相似三角形的判定与性质
三角形的相似性质与判定定理
三角形的相似性质与判定定理
三角分别相等,三边成比例的两个三角形叫做相似三角形。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似)。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角成正比,那么这两个三角形相近(简叙为:两边对应成比例且夹角成正比,两个三角形相近。
)
(3)如果一个三角形的三条边与另一个三角形的`三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似。
)
1、相近三角形对应角成正比,对应边变成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相近三角形周长的比等同于相近比。
4、相似三角形面积的比等于相似比的平方。
5、相近三角形内切圆、外接圆直径比和周长比都和相近比相同,内切圆、外接圆面积比是相近比的平方。
相似三角形判定与性质
相似三角形专讲【知识要点】1.对应角相等,对应边成比例的三角形叫做相似三角形。
2.相似三角形的判定:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
②如果一个三角形的两条边和另一个三角形的两条边对应成比例,且夹角相等,那么这两个三角形相似。
③如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
3.相似三角形具有下述性质:①相似三角形对应角相等、对应边成比例;②相似三角形对应高、对应中线的比和对应角平分线的比都等于相似比; ③相似三角形周长的比等于相似比; ④相似三角形面积的比等于相似比的平方。
4.熟悉如图中形如“A ”型,“X ”型,“子母型”等相似三角形。
5.射影定理AC 2=AD ·BD BC 2=BD ·BACD 2=AD ·BD6.位似:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做 位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.【典型例题】一、选择题(每小题4分,共40分)1.如图1,在△ABC 中,AB=AC ,∠A=36º,BD 平分∠ABC,DE∥BC,那么在下列三角形中,与△EBD 相似 三角形是( )。
A .△ABC B .△DAB C .△ADE D .△BDC 2.如图2,AB ∥CD ∥EF ,则图中相似三角形的对数为( )。
A .1对B .2对C .3对D .4对3.如图3,已知在△ABC ,P 为AB 上一点,连结CP ,以下各条件中不能判定△ACP ∽△ABC 的是( )。
A .∠ACP =∠B B .∠APC =∠ACB C .AC AP =AB AC D . AC AB =CPBC图1 图2 图34.如图4,在正方形网格上,若使△ABC ∽△PBD ,则点P 应在( )。
A .P 1处B .P 2处C .P 3处D .P 4处5.如图5,若A 、B 、C 、D 、E 、F 、G 、H 、O 都是5×7方格纸中的格点,为使△DME ∽△ABC ,则点M 应是F 、G 、H 、O 四点中的( )。
初中相似三角形的判定与性质
初中相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例1:如图,已知直线AB:y=4/3 x+b交x轴于点A(-3,0),交y轴于点B,过点B作BC⊥AB交x轴于点C.(1)试证明:△ABC∽△AOB;(2)求△ABC的周长.分析:(1)根据三角形的判定与性质得出∠ABC=∠AOB,∠A=∠A,AB=BA,即可证出△ABC∽△AOB;(2)根据直线AB:y=4/3 x+b交x轴于点A(-3,0),得出B点的坐标,即可求出AB的值,再根据△ABC∽△AOB,得出BC的值,再根据直角三角形的性质得出AC的值,然而求出△ABC的周长.解答:(1)∵BC⊥AB∴∠ABC=∠AOB∵∠A=∠A∴△ABC∽△AOB(2)∵直线AB:y=4/3 x+b交x轴于点A(-3,0),∴b=4∴B(0,4)∴OB=4∵A(-3,0)∴OA=3∴AB=5∵△ABC∽△AOB∴AB :BC =AO :BO∴5 :BC =3 :4∴BC=20/3∴AC=25/3∴△ABC的周长=AB+BC+AC=5+20/3 +25/3 =20例2:如图,一次函数y=kx+b的图象经过点A(-1,0)和点(1,4)交y轴于点B.(1)求一次函数解析式和B点坐标.(2)过B点的另一直线1与直线AB垂直,且交X轴正半轴于点P,求点P的坐标.(3)点M(0,a)为y轴正半轴上的动点,点N(b,O)为X轴正半轴上的动点,当直线MN⊥直线AB时,求a:b的值.