蓝牙无线数据传输入门

蓝牙无线数据传输入门
蓝牙无线数据传输入门

蓝牙无线数据传输入门

前言:

想要理解整个协议栈是比较难的,在这里我们将通过TI提供的例程快速进行蓝牙数据的传输,对BLE有一个简单的了解。

实现平台:WeBee CC2540模块及功能底板

图 3.46网蜂CC2540模块及功能底板

实验现象:

两个模块建立连接并进行简单的数据传输,整个过程可通过串口观察到模块的连接状况和数据的变化。这个实验在协议栈(BLE-CC254x-1.2.1)中进行。

实验讲解:

整个实验用到两个模块,一个主机和一个从机,重点为下面两个步骤:

1、建立连接

2、数据传输测试

1.1.1部分代码简析

在实现数据传输之前我们简单介绍一下SimpleBLECentral和SimpleBLEPeripheral这两个工程结构,这里只以SimpleBLEPeripheral为例:这个工程主要实现BLE中的外设,即从机功能,主要向外广播信号,通知其它蓝牙设备说我在这里,谁需要就可以申请连接。

而SimpleBLECentral工程则是作为主机,负责建立连接。

打开下面目录的SimpleBLEPeripheral.eww,可以看到一下工程结构:

D:\TexasInstruments\BLE-CC254x-1.2.1\Projects\ble\SimpleBLEPeriph eral\CC2540DB

图 3.47工程界面

接下来主要关注以下几个函数:

(1)主函数

(2)OSAL任务初始化函数,在osal_init_system()中调用

定义不同层的任务ID,SimpleBLEPeripheral_ProcessEvent则是我们需要

关心的。

图 3.50osalInitTasks(void)(3)simpleBLEperipheral.h

图 3.51simpleBLEperipheral.h

这里定义了三个事件,最多有16个事件,每一位代表一个事件。

图 3.52事件定义

图3.51这两个函数才是重点:

SimpleBLEPeripheral_Init(uint8task_id)主要对GAP和GATT进行配置,最后调用osal_set_event(simpleBLEPeripheral_TaskID,SBP_START_DEVICE_EVT)启动设备。

SimpleBLEPeripheral_ProcessEvent(uint8task_id,uint16events)包含对传递进来的事件的处理函数,即上面定义的三个事件。

(4)static void peripheralStateNotificationCB(gaprole_States_t newState)——Peripheral设备状态改变时的回调函数

图 3.53peripheralStateNotificationCB(gaprole_States_t newState)

(5)static void simpleProfileChangeCB(uint8paramID)

——simpleProfile特征值改变时的回调函数(simpleProfile在后面会介绍)

图 3.54simpleProfileChangeCB(uint8paramID)

1.1.2建立连接

1、SimpleBLEPeripheral advertising

前面我们只简单提到void SimpleBLEPeripheral_Init(uint8task_id),这里我们进去看看:

图 3.55设置广播状态

由上可看到当不定义CC2540_MINIDK时是直接打开广播,然后再调用TI官方提供的GAP层API函数:GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8),&initial_advertising_enable)进行设置。

我们也可以手动开启广播,定义CC2540_MINIDK时是不开启广播的,那是在哪里打开?TI官方提供的板MINIDK是通过按键HAL_KEY_SW_2开关广播功能,直接看按键HAL_KEY_SW_2处理程序:

图 3.56按键设置广播状态

现在可以明白如何对Peripheral进行广播设置。这里我们同样利用按键S2

来进行广播设置。

图 3.57广播状态切换

这样我们就可以通过按键来设置广播使能,对于这个工程,上电是直接使能广播的。

下载运行,可以看到Peripheral是直接广播的

图 3.58上电广播

按下S2按键可看到Peripheral状态在切换:

图 3.59广播状态切换

2、Central scanning and connected

在SimpleBLECentral工程中,同样是在void SimpleBLECentral_Init(uint8 task_id)对GAP和GATT进行配置,完成之后根据TI的板,是通过按键来实现各种功能。

同样进入按键处理函数:static void simpleBLECentral_HandleKeys(uint8shift, uint8keys)

向上按键:

1.if(keys&HAL_KEY_UP)

2.{

3.//Start or stop discovery开始或停止设备发现,即scanning

4.if(simpleBLEState!=BLE_STATE_CONNECTED)

5.{

6.if(!simpleBLEScanning)

7.{

8.simpleBLEScanning=TRUE;

9.simpleBLEScanRes=0;

10.

11.LCD_WRITE_STRING("Discovering...",HAL_LCD_LINE_1);

12.LCD_WRITE_STRING("",HAL_LCD_LINE_2);

13.//使能扫描

14.GAPCentralRole_StartDiscovery(DEFAULT_DISCOVERY_MODE,

DEFAULT_DISCOVERY_ACTIVE_SCAN,DEFAULT_DISCOVERY_WHITE_LIST);

15.}

16.else

17.{

18.GAPCentralRole_CancelDiscovery();//停止扫描

19.}

20.}

21.else if(simpleBLEState==BLE_STATE_CONNECTED&&

22.simpleBLECharHdl!=0&&

23.simpleBLEProcedureInProgress==FALSE)

24.//如果已连接,则读取或写特征值

25.{

26..............//这部分数据传输时再说明

27.}

28.}

向左按键:

1.if(keys&HAL_KEY_LEFT)

2.{

3.//Display discovery results显示扫描到的设备,在设备中滚

4.if(!simpleBLEScanning&&simpleBLEScanRes>0)

5.{

6.//Increment index of current result(with wraparound)

7.simpleBLEScanIdx++;

8.if(simpleBLEScanIdx>=simpleBLEScanRes)

9.{

10.simpleBLEScanIdx=0;

11.}

12.

13.LCD_WRITE_STRING_VALUE("Device",simpleBLEScanIdx+1,

14.10,HAL_LCD_LINE_1);

15.

LCD_WRITE_STRING(bdAddr2Str(simpleBLEDevList[simpleBLEScanIdx].a ddr),

16.HAL_LCD_LINE_2);

17.}

18.}

19.//扫描到的设备地址存放于simpleBLEDevList数组中。

向右按键:

1.if(keys&HAL_KEY_RIGHT)

2.{

3.//Connection update连接更新

4.if(simpleBLEState==BLE_STATE_CONNECTED)

5.{

6.GAPCentralRole_UpdateLink(simpleBLEConnHandle,

7.DEFAULT_UPDATE_MIN_CONN_INTERVAL,

8.DEFAULT_UPDATE_MAX_CONN_INTERVAL,

9.DEFAULT_UPDATE_SLAVE_LATENCY,

10.DEFAULT_UPDATE_CONN_TIMEOUT);

11.}

12.}

中间按键:建立或断开当前连接

1.if(keys&HAL_KEY_CENTER)

2.{

3.uint8addrType;

4.uint8*peerAddr;

5.

