电平,提供负载电流时,此时电流方向为负,称为拉电流;当它输出低电平,消耗负载电流,此时电流方向为正,称为灌电流。
2. 上/下拉电阻定义在电子元器件间中,并不存在上拉电阻和下拉电阻这两种实体的电阻,之所以这样称呼,原因是根据电阻不同使用的场景来定义的,其本质还是电阻。
就像去耦电容,耦合电容一样,也是根据其应用场合来取名,其本质还是电容。
上拉电阻的定义:在某信号线上,通过电阻与一个固定的高电平VCC相接,使其电压在空闲状态保持在VCC电平,此时电阻被称为上拉电阻。
同理,下拉电阻的定义:将某信号线通过电阻接在固定的低电平GND上,使其空闲状态保持GND电平,此时的电阻被称为下拉电阻。
如下图所示,R1为上拉电阻,R2为下拉电阻。
如果R1的阻值在上百K,能提供给信号线上负载电流非常小,对负载电容充电比较慢,此时电阻被称为弱上拉。
同理当下拉的电阻非常大时,导致下拉的速度比较缓慢,此时的电阻被称为弱下拉。
而当上下拉的电平可以提供较大的电流给芯片时,此时的电阻被称为是强上拉或强下拉。
3. 上/下拉电阻的应用根据上拉电阻和下拉电阻的含义,最常见的几种用法如下。
(1)用在OC/OD门所谓OC门就是Open Collector,集电极开路,如下图所示:所谓OD门就是Open Drain,漏极开路,如下图所示。
上拉电阻下拉电阻的总结
上拉电阻下拉电阻的总结一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
上拉电阻是指:将某电位点采用电阻与电源VDD相连的电阻。
比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。
下拉电阻就是在某电位点用电阻与地相连的电阻。
如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:A)在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
B)管脚悬空就比较容易接受外界的电磁干扰。
4. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设开关状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
上拉电阻和下拉电阻的总结
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
拉电流、灌电流、扇入、扇出、准双向、双向定义
当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数NO是描述集成电路带负载能力的参数,它的定义式如下:NO= IOLMAX / IILMAX其中IOLMAX为最大允许灌电流,IILMAX是一个负载门灌入本级的电流。
No越大,说明门的负载能力越强。
一般产品规定要求No≥8。
对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL门,NO≥20扇入、扇出系数:扇入系数--门电路允许的输入端数目。
一般门电路的扇入系数Nr为1—5,最多不超过8。
若芯片输入端数多于实际要求的数目,可将芯片多余输入端接高电平(+5V)或接低电平(GND)。
扇出系数--一个门的输出端所驱动同类型门的个数,或称负载能力。
一般门电路的扇出系数Nc为8,驱动器的扇出系数Nc可达25。
Nc体现了门电路的负载能力。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流;反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流。
上、下拉电阻作用
上拉电阻,下拉电阻的含义,作用及选用原则2010-02-19 13:34上拉电阻,下拉电阻的含义,作用及选用原则在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
2、为什么要使用拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O 端口的输出类似于一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。
上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。
3.上拉电阻的作用:当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
OC门电路必须加上拉电阻,才能使用。
为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
上拉电阻、下拉电阻的原理和作用
上拉电阻、下拉电阻的原理和作用一.应用1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
二.原理:上拉电阻实际上是集电极输出的负载电阻。
不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。
工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。
找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。
但芯片制造商很难满足应用的需要不可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OC、OD输出的芯片。
由于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升时间满足设计要求就可,随便选一个都可以正常工作。
但是一个电路设计是否优秀这些细节也是要考虑的。