分析:(1)把(-1,0),(1,4)代入一次函数的解析式得到方程组求出方程组的解即可;(2)证△AOB∽△BOP,求出OP即可;(3)证△OMN∽△OBP,得到比例式,代入求出即可.解答:(1)把(-1,0),(1,4)代入y=kx+b得 0=-k+b 4=k+b解得:k=2,b=2∴y=2x+2在y=2x+2中,令x=0,得y=2∴B(0,2)答:一次函数解析式是y=2x+2,B点坐标是(0,2)(2)∵∠ABP=90°,∠AOB=90°∴∠BAO+∠ABO=90°,∠ABO+∠PBO=90°∴∠BAO=∠PBO,∠AOB=∠POB=90°∴△AOB∽△BOP∴OB2=OA·OP∴OP=4∴P(4,0)答:点P的坐标是(4,0)(3)∵MN∥BP∴△OMN∽△OBP答:a:b的值是1:2例3:(2000·陕西)如图,在矩形ABCD中,EF是BD的垂直平分线,已知BD=20,EF=15,求矩形ABCD的周长.分析:设长AB=x,宽BC=y,根据题意可证Rt△DAB∽Rt△EOB,于是有一个比值,根据这个方程组可以求出AB,BC的长x,y 即可求矩形周长.解答:设长AB=x,宽BC=y,∵∠DAB=90°=∠EOB=90°,∠B=∠B∴Rt△DAB∽Rt△EOB∴AB :OB =BD :BE∵AD=BC,DF=BE∴{ x2+y2=202解得 x1=16 ,y1=12 ; x2=-16 ,y2=-12 (舍去)∴矩形周长为56例4:(2010·攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD∴S△AEF:S△ABD=(AE :AB)2=1 :4∴S△ABD=4S△AEF=6∴S△AEF=1.5∴S四边形BDFE=S△ABD-S△AEF=6-1.5=4.5三、解题经验熟练掌握相似三角形的性质和判定是本节的重中之重,一定要多做练习。
三角形的相似性质相似三角形的判定及其应用
三角形的相似性质相似三角形的判定及其应用相似三角形的判定及其应用相似三角形是初中数学中重要的概念之一,它在几何图形的相似性及其应用方面具有广泛的应用。
本文将介绍相似三角形的判定方法以及在实际问题中的应用。
一、相似三角形的判定方法判定两个三角形是否相似,常用的方法有以下几种:1. AA判定法(角-角相似判定法)当两个三角形中有两个对应的角相等时,这两个三角形就是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,那么△ABC与△A'B'C'相似。
[插入示意图]2. AAA判定法(全等三角形的判定法)如果两个三角形的三个内角相对应相等,那么这两个三角形是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,∠C1 = ∠C2,那么△ABC与△A'B'C'相似。
[插入示意图]3. SSS判定法(边-边-边相似判定法)当两个三角形的对应边长度成比例时,这两个三角形就是相似的。
如下图所示,AB/A'B' = BC/B'C' = AC/A'C',那么△ABC与△A'B'C'相似。
[插入示意图]二、相似三角形的应用相似三角形在实际问题中具有广泛的应用,以下是一些常见的应用场景:1. 测量高度利用相似三角形的性质,可以通过测量一个物体的阴影和遮挡的长度,来计算出物体的真实高度。
如下图所示,通过测量△ABC的阴影长度BD和实际高度AC,可以利用相似三角形的比例关系计算出物体的真实高度。
[插入示意图]2. 地图比例尺在地图上,为了能够容纳更多的信息,通常会使用比例尺来缩小地图的尺寸。
利用相似三角形的性质,可以通过测量地图上的距离和实际距离来确定比例尺的大小,进而测量其他地点的实际距离。
3. 相似三角形的分割比例在一些几何问题中,需要将一个三角形或长方形划分成若干个部分,利用相似三角形的性质可以确定每个部分的长度比例。
相似三角形的判定与性质
相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。
本文将介绍相似三角形的判定方法以及相似三角形的一些性质。
一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。
当两个三角形的对应角度相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。
2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。
当两个三角形的对应边长成比例时,这两个三角形是相似的。
具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。
当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。