6.//连接或断开连接

7.if(simpleBLEState==BLE_STATE_IDLE)

8.{

9.//if there is a scan result

10.if(simpleBLEScanRes>0)

11.{

12.//从扫描到的设备中选择设备地址

13.peerAddr=simpleBLEDevList[simpleBLEScanIdx].addr;

14.addrType=simpleBLEDevList[simpleBLEScanIdx].addrType;

15.

16.simpleBLEState=BLE_STATE_CONNECTING;

17.

18.

GAPCentralRole_EstablishLink(DEFAULT_LINK_HIGH_DUTY_CYCLE, 19.DEFAULT_LINK_WHITE_LIST,

20.addrType,peerAddr);

21.

22.LCD_WRITE_STRING("Connecting",HAL_LCD_LINE_1);

23.LCD_WRITE_STRING(bdAddr2Str(peerAddr),HAL_LCD_LINE_2);

24.}

25.}

26.else if(simpleBLEState==BLE_STATE_CONNECTING||

27.simpleBLEState==BLE_STATE_CONNECTED)

28.{

29.//断开连接

30.simpleBLEState=BLE_STATE_DISCONNECTING;

31.gStatus=

GAPCentralRole_TerminateLink(simpleBLEConnHandle);

32.LCD_WRITE_STRING("Disconnecting",HAL_LCD_LINE_1);

33.}

34.}

向下按键:启动或关闭周期发送RSSI

1.if(keys&HAL_KEY_DOWN)

2.{

3.//开始或取消周期发送RSSI

4.if(simpleBLEState==BLE_STATE_CONNECTED)

5.{

6.if(!simpleBLERssi)

7.{

8.simpleBLERssi=TRUE;

9.GAPCentralRole_StartRssi(simpleBLEConnHandle,

DEFAULT_RSSI_PERIOD);

10.}

11.else

12.{

13.simpleBLERssi=FALSE;

14.GAPCentralRole_CancelRssi(simpleBLEConnHandle);

15.

16.LCD_WRITE_STRING("RSSI Cancelled",HAL_LCD_LINE_1);

17.}

18.}

19.}

同样的我们把它移植到串口接收处理函数中去,利用串口发送字符1~5代替按键:

表3.1按键对应串口命令功能表

按键功能串口命令

UP开始或停止设备发现/

1

读写特征值(已连接)

2

LEFT显示扫描到的设备,在设

备中滚动

RIGHT连接更新3

CENTER建立或断开当前连接4

5

DOWN启动或关闭周期发送

RSSI

1.1.3连接和简单数据传输测试

下载运行,发送命令可测试各个功能:发送‘1’,进行设备搜索

图 3.60设备搜索

在搜索过程中,可再发送‘1’停止搜索或等待搜索完成,这时候会显示已搜索到的设备数

图 3.61显示搜索到的设备数

发送‘2’,在搜索到的设备中选择

图 3.62选择设备发送‘4’和当前选中的设备进行连接

图 3.63连接成功

同时可以看到Peripheral串口端显示Connected已连接

图 3.64显示连接状态发送‘5’可停止或启动周期RSSI发送

图 3.65停止或启动周期RSSI 在连接状态发送‘1’,可对数据读写

蓝牙技术基础

蓝牙技术基础 蓝牙的技术特点 蓝牙技术是一种无线数据与语音通信的开放性标准,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接。如果把蓝牙技术引入到移动电话和便携型电脑中,就可以去掉移动电话与便携型电脑之间令人讨厌的连接电缆而通过无线使其建立通信。打印机、PDA、桌上型电脑、传真机、键盘、游戏操纵杆及所有其它的数字设备都可以成为“蓝牙”技术系统的一部分。除此之外,蓝牙无线技术还为已存在的数字网络和外设提供通用接口以组建一个远离固定网络的个人特别连接设备群。 蓝牙技术在全球通用的2.4GHz ISM(工业、科学、医学)频段,蓝牙的数据速率为1Mb/s。从理论上来讲,以2.45GHz ISM波段运行的技术能够使相距30m以内的设备互相连接,传输速率可达到2Mbps,但实际上很难达到。应用了蓝牙技术link and play的概念,有点类似“即插即用”的概念,任意蓝牙技术设备一旦搜寻到另一个蓝牙技术设备,马上就可以建立联系,而无须用户进行任何设置,可以解释成“即连即用”。这在无线电环境非常嘈杂的环境下,它的优势就更加明显了。 蓝牙技术的另一大优势是它应用了全球统一的频率设定,这就消除了“国界”的障碍,而在蜂窝式移动电话领域,这个障碍已经困扰用户多年。 另外,ISM频段是对所有无线电系统都开放的频段,因此使用其中的某个频段都会遇到不可预测的干扰源。例如某些家电、无绳电话、汽车房开门器、微波炉等,都可能是干扰。为此,蓝牙技术特别设计了快速确认和跳频方案以确保链路稳定。跳频技术是把频带分成若干个跳频信道(Hop Channel),在一次连接中,无线电收发器按一定的码序列不断地从一个信道跳到另一个信道,只有收发双方是按这个规律进行通信的,而其它的干扰不可能按同样的规律进行干扰;跳频的瞬时带宽是很窄的,但通过扩展频谱技术使这个窄带或成倍地扩展成宽频带,使干扰可能的影响变成很小。与其它工作在相同频段的系统相比,蓝牙跳频更快,数据包更短,这使蓝牙技术比其它系统都更稳定。 蓝牙的结构体系 蓝牙协议栈的体系结构如图1所示。它是由底层硬件模块,中间层和高端应用层三大部分组成。

蓝牙技术的形成背景、发展历程及现状报告

深圳中企智业投资咨询有限公司

蓝牙技术的形成背景、发展历程及现状 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/a67622206.html, 1