集电极输出的开关电路不管是开还是关对地始终是通的,晶体管导通时电流从负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽量避免的,如果电阻选择大又会带来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶体管放电,时间取决于器件本身。
上下拉电阻详解
上下拉电阻详解上下拉电阻,统称为拉电阻。
他们最基本的作用就是将状态太不确定的信号线通过一个电阻将其箝位一个确定的高电平(上拉电阻)或低电平(下拉电阻)。
而在不同的应用场景中,对电阻的要求又有所不同,从而引起诸多新概念。
上拉电阻或是下拉电阻的选择他们的作用就是信号线箝位至指定的电平状态,以防止因为信号线悬空而出现不确定的状态,继而出现我们不希望出现的结果。
信号线上的上下拉电阻对于应该使用上拉电阻还是下拉电阻,一般取决与系统本身的需要。
对于高有效的使能脚,我们加入希望上电后处于无效状态,那么就是下拉电阻。
如果我们希望一直都是高电平,那就是上拉电阻。
强拉弱拉根据电阻的大小我们可以分为强拉或者弱拉,芯片内部的上下拉,一般都是弱拉。
拉电阻越大,表示电平能力越弱,正常信号想要改变信号线的状态也就越容易。
比如上图中,控制EN脚变高,每次都要消耗VCC/10K的电流。
强拉电阻的极端表示0欧姆电阻。
根据芯片引脚的结构选择上下拉电阻作为芯片引脚的上下拉电阻一般是出现在OC门或OD门上。
OC 门结构存在于三极管上,OD门存在于场效应管中。
而大多说比较门器件则是OD门较多!OC门输入当Q1基极为高电平时,芯片脚输出为低电平,没有问题。
但是此时需要在信号线上加一个限流电阻。
OC门输出当Q1的基级为低电平时,若外部没有上拉电阻,则芯片脚的电平为不确定,此时便需要一个上拉电阻以确定信号线电平。
信号线上的电平取决于外加电压VCC,OC/OD门使得电平转换电路也变得简单了。
因此我们通常会在OC/OD门上加上拉电阻。
比如IIC总线便是OC/OD门。
同时芯片还有一些管脚是推挽结构(output push-pull)推挽结构推挽结构的特点:无论输出引脚输出高电平还是低电平都有很大驱动能力,对于任何给定的芯片他们的驱动能力都是一定的。
如STM32,一般拉电流(引脚输出为低时)为25mA。
同理,一般推电流(引脚输出为高时)也是25mA。
在使用中应特别注意:推挽结构的引脚的驱动能力,以免引起芯片动作不正常。
最经典解析汇报:上拉电阻、下拉电阻、拉电流、灌电流
(一)上拉电阻的使用场合:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
(二)上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
(三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻、下拉电阻详细解读
上拉电阻、下拉电阻详细解读电阻在电路中起限制电流的作用。
上拉电阻和下拉电阻是经常提到也是经常用到的电阻,在每个系统的设计中都用到了大量的上拉电阻和下拉电阻。
在上拉电阻和下拉电阻的电路中,经常有的疑问是:上拉电阻为何能上拉?下拉电阻为何能下拉?下拉电阻旁边为何经常会串一个电阻?简单概括为:●电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平;●地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。
●低电平在IC内部与GND相连接;●高电平在IC内部与超大电阻相连接。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。
对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。
上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。
当IC的I/O端口,节点为高电平时:节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时:直接接GND就可以了,这个时候VCC与GND 是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。
电平值的大小、高低是相对于地电平来说的,因此在看电平值的大小时要参考地的电平值来看。
看看那些引脚是否接到地上,与自己是否连接外围器件没有关系,因为其实高电平还是低电平是相对于地平面来说的。
在节点与+5V之间接10K欧或4.7K欧的上拉电阻,能够把这个节点的电位拉上来,往往这个节点要求应用单片机或其它控制器来控制它(及这个节点与I/O连接)为高电平或低电平。
如果单纯的想要使这个节点成为高电平,并且输出阻抗非常大,则直接接电源也无妨,但是如果单片机要使这个节点拉低,即单片机内部使节点接地,这样5V电源和地之间就短路了。
上拉电阻和下拉电阻
所谓上,就是指高电平;所谓下,是指低电平。
上拉,就是通过一个电阻将信号接电源,一般用于时钟信号数据信号等。
下拉,就是通过一个电阻将信号接地,一般用于保护信号。
这是根据电路需要设计的,主要目的是为了防止干扰,增加电路的稳定性。
假如没有上拉,时钟和数据信号容易出错,毕竟,CPU的功率有限,带很多BUS线的时候,提供高电平信号有些吃力。
而一旦这些信号被负载或者干扰拉下到某个电压下,CPU无法正确地接收信息和发出指令,只能不断地复位重启。
假如没有下拉,保护电路极易受到外界干扰,使CPU误以为被保护对象出问题而采取保护动作,导致误保护。
上拉下拉,要根据电路要求来设置。
下拉电阻是串接电阻后接地,目的是把该点的电压拉低..也可以说可以提高端口的灌电流能力。