二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。
如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例性质相似三角形的对应边成比例。
如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。
3. 高度与边成比例性质相似三角形的对应边上的高度成比例。
如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。
4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。
如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。
5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。
相似三角形的判定与性质
汇报人:XX
感谢观看
地理学中的应用:测量距离、确定位置等
航海学中的应用:确定船只的位置、航向等
04
相似三角形的判定定理与性质定理的证明
判定定理的证明
定义法:利用相似三角形的定义,通过比较对应边和对应角来证明两个三角形相似。
平行线法:利用平行线的性质,通过比较对应边和对应角来证明两个三角形相似。
角平分线法:利用角平分线的性质,通过比较对应边和对应角来证明两个三角形相似。
适用情况:适用于已知三角形角度和边长的情况
注意事项:在应用定义法时,需要仔细检查对应角和对应边的比例关系,以避免出现误差
平行线法
添加标题
添加标题
添加标题
添加标题
适用范围:适用于直角三角形和非直角三角形
定义:利用平行线性质,通过比较对应边和角的比例关系来判定两个三角形是否相似
证明方法:利用平行线的性质和相似三角形的定义进行证明
应用举例:在几何问题中,常常利用平行线法来判定两个三角形是否相似
角角角法
性质:相似三角形的对应角相等,对应边成比例
应用:在几何、代数、三角函数等领域有广泛的应用
定义:如果两个三角形的两个对应角相等,则这两个三角形相似
判定方法:如果两个三角形的两个对应角相等,则这两个三角形相似
边边边法
证明方法:利用相似三角形的性质和判定定理进行证明
证明:根据相似三角形的定义,可以通过相似比推导出对应角相等
对应边成比例
性质定义:相似三角形的对应边长比例相等
性质推论:相似三角形的对应高、中线、角平分线等比例
性质应用:在几何证明和计算中,利用对应边成比例的性质可以简化问题
三角形的相似性质与判定
三角形的相似性质与判定三角形是几何中的基本形状之一,它具有许多重要的性质和特点。
其中一项重要的性质就是相似性质。
相似性质指的是两个或多个三角形具有相似的形状,但大小可能不同。
本文将探讨三角形的相似性质以及相似三角形的判定方法。
一、相似三角形的定义两个三角形相似的定义是:如果两个三角形的对应角度相等,并且对应边成比例,那么这两个三角形就是相似的。
换句话说,如果两个三角形的三个内角分别相等,且对应边的长度比为一个常数,那么它们是相似的。
二、相似三角形的性质相似三角形具有许多重要的性质,这些性质有助于我们进一步研究和应用三角形的知识:1. 边长比例性质:在相似三角形中,对应边的长度比是相等的。
比如说,如果一个三角形ABC与另一个三角形DEF相似,那么AB与DE的比、AC与DF的比、BC与EF的比都是相等的。
2. 角度对应性质:在相似三角形中,对应的角度是相等的。
也就是说,如果两个三角形相似,那么它们的三个角分别相等。
3. 高度比例性质:在相似三角形中,对应的高度(或称作高线)之比等于对应边长之比。
换句话说,如果一个三角形的两条边与另一个相似三角形的两条边成比例,那么它们的高度也是成比例的。
三、相似三角形的判定方法判定两个三角形是否相似有多种方法,这里介绍其中两种常用的方法:1. 三边比较法:如果两个三角形的三条边对应成比例,那么它们是相似的。
这种方法可通过确定三条边的长度,并计算它们的比例来判断。
2. 角度比较法:如果两个三角形的三个内角对应相等,那么它们是相似的。
这种方法可通过测量三个内角的大小,并比较它们的关系来判断。
值得注意的是,如果两个三角形仅满足其中一种判定条件,那它们并不一定是相似的。
相似性质需要同时满足对应边成比例和对应角相等这两个条件。
结论:三角形的相似性质与判定对于解决几何问题和应用数学都具有重要的意义。
通过理解相似性质,我们可以推导出许多有关三角形的重要结论,并应用于实际问题中。
在实际应用中,我们需要根据已知条件来判断两个三角形相似,进而利用相似的性质和定理解决问题。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是指具有相同形状但不一定相同大小的两个三角形。