目录 蓝牙技术的形成背景、发展历程及现状 (3) 第一节形成背景 (3) 第二节发展历程 (4) 第三节基本原理和特点 (6) 2、呼叫过程 (6) 3、数据传输 (7) 4、蓝牙解决的问题 (7) 5、蓝牙的解决方案 (7) (2)工作频段全球通用 (8) (3)使用方便 (8) (4)安全加密、抗干扰性强 (8) (5)多路多方向链接 (8) (6)更低碳 (8) 2

蓝牙技术的形成背景、发展历程及现状 第一节形成背景 “蓝牙”的形成背景是这样的:1998年5月,爱立信、诺基亚、东芝、IBM 和英特尔公司等五家著名厂商,在联合开展短程无线通信技术的标准化活动时提出了蓝牙技术,其宗旨是提供一种短距离、低成本的无线传输应用技术。这五家厂商还成立了蓝牙特别兴趣组,以使蓝牙技术能够成为未来的无线通信标准。芯片霸主Intel公司负责半导体芯片和传输软件的开发,爱立信负责无线射频和移动电话软件的开发,IBM和东芝负责笔记本电脑接口规格的开发。1999年下半年,著名的业界巨头微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股“蓝牙”热潮。全球业界即将开发一大批蓝牙技术的应用产品,使蓝牙技术呈现出极其广阔的市场前景,并预示着21世纪初将迎来波澜壮阔的全球无线通信浪潮。 关于蓝牙这个名字的由来还有一个小故事。“蓝牙”这名称来自10世纪的丹麦国王哈拉尔德(Harald Gormsson)的外号。出身海盗家庭的哈拉尔德统一了北欧四分五裂的国家,成为维京王国的国王。由于他喜欢吃蓝莓,牙齿常常被染成蓝色,而获得“蓝牙”的绰号,当时蓝莓因为颜色怪异的缘故被认为是不适合食用的东西,因此这位爱尝新的国王也成为创新与勇于尝试的象征。1998年,爱立信公司希望无线通信技术能统一标准而取名“蓝牙”。 随着蓝牙技术由手机、游戏、耳机、便捷式电能和汽车等传统应用领域向物联网、医疗等新领域扩展,市场对低功耗的要求越来越高。蓝牙4.0协议版本是蓝牙3.0高速版本基础上增加了低能消耗协议部分。嵌入式设备在很多应用场景要求能耗非常低,传输速率要求也不高,对于这类设备,可以仅实现4.0协议中低耗能蓝牙部分,通过与支持双模的主机设备进行通信或者跟同类设备通信。 由于蓝牙4.0协议拥有极低的运行和待机功耗,使用一粒纽扣电池甚至可持续工作数年之久;同时还有低成本、跨厂商互操互作性、2毫秒低延迟、AES-128加密等诸多特色,可以广泛应用于计步器、心律监视器、智能仪表、传感器物联 3

高频电子线路基础知识

高频电子线路基础知识

基本概念 ?高频电子线路:高频电波信号的产生、放大和接收的电路。 ?广义的“高频”指的是射频(Radio Frequency,RF),它是指适合无线电发射和传播的频率,其频率范围非常宽。

本课程的主要学习内容 本课程的第1~7章讨论可用集中参数描述的高频电路,而分布参数分析法在第8章介绍。 只要电路尺寸比工作波长小得多,可用集总参数来分析实现。 当电路尺寸大于工作波长或相当时,应采用分布参数的方法来分析实现。

?第1章系统基础知识 ?第2章小信号选频放大电路 ?第3章高频功率放大电路 ?第4章正弦波振荡电路 ?第5章振幅调制、解调与混频电路?第6章角度调制与解调电路 ?第7章反馈控制电路 ?第8章高频电路的分布参数分析 ?第9章高频电路的集成与EDA技术简介

学习本课程有何意义? ?无线电报的发明开始了无线电通信的时代,并逐步涉及陆地、海洋、航空、航天等固定和移动无线通信领域,从1920年的无线电广播、1930年的电视传输,直到1980年的移动电话和1990年的全球定位系统及当今的移动通信和无线局域网,无线通信市场还在飞速发展,移动通信手机、有线电视调制解调器以及射频标签的电信产品迅速地渗入我们的生活,变成大众不可缺少的工具。 ?高频电子线路的发展推动了无线通信技术的发展,是当代无线通信的基础,是无线通信设备的重要组成部分。

第1章系统基础知识 ?无线电频段是如何划分的?无线通信为何要用高频电磁波? ?高频电子线路有什么特点? ?无线通信系统究竟包括哪些电路?它们都有什么功用? ?表征高频电路(系统)性能的参数有哪些?

蓝牙各个版本对比

蓝牙各个版本对比 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

蓝牙各个版本对比 1、版本 传输率约在748~810kb/s,因是早期设计,容易受到同频率之间的类似通信产品干扰,影响通讯质量。这个初始版本支持Stereo音效的传输要求,但只能够以单工方式工作,加上带宽频率响应等指标不理想,并未算是最好的Stereo传输工具。 2、版本 同样是只有748~810kb/s的传输率,但增加了(改善Software)抗干扰跳频功能 (太深入的技术理论不再详述!)。支持Stereo音效的传输要求,但只能够作单工方式工作,加上带宽频率响应还是不理想,也不能作为立体声(Stereo)传输工具。 3、版本 是的改良提升版,传输率约在s~s,可以有(双工)的工作方式。即一边作语音通讯,同时亦可以传输档案/高质素图片,版本当然也支持Stereo运作。随后蓝牙版本的芯片,增加了Stereo译码芯片,则连A2DP (AdvancedAudioDistributionProfile)也可以不需要了。 4、版本 为了改善蓝牙技术存在的问题,蓝牙SIG组织(Special InterestGroup)推出了Bluetooth +EDR版本的蓝牙技术。改善装置配对流程:以往在连接过程中,需要利用个人识别码来确保连接的安全性,而改进过后的连接方式则是会自动使用数字密码来进行配对与连接,举例来说,只要在手机选项中选择连接特定装置,在确定之后,手机会自动列出当前环境中可使用的设备,并且自动进行连结;而短距离的配对方面:也具备了在两个支持蓝牙的手机之间互相进行配对与通讯传输的NFC(Near