需要用到上拉电阻和下拉电阻的情况还蛮多的,画图比较麻烦。
上拉电阻:就是从电源高电平引出的电阻接到输出1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,COMS)输出,那么不用上拉电阻是不能工作的,这个很容易理解,管子没有电源就不能输出高电平了。
2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。
(就是并一个电阻在IC内部的上拉电阻上,让它的压降小一点)。
当然管子按需要该工作在线性范围的上拉电阻不能太小。
当然也会用这个方式来实现门电路电平的匹配。
需要注意的是,上拉电阻太大会引起输出电平的延迟。
(RC延时)一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。
下拉电阻:和上拉电阻的原理差不多,只是拉到GND去而已。
那样电平就会被拉低。
下拉电阻一般用于设定低电平或者是阻抗匹配(抗回波干扰)。
21|评论。
拉电流,灌电流 ,扇出系数,上拉电阻,下拉电阻讲议
拉电流与灌电流1、概念拉电流(sourcing current)和灌电流(Sink Current)是衡量电路输出驱动能力(注意:拉、灌电流都是对输出端口而言的,所以是驱动能力)的参数,这种说法一般用在数字电路中。
在芯片手册中的拉、灌电流是一个参数值,是芯片在实际电路中允许输出端拉、灌电流的上限值(允许最大值)。
而下面要讲的这个概念是电路中的实际值(并非级限值)。
由于数字电路的输出只有高、低(1,0)两种电平值,高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫“拉电流”;低电平输出时,一般是输出端要吸收负载的电流,其吸收电流的数值叫“灌电流”。
对于输入电流的器件而言:①灌入电流I/O端口是输出端口。
②灌入电流是被动的。
③吸收电流是主动的。
④吸电流的I/O端口是输入端口。
2、为什么能够衡量输出驱动能力当逻辑门输出端是低电平时(向负载提供低输出),灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
因为负载向I/O端灌入电流是通过端口内部的一个到地的三极管完成的,由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越高。
然而,逻辑门的低电平是有一定限制的,它有一个最大U OLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OLMAX ≤0.4~0.5V。
所以,灌电流有一个上限。
当逻辑门输出端是高电平时(向负载提供高输出),逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值U OHMIN。
在逻辑门工作时,不允许低于这个数值,TTL逻辑门的规范规定U OHMIN ≥2.4V。
所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于U OHMIN;低电平输出时,灌电流会使输出电平高于U OLMAX。
什么是拉电流_什么是灌电流_拉电流和灌电流有什么区别
什么是拉电流_什么是灌电流_拉电流和灌电流有什么区别什么是拉电流由于数字电路的输出只有高、低(0,1)两种电平值,高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫拉电流。
例如在使用反向器作输出显示时,当输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
什么是灌电流当反向器输出端为低电平时,发光二极管处于正向连接情况,在这种情况下,反向器一般能输出5~10mA的电流,足以使发光二极管发光,所以这种灌电流输出作为驱动发光二极管的电路是比较合理的。
因为发光二极管发光时,电流是由电源+5V通过限流电阻R、发光二极管流入反向器输出端,好像往反向器里灌电流一样,因此习惯上称它为灌电流输出。
灌电流与拉电流的区别介绍当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX 0.4~0.5V。
所以,灌电流有一个上限。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN 2.4V。
所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。
所以,拉电流与灌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路常识性概念(5)-上拉电阻、下拉电阻 / 拉电流、灌电流 / 扇出系数2009-03-17 19:34(一)上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
(二)上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
(三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
(四)下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K可用。
COMS门的可参考74HC系列。
设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)++++++++++++++++++++++++++++++++++++++++++++++1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,COMS)输出,那么不用上拉电阻是不能工作的,这个很容易理解,管子没有电源就不能输出高电平了。