在几何学中,相似三角形是一种重要的概念,它帮助我们理解和解决很多与三角形相关的问题。
本文将介绍相似三角形的判定方法以及它们的性质。
一、相似三角形的判定方法1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形相似。
即如果两个三角形的各个内角对应相等(即对应角相等),那么它们是相似的。
2. AA判定法:如果两个三角形的两个内角分别相等,并且它们的对应边成比例,则这两个三角形相似。
即如果两个三角形的两个角对应相等,并且对应边成比例,那么它们是相似的。
3. SAS判定法:如果两个三角形的一组对边成比例,并且其中一组对边夹角相等,则这两个三角形相似。
即如果两个三角形的两组对边成比例,并且夹角对应相等,那么它们是相似的。
二、相似三角形的性质1. 边长比:在相似三角形中,任意两对对应边的比值相等。
换句话说,如果两个三角形相似,那么它们的三条边的比值是相等的。
2. 高度比:在相似三角形中,任意两对对应高度的比值相等。
两个相似三角形的高度比等于对应边长比的倒数。
3. 面积比:在相似三角形中,任意两对对应面积的比值等于边长比的平方。
4. 角度比:在相似三角形中,任意一对对应角的比值相等。
换句话说,如果两个三角形相似,那么它们的三个角的比值是相等的。
5. 相似三角形的角平分线三等分:在相似三角形中,若一个角的两边与另一个角的两边成比例,则这两个角的角平分线相互平行。
6. 重心的性质:在相似三角形中,两个相似三角形的重心在同一直线上。
7. 相似三角形的垂心:在相似三角形中,两个相似三角形的垂心在同一直线上。
8. 相似三角形的外心:在相似三角形中,两个相似三角形的外心在同一直线上。
三、应用举例1. 比例问题:利用相似三角形的性质可以解决很多比例问题。
例如,已知一座塔的阴影与杆子的阴影的比值等于塔的高度与杆子高度的比值,通过相似三角形的比例关系可以求解塔的高度。
相似三角形的性质与判定
相似三角形的性质与判定相似三角形是初中数学中一个重要的概念,理解相似三角形的性质和判定方法对于解题和应用数学非常有帮助。
本文将介绍相似三角形的性质,并讨论如何判定两个三角形是否相似。
一、相似三角形的性质1. 边长比例:两个三角形相似的充分必要条件是它们对应边长之比相等。
设两个三角形分别为ABC和DEF,若满足以下条件,则可判断它们为相似三角形:AB/DE = BC/EF = AC/DF2. 角度相等:两个三角形相似的另一个重要性质是它们对应角度相等。
即若三角形ABC和DEF满足以下条件,则可以判断它们为相似三角形:∠A = ∠D, ∠B = ∠E, ∠C = ∠F3. 高度比例:相似三角形的高度之比等于对应边长之比。
假设ABC 和DEF为相似三角形,且BC和EF为对应边,h1和h2为它们的高度,则有以下关系:h1/h2 = BC/EF二、相似三角形的判定方法1. AA(角-角)判定法:若两个三角形的两个角相等,则这两个三角形相似。
即若∠A = ∠D,∠B = ∠E,可判断三角形ABC与DEF相似。
2. SAS(边-角-边)判定法:若两个三角形的两个对应边的比例相等,并且这两个边夹角相等,则这两个三角形相似。
假设AB/DE =BC/EF,∠B = ∠E,可判断三角形ABC与DEF相似。
3. SSS(边-边-边)判定法:若两个三角形的三个对应边的比例相等,则这两个三角形相似。
即若AB/DE = BC/EF = AC/DF,可判断三角形ABC与DEF相似。
三、相似三角形的应用1. 测量高度:利用相似三角形的性质,可以测量高度。
例如,根据两个相似三角形的高度比例,可以利用已知的高度和对应的边长,求解未知高度的长度。
2. 图形放缩:相似三角形的性质使得我们能够进行图形的缩放。
通过改变相似三角形的边长比例,可以将图形按照一定的比例进行放大或缩小。
3. 建模与设计:相似三角形的应用还可以用于建模和设计。
例如,在设计模型中,可以利用相似三角形的概念,按照一定的比例来缩放和调整图形的形状。
相似三角形的判定和性质
A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
相似三角形的判定及性质
R
r
19
习题 1.3
5.如图,线段EF平行于四边形ABCD的一边AD,BE与CF
交于一点G,AE与DF交于一点H.
求证:GH//AB.
H
A
D
E F
B
C
G
BH BC AD AG EH EF EF EG
预备定理 定义 引理 20
习题 1.3
6.已知:DE//AB,EF//BC. O 求证:△DEF∽△ABC.
(2) AD BC AC ED
3、已知:在△ABC和△A′B′C′中,∠A=∠A′,AB=a,AC=b, A′B′=a′,当 A′C′为多少时,△ABC∽△A′B′C′?