蓝牙技术的起源与发展

蓝牙技术的起源与发展 从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输,蓝牙应用的场景也越来越广。 世界是蓝色的,而不知不觉这个世界将有40 亿蓝牙设备了。这篇文章,我们将带你一起回顾蓝牙 1.0 到 5.0 的技术变迁,从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输。我们还将和你一起梳理,越来越广阔的蓝牙应用的场景。关于蓝牙技术你所不知道的前世今生,都在这里了。 也许很少有人知道,蓝牙(Bluetooth)一词取自于十世纪丹麦国王哈拉尔的名字Harald Bl 分。 蓝牙的起源 蓝牙的历史实际上要追溯到第二次世界大战。蓝牙的核心是短距离无线电通讯,它的基础来自于跳频扩频(FHSS)技术,由好莱坞女演员Hedy Lamarr 和钢琴家George Antheil 在1942 年8 月申请的专利上提出。他们从钢琴的按键数量上得到启发,通过使用88 种不同载波频率的无线电控制鱼雷,由于传输频率是不断跳变的,因此具有一定的保密能力和抗干扰能力。 起初该项技术并没有引起美国军方的重视,直到20 世纪80 年代才被军方用于战场上的通信设备通过移动电话接入到蜂窝网上,而这种连接的最后一段就是短距离的无线连接。随着项目的进展,爱立信把大量资源投入到短距离无线通讯技术的研发上。 1998 年5 月20 日,爱立信联合IBM、英特尔、诺基亚及东芝公司等5 家著名厂商成立「特别兴趣小组」(Special Interest Group,SIG),即蓝牙技术联盟的前身,目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。当年蓝牙推出0.7 规格,支持Baseband 与LMP(Link Manager Protocol)通讯协定两部分。 1999 年先后推出0.8 版、0.9 版、1.0 Draft 版。完成了SDP(Service Discovery Protocol)协定和TCS(Telephony Control Specification)协定。

单片机和蓝牙模块无线传输的数据采集系统

单片机和蓝牙模块无线传输的数据采集系统

1.引言 蓝牙技术是近年来发展迅速的短距离无线通信技术,可以用来替代数字设备间短距离的有线电缆连接。利用蓝牙技术构建数据采集无线传输模块,与传统的电线或红外方式传输测控数据相比,在测控领域应用篮牙技术的优点主要有[1][2][3]: 1.采集测控现场数据遇到大量的电磁干扰,而蓝牙系统因采用了跳频扩频技术,故可以有效地提高数据传输的安全性和抗干扰能力。 2.无须铺设线缆,降低了环境改造成本,方便了数据采集人员的工作。 3.可以从各个角度进行测控数据的传输,可以实现多个测控仪器设备间的连网,便于进行集中监测与控制。 2.系统结构原理 本课题以单片机和蓝牙模块ROK 101 008为主,设计了基于蓝牙无线传输的数据采集系统,整个装置由前端数据采集、传送部分以及末端的数据接受部分组成(如PC机)。前端数据采集部分由位于现场的传感器、信号放 大电路、A/D转换器、单片机、存储器、串口通信等构成,传送部分主要利用自带微带天线的蓝牙模块进行数据的无线传输;末端通过蓝牙模块、串口通信传输将数据送到上位PC机进一步处理。整个系统结构框架图如图1所示。 AT89C51单片机作为下位机主机,传感器获得的信号经过放大后送入12位A/D转换器AD574A进行A/D 转换,然后将转换后的数据存储到RAM芯片6264中。下位机可以主动地或者在接收上位机通过蓝牙模块发送的传送数据指令后,将6264中存储的数据按照HCI-RS232传输协议进行数据定义, 通过MAX3232进行电平转换后送至蓝牙模块,由篮牙模块将数据传送到空间,同时上位机的蓝牙模块对此数据进行接收,再通过MAX3232电平转换后传送至PC 机,从而完成蓝牙无线数据的交换。

PCB高频布线基本知识

高频布线基本知识 内容目录 1. 引言 2. 信号完整性问题 3. 电磁兼容性问题 4. 电源完整性问题 5. 高频电路设计一般规范 6. 数模混合电路设计一般规范 一:高频电路的定义 *在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。 公式:F2 =1/(Tr×π),Tr为信号的上升/下降延时间。 *F2 > 100MHz,就应该按照高频电路进行考虑,下列情况必须按高频规则进行设计 –系统时钟频率超过50MHz –采用了上升/下降时间少于5ns的器件 –数字/模拟混合电路 *逻辑器件的上升/下降时间和布线长度限制上升/下主要谐波频谱分布最大传输线最大传输 降时间Tr分量F2=1/Fmax=10*距离(微带)线距离(微带线)πTr F2 74HC 13-15ns24MHz 240 MHz 117cm 91cm 74LS 9.5ns 34 MHz 340MHz 85.5cm 66.5cm 74H 4-6ns 80 MHz 800MHz 35 28 74S 3-4ns 106 MHz 1.1GHz 27 21 74HCT 5-15ns 64 MHz 640MHz 45 34 74ALS 2-10ns 160 MHz 1.6GHz 18 13 74FCT 2-5ns 160 MHz 1.6GHz 18 13 74F 1.5ns 212 MHz 2.1GHz 12.5 10.5 ECL12K 1.5ns 212 MHz 2.1GHz 12.5 10.5 ECL100K 0.75ns 424 MHz 4.2GHz 6 5 传统的PCB设计方法效率低: 原理图,传统的设计方法设计和输入布局、布线没有任何质量控制点,制作PCB每一步设计都是凭经验,发现问题就必须从头开始,功能、性能测试问题的查找非常困难 信号完整性问题: 1.反射问题 2.串扰问题 3.过冲和振荡 4.时延 反射问题:传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。 多点反射

蓝牙技术现状和发展趋势

目录 目录............................................................................................................................................................................................ I 摘要 ........................................................................................................................................................................................II ABSTRACT (3) 第一章绪论 (4) 1.1引言 (4) 第二章蓝牙技术现状 (5) 2.1目前蓝牙技术发展的现状 (5) 2.1.1发展迅速应用广泛 (5) 2.1.2技术应用问题凸现 (6) 第三章蓝牙技术发展趋势 (9) 3.1增加消费者的认知度 (9) 3.2产品应具有互操作性 (9) 3.3产品应使用方便 (9) 第四章局域网组建 (10) 4.1蓝牙体系结构 (10) 4.1.1体系结构 (10) 4.1.2硬件部分 (10) 4.1.3蓝牙协议(软件) (11) 4.1.4路由机制 (11) 4.2具体组网方案 (13) 总结 (14) 参考文献 (15)