2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把(就是并一个电阻在IC内部的上拉电阻上,让它的压降小一点)。
电平“拉高”。
当然管子按需要该工作在线性范围的上拉电阻不能太小。
当然也会用这个方式来实现门电路电平的匹配。
需要注意的是,上拉电阻太大会引起输出电平的延迟。
(RC延时)一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。
下拉电阻:和上拉电阻的原理差不多,只是拉到GND去而已,那样电平就会被拉低。
下拉电阻一般用于设定低电平或者是阻抗匹配(抗回波干扰)。
上拉电阻的工作原理电路图如上图所示,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A的电平向低方向(地)拉;同样,图中下部的一个Bias Resaitor 电阻因为接电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。
当然,许多电路中上拉电阻和下拉电阻中间的那个12k电阻是没有的或者是看不到的。
上图是RS-485/RS-422总线上的,可以一下子认识上拉电阻和下拉电阻的意思。
但许多电路只有一个上拉电阻或下拉电阻,而且实际中,还是上拉电阻的为多。
++++++++++++++++++++++++++++++++++++++++++++++在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
2、为什么要使用拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似于一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。
+++++++++++++++++++++++++++++++++拉电流与灌电流1、概念拉电流和灌电流是衡量电路输出驱动能力(注意:拉、灌都是对输出端而言的,所以是驱动能力)的参数,这种说法一般用在数字电路中。
这里首先要说明,芯片手册中的拉、灌电流是一个参数值,是芯片在实际电路中允许输出端拉、灌电流的上限值(允许最大值)。
而下面要讲的这个概念是电路中的实际值。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流(被灌入);反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流(被拉出)2、为什么能够衡量输出驱动能力时,灌入逻辑门的电流称为灌电流,压降越大,低电平越大。
U OLMAX。
在逻辑门工作TTL逻辑门的规范规定U OLMAX≤0.4~0.5V当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值U OHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OHMIN≥2.4V。
所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于U OHMIN;低电平输出时,灌电流会使输出电平高于U OLMAX。
所以,拉电流与灌电流反映了输出驱动能力。
(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题。
用扇出系数来说明逻辑门来驱动同类门的能力,扇出系数No是低电平最大输出电流和低电平最大输入电流的比值。
===========================在集成电路中,吸电流、拉电流输出和灌电流输出是一个很重要的概念。
拉即泄,主动输出电流,是从输出口输出电流。
灌即充,被动输入电流,是从输出端口流入吸则是主动吸入电流,是从输入端口流入,区别在,从拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流,它们实际就是输入、输出电流能力。
吸收电流是对输入端(输入端吸入)而言的;而拉电流(输出端流出)和灌电流(输出端被灌入)是相对输出端而言的。
+++++++++++++++++++++++++++++++++++++给一个直观解释:图中PB0输出0,LED会亮,PB0的电流方向是流向PB0也就是灌电流了;而PB1要输出1,LED会亮,PB1的电流方向是从PB1流出,也就是拉电流了。
+++++++++++++++++++++++++++++++++++++在实际电路中灌电流是由后面所接的逻辑门输入低电平电流汇集在一起而灌入前面逻辑门的输出端所形成,读者参阅图18-2-3自明。
显然它的测试电路平,只不过灌电流是通过接向电源的一只电位器而获得的,调节的电位器可改变灌电流的大小,输出低电平的电压值也将随之变化。
(a) 灌电流负载(b) 拉电流负载图18-2-3 灌电流与放电流示意图(a) 灌电流负载特性曲线 (b) 测试电路图18-2-4 灌电流负载特性曲线及测试电路当输出低电平的电压值随着灌电流的增加而增加到输出低电平最大值时,即u OL=U OLMAX时所对应的灌电流值定义为输出低电平电流的量大值I OLMAX。
不同系列的逻辑电路,同一系列中不同的型号的集成电路,国家标准中对输出低电平电流的最大值I OLMAX的规范值的规定往往是不同的。
比较常用的数值如下TTL系列I OLMAX=16mALSTTL74系列I OLMAX=8mALSTTL54系列I OLMAX=4mA扇出系数N O是描述集成电路带负载能力的参数,它的定义式如下18-2-1)N O= I OLMAX / I ILMAX其中I OLMAX为最大允许灌电流,I ILMAX是一个负载门灌入本级的电流。
No越大,说明门的负载能力越强。
一般产品规定要求No≥8。