22
小结
相
似
三
角 形
预备定理
的
概
念
判定定理1
判定定理2 直角三角形判定定理
判定定理3
23
EF 1 BC, FD 1 CA, DE 1 AB
2
2
2
EF FD DE 1 BC CA AB 2
∴△DEF∽△ABC
A
F
E
B
D
C
9
直角三角形相似的判定定理
定理
两角对应相等
(1)如果两个直角三角形有一个锐角对应相等,那么它 们相似。
两边对应成比例及夹角相等
(2)如果两个直角三角形的两条直角边对应成比例, 那么它们相似。
类比直角三角形全等的判定定理(斜边和一条直角边对应相等
的两个直角三角形全等)能得直角三角形相似的另一个判定定
理.
10
定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似。
三角形的相似性质及证明
三角形的相似性质及证明三角形是基础的几何图形之一,它具有多种性质和特点。
其中之一便是相似性质。
本文将会介绍三角形的相似性质,以及其证明过程。
一、相似性质的定义在几何学中,当两个三角形的对应角度相等,而对应边的比值相等时,我们称这两个三角形为相似三角形。
记作∆ABC∼∆DEF。
二、相似性质的判定1. AAA判定法:如果两个三角形的三个内角相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,∠C=∠F,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,∠C=∠F,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AAA判定法,可以判定∆ABC∼∆DEF。
2. AA判定法:若两个三角形的两个角度对应相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AA判定法,可以判定∆ABC∼∆DEF。
3. SAS判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形是相似的。
例如,已知∠A=∠D,AB/DE=BC/EF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,AB/DE=BC/EF,可以得到三角形ABC与DEF中的角度和边长对应关系相等。
因此,根据SAS判定法,可以判定∆ABC∼∆DEF。
4. SSS判定法:若两个三角形的三边对应相等,则这两个三角形是相似的。
例如,已知AB/DE=BC/EF=AC/DF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知AB/DE=BC/EF=AC/DF,可以得到三角形ABC与DEF中的边长对应关系相等。
因此,根据SSS判定法,可以判定∆ABC∼∆DEF。
三、相似性质的应用相似性质在几何学中有广泛的应用,以下列举几个例子。
1. 相似三角形的比例关系:根据相似三角形的定义,可以得到相似三角形的对应边长之间的比例关系。
相似三角形的性质与判定
相似三角形的性质与判定相似三角形是指具有相同形状但尺寸不同的两个三角形。
在几何学中,相似的三角形有着许多有趣的性质和特点。
本文将介绍相似三角形的性质和判定方法。
一、相似三角形的性质1. 相似三角形的对应角相等。
如果两个三角形的对应角分别相等,则它们是相似的。
例如,若∠A = ∠D,∠B = ∠E,∠C = ∠F,则三角形ABC相似于DEF。
2. 相似三角形的对应边成比例。
如果两个三角形的对应边长之比相等,则它们是相似的。
例如,若AB/DE = BC/EF = AC/DF,则三角形ABC相似于DEF。
3. 相似三角形的周长比例等于任意一边长的比例。
如果两个三角形相似,则它们的周长之比等于任意一边的比例。
例如,若三角形ABC 相似于DEF,则AB+BC+AC/DE+EF+DF = AB/DE = BC/EF = AC/DF。
4. 相似三角形的面积比例等于边长比例的平方。
如果两个三角形相似,则它们的面积之比等于对应边长比例的平方。
例如,若三角形ABC相似于DEF,则△ABC的面积/△DEF的面积 = (AB/DE)² = (BC/EF)² = (AC/DF)²。
二、相似三角形的判定方法1. AA判定法:若两个三角形的两对角分别相等,则它们是相似的。
例如,如果∠A = ∠D,∠B = ∠E,则三角形ABC相似于DEF。
2. SAS判定法:若两个三角形的一个角相等,两边成比例,则它们是相似的。
例如,如果∠A = ∠D,AB/DE = AC/DF,则三角形ABC相似于DEF。
3. SSS判定法:若两个三角形的三边成比例,则它们是相似的。
例如,如果AB/DE = BC/EF = AC/DF,则三角形ABC相似于DEF。
4. 直角三角形的判定法:若两个直角三角形的斜边和直角边成比例,则它们是相似的。
例如,若∠C = ∠F = 90°,AB/DE = AC/DF,则三角形ABC相似于DEF。
三角形相似的判定条件
三角形相似的判定条件:三角形相似的条件:两角分别对应相等的两个三角形相似;两边对应成比例且夹角相等,两个三角形相似;三边对应成比例,两个三角形相似;三边对应平行,两个三角形相似;斜边与直角边对应成比例,两个直角三角形相似;全等三角形相似。