摘要 蓝牙(Bluetooth)是由东芝、爱立信、IBM、Intel和诺基亚于1998年5月共同提出的近距离无线数字通信的技术标准。其目标是实现最高数据传输速度1Mb/s(有效传输速度为721kb/s)、最大传输距离为10米,用户不必经过申请便可利用2.4GHz的ISM(工业、科学、医学)频带,在其上设立79个带宽为1MHz的信道,用每秒钟切换1600次的频率、滚齿方式的频谱扩散技术来实现电波的收发。 一项新技术的出现,人们对它抱的期望值往往很高,往往短期内不能令人满意,这是因为任何新技术的发展都需要有一个过程,蓝牙技术也不例外;技术标准统一,知识产权共享的优势是非常明显的,相信通过业界的共同努力,它未来的发展是不可限量的,从长远来看可能会超出人们的想象。 关键词:蓝牙现状发展

高频电子线路复习考试题及答案

2013—2014学年第二学期《高频电路》期末考试题(A ) 使用教材:主编《高频电子线路》、 适用班级:电信12(4、5、6)命题人: 一、填空题(每空1分,共X 分) 1.调幅的几种调制方式是AM 、DSB 、SSB 。 3.集电极调幅,应使被调放大器工作于过压______状态。 5. 电容三点式振荡器的发射极至集电极之间的阻抗Z ce 性质应为容性,发射极至基极之间的阻抗Z be 性质应为容性,基极至集电极之间 的阻抗Z cb 性质应为感性。 6. 通常将携带有信息的电信号称为调制信号,未调制的高频振荡信号 称为载波,通过调制后的高频振荡信号称为已调波。 8. 解调是调制的逆过程。振幅调制信号的解调电路称为振幅检波电路,它的作用是从高频已调信号中恢复出调制信号。 9. LC 串联谐振回路品质因数(Q )下降,频带变宽,选择性变差。 10. 某高频功率放大器原来工作在临界状态,测得cm U =22v , co I =100mA ,P R =100Ω,c E =24v ,当放大器的负载阻抗P R 变小时,则 放大器的工作状态过渡到欠压状态,回路两端电压cm U 将减小,若负 载阻抗增加时,则工作状态由临界过渡到过压 状态,回路两端电压 cm U 将增大。 11. 常用的混频电路有二极管混频、三极管混频和模拟乘法器混频 等。 12. 调相时,最大相位偏移与调制信号幅度成正比。 13. 模拟乘法器的应用很广泛,主要可用来实现调幅、解调和混频等频谱搬移电路中。 14. 调频和调幅相比,调频的主要优点是抗干扰性强、频带宽和调频发射机的功率放大器的利用率高。 15. 谐振功率放大器的负载特性是当CC V 、BB V 、bm V 等维持不变时,电 流、电压、功率和效率等随电阻p R 的增加而变化的特性。 16. 混频器按所用非线性器件的不同,可分为二极管混频器、三极管混频器和模拟乘法器混频器等。 17. 在双踪示波器中观察到如下图所示的调幅波,根据所给的数值,

蓝牙、红外和一般的无线通信技术各自的特点和相互比较

目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrD A)。同时还有一些具有发展潜力的近距无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信(NFC)、WiMedia、GPS、DECT、无线1394和专用无线系统等。它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。但是没有一种技术可以完美到足以满足所有的需求。 蓝牙技术 bluetooth)技术是近几年出现的,广受业界关注的近距无线连接技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。 蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHz ISM频段,提供1Mbps的传输速率和10m的传输距离。 蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。该技术还陆续获得PC行业业界巨头的支持。1998年,蓝牙技术协议由Ericsson、IBM、I ntel、NOKIA、Toshiba等5家公司达成一致。 蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。新版802.15.1a基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。 但蓝牙技术遭遇了最大的障碍是过于昂贵。突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。这就使得许多用户不愿意花大价钱来购买这种无线设备。因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。 Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)也是一种无线通信协议,正式名称是IEEE802.11b,与蓝牙一样,同属于短距离无线通信技术。Wi-Fi速率最高可达11Mb/s。虽然在数据安全性方面比蓝牙技术要差一些,但在电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约1 1Mb/s的速度接入Web。但实际上,如果有多个用户同时通过一个点接入,带宽被多个用户分享,Wi-Fi的连接速度一般将只有几百kb/s的信号不受墙壁阻隔,但在建筑物内的有效传输距离小于户外。 WLAN未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。目前这一技术的用户主要来自机场、酒店、商场等公共热点场所。Wi-Fi技术可将Wi-Fi与基于XML或Java的Web 服务融合起来,可以大幅度减少企业的成本。例如企业选择在每一层楼或每一个部门配备802.11b的接入点,而不是采用电缆线把整幢建筑物连接起来。这样一来,可以节省大量铺设电缆所需花费的资金。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前W

Bluetooth 基本架构

核心架构 核心系统定义 Bluetooth?核心系统涵盖蓝牙规格所定义的四个最低层级以及相关协议,此外也包括一个普通服务层协议、服务发现协议(SDP)以及通用访问配置文件(GAP)规定的整体配置文件要求。完整的蓝牙应用需要蓝牙规格定义的多个其它服务和较高层级协议。 蓝牙控制器 最低的三个层级有时会组成一个子系统,即蓝牙控制器。在涉及有关蓝牙控制器与L2CAP、服务层级和更高层级(即蓝牙主机)等其余的蓝牙系统之间的标准物理通信界面中,这是一个常见操作。尽管该界面并非强制使用,但结构的设计已允许其存在并已容纳其特征。蓝牙规格通过对等效层级间交换的协议信息作出定义,从而使独立的蓝牙系统之间实现互操作性,此外,通过对蓝牙控制器及蓝牙主机之间的通用界面进行定义,从而也使独立的蓝牙子系统之间实现互操作性。 若干功能模块已列出,此外还有模块之间的服务和数据路径。图中显示的功能模块仅供参考。一般而言,除实现互操作性有所要求外,蓝牙规格不会定义实施详情。 核心系统协议和信令 不同设备间的所有运行均已对标准交互作出定义,蓝牙设备则根据蓝牙规格交换协议信令。蓝牙核心系统协议包括射频(RF)协议、链路控制(LC)协议、链路管理器(LM)协议和逻辑链路控制及适配协议(L2CAP),蓝

牙规格的后续版本中均已对所有上述协议进行定义。此外,服务发现协议(SDP)是所有蓝牙应用都需要配备的服务层级协议。 蓝牙核心系统通过一系列服务接入点(图表中的椭圆形所示)提供服务。这些服务中包含了控制蓝牙核心系统的基础基元,并可分为三个类型。一是修改蓝牙设备行为和模式的设备控制服务,二是创建、修改和解除流量承载器(traffic bearer),即信道及链路的传输控制服务,三是递交数据用于流量承载器之间进行传输的数据服务。一般认为前两种属于控制层(C-plane),后一种则属于用户层(U-plane)。 主机控制器界面(HCI):将蓝牙协议栈分为控制器和主机 已对蓝牙控制器子系统的服务界面进行定义,使蓝牙控制器可被认为是一个标准部分。在这个配置中,蓝牙控制器运行最低的三个层级,而L2CAP层级则包含在主机系统的其它蓝牙应用之中。标准界面称为主机控制器界面(HCI)。该标准服务界面并非强制应用。 由于蓝牙结构的定义乃包含了一个独立主机与控制器之间通过HCI进行通信的可能性,因此定义进行了若干一般假设。我们假设与主机相比,蓝牙控制器的数据缓冲能力有限。因此,当L2CAP层级向控制器传递L2CAP PDU从而向同类设备进行传输时,L2CAP层级将需进行一些简单的资源管理。这包括将L2CAP SDU分为更加便于管理的PDU,其后将PDU分成大小适合于控制器缓冲区的起始及连续数据包,同时管理控制器缓冲区的使用,从而确保提供具备服务质量(QoS)承诺的信道。 L2CAP层的错误检测 基带层提供蓝牙技术的基本自动重复请求(ARQ)协议。L2CAP层级可选择地提供其它错误检测,并重新传输至L2CAP PDU。如果某项应用要求用户数据中必须较少存在未发现错误,则推荐使用此功能。L2CAP 中可进一步选择的另一项功能是基于窗口的流量控制功能,可用于管理接收设备中的缓冲分配。这些可选功能均能增强若干情景下的服务质量表现。 尽管在单一系统中包含所有层级的嵌入式蓝牙技术应用中可能无需作出这些假设,但一般结构和服务质量(QoS)模型的定义均已纳入这些假设,以符合最低共同标准。 测试界面:射频(RF)及测试控制界面(TCI) 必须对蓝牙核心系统应用自动进行一致性测试。测试的进行方式是允许测试器通过射频界面(普遍见于所有蓝牙系统)以及通过测试控制界面(TCI)(仅用于一致性测试)控制应用。 测试器通过射频界面与被测应用(IUT)进行交换,确保能够对远程设备的请求作出正确回应。测试器通过TCI 控制IUT,促使IUT通过射频界面生成交换,从而使其亦能通过一致性测试。 TCI测试对各个结构层级和协议进行测试会分别使用不同的指令集(服务界面)。HCI指令集已发布的一个子集乃作为TCI服务界面,用于蓝牙控制器子系统中的各个层级及协议。L2CAP层级和协议的测试将使用一个单独的服务界面。由于L2CAP服务界面在蓝牙核心规格中并无定义,因此其在TCI规格中单独作出定义。只有一致性测试才需要使用L2CAP服务界面。

蓝牙基础知识及蓝牙产品开发注意事项

1什么是蓝牙技术 所谓蓝牙技术,实际上是一种短距离无线电技术,利用"蓝牙技术"能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备,并且能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。通俗地讲,蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备,不必借助电缆就能联网,并且能够实现无线上因特网。其实际应用范围还可以拓展到各种家电产品、消费电子产品和汽车等信息家电,组成一个巨大的无线通信网络。 2蓝牙技术的特点 2.1蓝牙协议体系结构 整个蓝牙协议体系结构可分为底层硬件模块、中间协议层和高端应用层三大部分。链路管理层(L M P)、基带层(B B P)和蓝牙无线电信道构成蓝牙的底层模块。B B P层负责跳频和蓝牙数据及信息帧的传输。L M P层负责连接的建立和拆除以及链路的安全和控制,它们为上层软件模块提供了不同的访问人口,但是两个模块接口之间的消息和数据传递必须通过蓝牙主机控制器接口的解释才能进行。也就是说,中间协议层包括逻辑链路控制与适配协议(L2C A P)、服务发现协议(S D P)、串口仿真协议(R F C O M M)和电话控制协议规范(T C S)。L2C A P完成数据拆装、服务质量控制、协议复用和组提取等功能,是其他上层协议实现的基础,因此也是蓝牙协议栈的核心部分。S D P为上层应用程序提供一种机制来发现网络中可用的服务及其特性。在蓝牙协议栈的最上部是高端应用层,它对应于各种应用模型的剖面,是剖面的一部分。目前定义了13种剖面。 2.2蓝牙低层模块 蓝牙的低层模块是蓝牙技术的核心,是任何蓝牙设备都必须包括的部分。 蓝牙工作在2.4G H Z的I S M频段。采用了蓝牙结束的设备讲能够提供高达720k b i t/s的数据交换速率。 蓝牙支持电路交换和分组交换两种技术,分别定义了两种链路类型,即面向连接的同步链路(S C O)和面向无连接的异步链路(A C L)。 为了在很低的功率状态下也能使蓝牙设备处于连接状态,蓝牙规定了三种节能状态,即停等(P a r k)状态、保持(H o l d)状态和呼吸(S n i f f)状态。这几种工作模式按照节能效率以升序排依次是:S n i f f模式、H o l d 模式、P a r k模式。 蓝牙采用三种纠错方案:1/3前向纠错(F E C)、2/3前向纠错和自动重发(A R Q)。前向纠错的目的是减少重发的可能性,但同时也增加了额外开销。然而在一个合理的无错误率环境中,多余的投标会减少输出,故分组定义的本身也保持灵活的方式,因此,在软件中可定义是否采用F E C。一般而言,在信道的噪声干扰比较大时蓝牙系统会使用前向纠错方案,以保证通信质量:对于S C O链路,使用1/3前向纠错;对于A C L 链路,使用2/3前向纠错。在无编号的自动请求重发方案中,一个时隙传送的数据必须在下一个时隙得到收到的确认。只有数据在收端通过了报头错误检测和循环冗余校验(C R C)后认为无错时,才向发端发回确认消息,否则返回一个错误消息。 蓝牙系统的移动性和开放性使得安全问题变得及其重要。虽然蓝牙系统所采用的调频技术就已经提供