一、相似三角形的判定定理:1.平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似。
2.如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
3.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4.如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
二、相似三角形介绍三角分别相等,三边成比例的两个三角形叫作相似三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
三、相似三角形的性质1.性质1:相似三角形对应边上的高、中线和它们周长的比都等于相似比;性质2:相似三角形的面积比等于相似比的平方.结论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方2.性质:三条平行线截两条直线,所得的对应线段成比例推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
四、特殊情况1.凡是全等的三角形都相似。
全等三角形是特殊的相似三角形,相似比为1。
反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似。
由此,所有的等边三角形都相似。
相似三角形判定条件与性质
相似三角形判定条件与性质相似三角形是指形状相似但大小不同的两个三角形。
在几何学中,判定两个三角形是否相似有一些条件和性质。
下面将详细介绍相似三角形的判定条件与性质。
一、相似三角形的判定条件1. AAA相似定理(全等三角形基本性质之一)当两个三角形的对应角度分别相等时,这两个三角形相似。
也就是说,如果两个三角形的三个角分别对应相等,那么这两个三角形是相似的。
2. AA相似定理(全等三角形基本性质之二)当两个三角形的两个对应角分别相等时,这两个三角形相似。
也就是说,如果两个三角形有两个角相等,那么这两个三角形是相似的。
3. SSS相似定理当两个三角形的对应边分别成比例时,这两个三角形相似。
也就是说,如果两个三角形的三条边分别成比例,那么这两个三角形是相似的。
二、相似三角形的性质1. 边比例性质在相似三角形中,相应边之间的比例相等。
如果两个三角形相似,则对应边的比例相等。
2. 角度性质在相似三角形中,对应角度相等。
如果两个三角形相似,则对应角度相等。
3. 高比例性质在相似三角形中,相应高的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应高之间的比例相等。
4. 周长比例性质在相似三角形中,相应边的比例等于相应高和周长的比例。
即,如果两个三角形相似,它们的对应边与相应高以及周长之间的比例相等。
5. 面积比例性质在相似三角形中,相应边的比例的平方等于面积的比例。
即,如果两个三角形相似,它们的对应边的比例的平方等于面积的比例。
6. 中线比例性质在相似三角形中,相应中线的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应中线之间的比例相等。
通过上述判定条件与性质,我们可以方便地判断两个三角形是否相似,并且得出相应的比例关系。
相似三角形在几何学中具有广泛的应用,可以用于解决实际问题,如测量高度、距离等。
总结:相似三角形的判定条件包括AAA相似定理、AA相似定理和SSS相似定理。
相似三角形具有边比例性质、角度性质、高比例性质、周长比例性质、面积比例性质和中线比例性质等性质。
相似三角形的性质与判定
相似三角形的性质与判定相似三角形是初中数学中的一个重要概念,它在几何学知识体系中有着重要的地位。
相似三角形是指两个或更多个三角形在形状上相似的特殊三角形。
它们的边长比例相等,对应的角度也相等。
通过研究相似三角形的性质和判定条件,我们可以在解决实际问题时更好地应用相似三角形的概念。
首先,我们来介绍一些相似三角形的性质。
相似三角形具有以下性质:1. 对应角相等性质。
如果两个三角形的对应角相等,那么它们是相似三角形。
具体而言,如果两个三角形的三个角分别相等,那么它们一定是相似三角形。
这是相似三角形的性质中最重要的一条。
2. 对应边比例相等性质。
如果两个三角形的对应边的长度比例相等,那么它们是相似三角形。
具体而言,如果两个三角形的三条边的对应长度比例相等,那么它们一定是相似三角形。
这个性质可以直接从三角形的定义和角相等性质推导出来。
其次,我们来介绍一些相似三角形的判定条件。
判定两个三角形是否相似主要有以下几种方法:1. AA 判定法。
如果两个三角形的两个角分别相等,那么它们一定是相似三角形。
2. SSS 判定法。
如果两个三角形的三个边的长度比例相等,那么它们一定是相似三角形。
3. SAS 判定法。
如果两个三角形的一个角相等,而且两个边的长度比例相等,那么它们一定是相似三角形。
4. 等腰三角形判定法。
如果两个三角形的两条边长比例相等且夹角相等,那么它们一定是相似三角形。
相似三角形的性质和判定条件在解决实际问题时非常有用。
例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量实际的距离和角度,计算出高楼的高度。
又如,在地图上测量两个城市之间的直线距离时,我们可以利用相似三角形的判定条件,通过测量两个城市之间的实际距离和角度,计算出直线距离。