蓝牙技术原理2

蓝牙技术 SIG组织于1999年7月26日推出了蓝牙技术规范1.0版本。蓝牙技术的系统结构分为三大部分:底层硬件模块、中间协议层和高层应用。底层硬件部分包括无线跳频(RF)、基带(BB)和链路管理(LM)。无线跳频层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,本层协议主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。 蓝牙技术结合了电路交换与分组交换的特点,可以进行异步数据通信,可以支持多达3个同时进行的同步话音信道,还可以使用一个信道同时传送异步数据和同步话音。每个话音信道支持64kb/秒的同步话音链路。异步信道可以支持一端最大速率为721kb/秒、另一端速率为57.6kb/秒的不对称连接,也可以支持43.2kb/秒的对称连接。 中间协议层包括逻辑链路控制和适应协议、服务发现协议、串口仿真协议和电话通信协议。逻辑链路控制和适应协议具有完成数据拆装、控制服务质量和复用协议的功能,该层协议是其它各层协议实现的基础。服务发现协议层为上层应用程序提供一种机制来发现网络中可用的服务及其特性。串口仿真协议层具有仿真9针RS232串口的功能。电话通信协议层则提供蓝牙设备间话音和数据的呼叫控制指令。 主机控制接口层(HCI)是蓝牙协议中软硬件之间的接口,它提供了一个调用基带、链路管理、状态和控制寄存器等硬件的统一命令接口。蓝牙设备之间进行通信时,HCI以上的协议软件实体在主机上运行,而HCI以下的功能由蓝牙设备来完成,二者之间通过一个对两端透明的传输层进行交互。 在蓝牙协议栈的最上部是各种高层应用框架。其中较典型的有拨号网络、耳机、局域网访问、文件传输等,它们分别对应一种应用模式。各种应用程序可以通过各自对应的应用模式实现无线通信。拨号网络应用可通过仿真串口访问微微网(Piconet),数据设备也可由此接入传统的局域网;用户可以通过协议栈中的Audio(音频)层在手机和耳塞中实现音频流的无线传输;多台PC或笔记本电脑之间不需要任何连线,就能快速、灵活地进行文件传输和共享信息,多台设备也可由此实现同步操作。 总之,整个蓝牙协议结构简单,使用重传机制来保证链路的可靠性,在基带、链路管理和应用层中还可实行分级的多种安全机制,并且通过跳频技术可以消除网络环境中来自其它无线设备的干扰。 蓝牙技术的优势:支持语音和数据传输;采用无线电技术,传输范围大,可穿透不同物质以及在物质间扩散;采用跳频展频技术,抗干扰性强,不易窃听;使用在各国都不受限制的频谱,理论上说,不存在干扰问题;功耗低;成本低。蓝牙的劣势:传输速度慢。蓝牙的技术性能参数:有效传输距离为10cm~10m,增加发射功率可达到100米,甚至更远。收发器工作频率为2.45GHz ,覆盖范围是相隔1MHz的79个通道(从2.402GHz到2.480GHz )。数据传输技术使用短封包,跳频展频技术,1600次/秒,防止偷听和避免干扰;每次传送一个封包,封包的大小从126~287bit;封包的内容可以是包含数据或者语音等不同服务的资料。数据传输带宽为同步连接可达到每个方向32.6Kbps,接近于10倍典型的56kb/s Modem的模拟连接速率,异步连接允许一个方向的数据传输速率达到721kb/s,用于上载或下载,这

蓝牙技术三大发展趋势

蓝牙技术三大发展趋势 蓝牙技术的应用被认为非常广泛而且极具潜力。它可以应用于无线设备(如PDA、手机、智能电话、无绳电话、图像处理设备(照相机、打印机、扫描仪)、安全产品(智能卡、身份识别、票据管理、安全检查)、消费娱乐(耳机、MP3、游戏)汽车产品(GPS、ABS、动力系统、安全气袋)、家用电器(电视机、电冰箱、电烤箱、微波炉、音响、录像机)、医疗健身、建筑、玩具等领域。下面随着蓝牙模块生产厂家云里物里科技一起来看下。 趋势一:蓝牙技术将在智能家居市场大放异彩 据悉,源于网格(mesh)技术的推动,从2013-2018年蓝牙技术在智能家居的年复合增长率高达232%。mesh技术改变了传统蓝牙的组网方式,以广播形式组成网格,弥补了传统蓝牙不能组成大规模网络的短板,并增强了穿墙能力,有效拓展了蓝牙的应用前景。 CSR全球标准研究院Robin Heydon则在发言中指出,仅在家庭内容,就可能用到87个蓝牙设备,如门窗、车库、厨房报警、洗碗台、地漏、餐桌、桌椅、卧室、阳台等。 另一方面,新兴的低功耗蓝牙技术(BLE)亦在整个低功耗无线通信市场上占据着举足轻重的地位,而智能家居市场的爆发将极大促进BLE技术的快速增长。主要原因有三:首先,BLE本身有低功耗优势,而且经过数年时间的发展,蓝牙技术已成为市场普遍接受的标准;其次是移动操作系统对蓝牙的支持,目前蓝牙技术已经是便携设备的标配;最后是相关应用和配件的开发,其中蓝牙耳机、蓝牙车载和蓝牙MP3深受用户喜爱。未来蓝牙技术联盟将瞄准亟需低功耗低速率的所有场景,他指出蓝牙未来将与WiFi形成良好的互补。

趋势二:带有处理能力的蓝牙芯片与传感器结合 为了更好的实现智能化,未来蓝牙芯片将和传感器进行深度融合,最有可能的是厂商会提供SIP封装形式的蓝牙芯片组。未来蓝牙与传感器结合可以把采集的数据直接送到云端进行处理,这样每个装有蓝牙模块的设备都成为智能设备,这样的应用在家庭、办公场所可以有很大发挥的潜力。 趋势三、基于Beacon技术的室内定位 基于蓝牙的Beacon定位技术精度高,成本低,将颠覆未来的零售模式。例如,当你走入一家零售商店时,Beacons定位技术可以对你精准定位当你走到外套橱窗时,手机会弹出相关的促销信息,甚至会根据你以往的采购大数据来推荐衣服。 云里物里E5定位型iBeacon 本文来源网络,如有侵权请联系删除。

高频电子线路(知识点整理)