这些都是利用相似三角形的性质和判定条件解决实际问题的典型例子。
总的来说,相似三角形是一个重要的几何概念,它涉及到对角、边长比例的研究。
相似三角形的性质和判定条件在解决实际问题时非常有用,能够帮助我们计算出实际的距离和角度,解决实际问题。
《相似三角形的性质和判定》PPT课件
全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似
。
02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
相似三角形的判定与性质
相似三角形的判定与性质1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:)例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.2、全等与相似的类比:3、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。
相似三角形的性质
相似三角形的性质相似三角形是指具有相同形状但可能不同大小的两个三角形。
在几何学中,相似三角形具有一些独特的性质。
本文将介绍相似三角形的性质,并讨论其在实际问题中的应用。
一、相似三角形的定义和判定相似三角形是指具有相同形状但可能不同大小的两个三角形。
两个三角形相似的判定条件有以下几种:1. 三角形的对应角相等:如果两个三角形的对应角相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,∠C=∠F。
2. 三角形的对应边成比例:如果两个三角形的对应边之比相等,则它们是相似的。
这可以表示为AB/DE = BC/EF = AC/DF。
3. 两个角相等且夹在两边之间的比例相等:如果两个三角形的两个角分别相等,并且夹在两边之间的比例也相等,则它们是相似的。
这可以表示为∠A=∠D,∠B=∠E,并且AB/DE = BC/EF。
二、相似三角形具有以下性质:1. 对应边之比相等:如果两个三角形相似,它们的对应边之比相等。
这是相似三角形的最重要性质之一。
2. 对应角相等:如果两个三角形相似,它们的对应角是相等的。
3. 对应角平分线相交于一点:如果两个三角形相似,它们的对应角的平分线交于一点。
4. 对应中线之比相等:如果两个三角形相似,则它们的对应中线之比等于对应边之比。
5. 对应高之比相等:如果两个三角形相似,则它们的对应高之比等于对应边之比。
6. 相似三角形的面积之比等于边长之比的平方:如果两个三角形相似,则它们的面积之比等于对应边之比的平方。
7. 相似三角形的周长之比等于边长之比:如果两个三角形相似,则它们的周长之比等于对应边之比。
三、相似三角形的应用相似三角形在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 测量不可直接测量的物体高度:通过测量相似三角形的一些已知边长和角度,可以推算出无法直接测量的物体的高度。
2. 利用相似三角形进行放缩:在地图制作、建筑设计等领域中,可以利用相似三角形进行放缩和缩小,以便在实际工作中进行精确的测量和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定与性质(复习课)
西平一中九年级数学组
一、学习目标:
1.能熟练运用相似三角形的判定与性质进行证明或计算;
2.体会分类讨论思想、方程思想在相似三角形中的应用;
二、自学指导:
复习课本31-38页,完成:
1.相似三角形的判定方法有:
(1)____________________________
(2)____________________________
(3)____________________________
(4)____________________________
2.相似三角形的性质有:
(1)____________________________
(2)____________________________
(3)____________________________
(4)____________________________
3.如图,不等边△ABC中,P是AB边上异于A、B的一点,过点P作直线截△ABC,所截得的三角形与原△ABC相似,满足这样条件的直线共有多少条?
请画出图形。
三、合作探究(典型例题):
1.如图所示,在△ABC中,AB=8cm,BC=16cm.点P从点A出发沿AB向点B以2cm/s的速度运动,点Q从点B出发沿BC向点C以4cm/s的速度运动.如果点P,Q分别从点A,B同时出发,则经过几秒钟后△PBQ与△ABC相似?
四、达标检测:
1.如图,正方形ABCD中,其边长为1,P是CD的中点,点Q在线段BC上,当BQ为何值时,△ADP ∽△PCQ相似?
2.如图,已知直角梯形ABCD,∠A=∠B=90°,AD=2,BC=8,AB=10,在线段AB上取一点P,使△ADP与△BCP相似,求AP的长.
3.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC 上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.
五、课堂小结:
本节课你有那些收获?。