127.02ωωω-=? 高频电子线路重点 第二章 选频网络 一. 基本概念 所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。 电抗(X)=容抗( )+感抗(wL) 阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗) ,电容、电感消失了,相角等于0,谐振频率: ,此时|Z|最小 =R ,电流最大 2.当ww 0时,电压超前电流,相角大于0,X>0阻抗是感性; 3.回路的品质因素数 (除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位 差大小等于外加电压的Q 倍,相位相反 4.回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好 5.失谐△w=w (再加电压的频率)-w 0(回路谐振频率),当w 和w 0很相近时, , ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比 6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±1 7. ,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值 通频带相对值 9.相位特性 Q 越大,相位曲线在w 0处越陡峭 10.能量关系 电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。 回路总瞬时储能 回路一个周期的损耗 , 表示回路或线圈中的损耗。 就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。 11. 电源内阻与负载电阻的影响 Q L 三. 并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z 反之w p =√[1/LC-(R/L)2]=1/√RC ·√1-Q 2 2.Y(导纳)= 电导(G)= 电纳(B)= . 与串联不同 )1(C L ωω- 01 0=-=C L X ωωLC 10=ωCR R L Q 0 01 ωω= =) (j 0 )() ( j 11 ω ψωω ω ωωe N Q =- +=Q 702ωω=??2 1 11)(2 =+=ξξN Q f f 0702=??Q f f 1207.0= ?ξ ωωωωψ arctan arctan 00-=??? ? ??-?-=Q ??? ??-+≈C L R C L ωω1j ??? ??-+=L C L CR ωω1j 1?? ? ??-+L C L CR ωω1j L CR ?? ? ??-L C ωω 1C ω1 - + – C V s L R I s C L R 2222222 1cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2 sm 02sm 21π2121π2CQV R V w R ?=??=ωQ CQV V CQ w w w R C L ?=?=+π212 1π2212sm 2 sm 2每周期耗能回路储能π2 =Q 所以R R R R Q L S 0 1++=

蓝牙技术的现状及发展

摘要:根据2003年蓝牙世界大会上的信息,就目前蓝牙技术的现状及发展作一探讨。 关键词:蓝牙现状发展 蓝牙(Bluetooth)是由东芝、爱立信、IBM、Intel和诺基亚于1998年5月共同提出的近距离无线数字通信的技术标准。其目标是实现最高数据传输速度1Mb/s(有效传输速度为721kb/s)、最大传输距离为10米,用户不必经过申请便可利用2.4GHz的ISM(工业、科学、医学)频带,在其上设立79个带宽为1MHz的信道,用每秒钟切换1600次的频率、滚齿方式的频谱扩散技术来实现电波的收发。 目前,蓝牙标准化集团Bluetooth SIG(特别兴趣小组)的成员企业数已达到2000家以上。除了原创的5家厂商之外,包括康柏(Compaq)、戴尔(Dell)、摩托罗拉(Motorola)、Qualcom、BMW 及卡西欧(Casio)等均已加入,所有厂商已达成知识产权共享的协议,以推广此项技术。在技术标准方面,蓝牙协会已在1999年7月推出Bluetooth 1.0之标准。而我国亦至少有12家厂商、组织已加入Bluetooth国际联盟,同时国内也在1999年初成立国内的Bluetooth SIG,以促进技术引进、市场及技术资讯扩展、应用推广等工作。 1 目前蓝牙技术的现状 1.1 发展迅速,应用广泛 自从1998年提出蓝牙技术以来,蓝牙技术的发展异常迅速。蓝牙Bluetooth作为一种新的短距离无线通信技术标准,受到全世界越来越多工业界生产厂家和研究机构的广泛关注。成立了世界蓝牙组织Bluetooth SIG,采用技术标准公开的策略来推广蓝牙技术,现已发展成为一个相当大的工业界高新技术标准化组织,全球支持蓝牙技术的2000多家设备制造商都已经成为它的会员,一项公开的、全球统一的技术规范得到了工业界如此广泛的关注和支持在以往是罕见的。近年来,世界上一些权威的标准化组织,也都在关注蓝牙技术标准的制定和发展。例如,IEEE的标准化机构,也已经成立了802.15工作组,专门关注有关蓝牙技术标准的兼容和未来的发展等问题。IEEE 802.15.1 TG1就是讨论建立与蓝牙技术1.0版本相一致的标准;IEEE 802.15.2 TG2是探讨蓝牙如何与IEEE 802.11b无线局域网技术共存的问题;而IEEE 802.15.3 TG3则是研究未来蓝牙技术向更高速率(如10-20Mbits/s)发展的问题。国内的一些生产厂家与研究部门也准备开始组织蓝牙技术产品的开发。由来自国家主管部门、企业界、学术界以及研究生产机构的领导、专家、教授等权威人士发起成立的中国蓝牙技术发展与应用论坛,吸引了众多关注蓝牙技术的各界人士,还组织国内各界与世界蓝牙组织SIG的代表,就双方所关注的问题进行了认真的讨论。并就双方今后进一步加强联系、共享蓝牙技术信息资源、共同促进蓝牙技术在中国的推广与应用等问题达成共识。 蓝牙是取代数据电缆的短距离无线通信技术,可以支持物体与物体之间的通信,工作频段是全球开放的2.4GHz频段,可以同时进行数据和语音传输,传输速率可达到10Mb/s,使得在其范围内的各种信息化设备都能实现无缝资源共享。蓝牙技术的应用被认为非常广泛而且极具潜力。它可以应用于无线设备(如PDA、手机、智能电话、无绳电话)、图像处理设备(照相机、打印机、扫描仪)、安全产品(智能卡、身份识别、票据管理、安全检查)、消费娱乐(耳机、MP3、游戏)汽车产品(GPS、ABS、动力系统、安全气袋)、家用电器(电视机、电冰箱、电烤箱、微波炉、音响、录像机)、医疗健身、建筑、玩具等领域。蓝牙行业对于市场的持续增长感到欣慰,现在没有人再质疑它的生命力。2002年,400余种蓝牙产品的销量总共达到了3000万件;而2003年的数字是2002年的2倍。In-Stat/MDR公司预测,蓝牙市场的规模在2007年将膨胀到6亿件。爱立信技术授权公司的总裁Maria Khorsand表示:“在如此艰难的经济环境下,蓝牙是少数仍在增长的产品之一”。 1.2 技术应用问题凸现 虽然蓝牙技术发展迅速,应用广泛,市场前景良好,但蓝牙技术目前的现状,特别从2003年的蓝牙世界大会所暴露的问题来看,前景仍然不容乐观。

相关文档
最新文档