金属和陶瓷的力学性能
陶瓷的分类及性能
陶瓷材料的力学性能陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。
金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。
工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。
可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。
(可通过热处理改善材料的力学性能)陶瓷的分类玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃陶瓷—普通陶瓷日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷-电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2.陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。
2 (E/1000--E/100)。
金属陶瓷复合材料的制备及其力学性能研究
金属陶瓷复合材料的制备及其力学性能研究第一章介绍金属陶瓷复合材料是一种新型的结构材料,由于它具有良好的力学性能和独特的组织结构,被广泛应用于各种领域。
本文主要介绍金属陶瓷复合材料的制备方法以及力学性能的研究。
第二章金属陶瓷复合材料的制备2.1 真空热压法真空热压法是制备金属陶瓷复合材料的一种重要方法。
该方法首先将金属和陶瓷粉末混合均匀,并在真空条件下进行热压成型。
此过程中,原料粉末受到高温和高压的作用,使其发生预热、烧结和致密化等一系列复杂的物理和化学反应,最终得到金属陶瓷复合材料。
2.2 热喷涂法热喷涂法是一种较新的制备金属陶瓷复合材料的方法,它是通过高温喷涂技术,将金属粉末和陶瓷粉末同时喷射到基体表面上,并在高温下熔合成型。
这种方法不但可以在基体表面上制备金属陶瓷复合涂层,还可以在空气或真空条件下,在基材表面上直接形成金属陶瓷复合材料。
第三章金属陶瓷复合材料的力学性能研究3.1 强度和韧性金属陶瓷复合材料的强度和韧性是其最重要的力学性能之一。
在实验室中,可以使用拉伸试验、弯曲试验和冲击试验等方法,来评估金属陶瓷复合材料的强度和韧性。
研究表明,金属陶瓷复合材料的强度和韧性与其制备方法、金属瓷相之间的界面结合强度等因素密切相关。
3.2 耐磨性金属陶瓷复合材料的耐磨性是其另一个重要的力学性能。
可以通过模拟磨损实验来评估其耐磨性能。
研究表明,金属陶瓷复合材料的耐磨性受到陶瓷瓷相硬度、金属的韧性和金属与陶瓷之间的粘结强度等因素的影响。
3.3 疲劳性能金属陶瓷复合材料的疲劳性能是指在重复应力作用下的变形和破坏性能。
研究表明,金属陶瓷复合材料的疲劳性能与其界面结合强度、加载速率、应力幅值等因素密切相关。
第四章结论金属陶瓷复合材料是一种高性能的结构材料,具有良好的强度、韧性和耐磨性等力学性能。
然而,其制备方法和设计及其力学性能的优化仍需要进一步的研究。
未来的研究方向应该是改进制备方法,提高界面结合强度,探索新的复合材料设计原理,并研究其在不同应用领域中的应用。
陶瓷的力学性能
陶瓷的力学性能陶瓷材料的化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其晶体结构复杂而表面能小。
因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使用可靠性却不如金属。
因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。
本节主要讨论弹性、硬度、强度、韧性及其组织结构因素、环境因素的影响。
一.弹性性能1.弹性和弹性模量陶瓷材料为脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。
因此,其弹性性质就显得尤为重要。
与其他固体材料一样。
陶瓷的弹性变形可用虎克定律来描述。
陶瓷的弹性变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。
弹性模量反映的是原子间距的微小变化所需外力的大小。
表11.3给出一些陶瓷在室温下的弹性模量。
2.温度对弹性模量的影响由于原子间距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。
原子间距增大,由成j变为d,(见图11.2)而该处曲线的斜率变缓,即弹性模量降低。
因此,固体的弹性模量一般均随温度的升高而降低。
图11.3给出一些陶瓷的弹性模量随温度的变化情况。
一般来说,热膨胀系数小的物质,往往具有较高的弹性模量。
3.弹性模量与熔点的关系物质熔点的高低反映其原子间结合力的大小。
一般来说,弹性模量与熔点成正比例关系。
不同种类的陶瓷材料样性模量之间大体上有如下关系氧化物<氯化物<硼化挪<碳化物。
泊松比也是描述陶瓷材料弹性变形的重要参数。
表11.4给出一些陶瓷材料和金属的泊松比。
可以看出除BeO与MgO外大多数陶瓷材料的泊松比都小于金属材制的泊松比。
4.弹性模量与材料致密度的关系陶瓷材料的致密度对其弹性模量影响很大。
图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。
Fros指出弹性模量与气孔率之间将会指数关系E=E0exp(-BP)式中B--常数。
陶瓷材料的力学性能特点
陶瓷材料的力学性能特点
陶瓷材料是一类使用广泛的非金属材料,具有许多独特的力学性能特点。
相较于金属材料,陶瓷材料的硬度更高、耐磨性更好,但同时也具有脆性大、抗张强度低等特点,这使得陶瓷材料在工程应用中具有独特的优势和局限性。
强度和硬度
陶瓷材料的强度主要是指其破坏前的抗压、抗弯等性能。
一般而言,陶瓷材料的强度很高,具有很好的抗压性能,可以承受较大的外部压力。
而陶瓷材料的硬度通常也比较高,能够抵抗表面的划伤和磨损。
脆性
然而,陶瓷材料的脆性也是其在工程应用中需要考虑的重要问题。
陶瓷材料的断裂韧性很差,一旦受到较大冲击或弯曲力,则容易发生破裂。
这种脆性特点使得在设计和制造过程中需要特别小心处理,避免在使用过程中出现意外的破损情况。
热稳定性
另外,陶瓷材料还具有较好的耐高温性能,能够在高温下保持稳定的物理性质和力学性能。
这种热稳定性使得陶瓷材料在高温环境下有广泛的应用,比如航空航天领域的热屏障涂层、高温陶瓷窑炉等。
导热性和电绝缘性
陶瓷材料通常具有较高的绝缘性能,能够有效地阻止热量和电流的传导。
这使得陶瓷材料在电子元器件、绝缘材料等领域有着重要的应用。
同时,某些陶瓷材料也具有较好的导热性能,可用于制造散热元件等产品。
总的来说,陶瓷材料作为一类特殊的非金属材料,具有独特的力学性能特点。
在工程应用中,我们需要充分了解和利用陶瓷材料的各项性能,同时也要注意其脆性等缺点,以确保其在各个领域中都能发挥最佳的作用。
1。
金属陶瓷材料检验标准国标
金属陶瓷材料检验标准国标
一、金属材料力学性能试验方法:
GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法GB/T 229—2007金属材料夏比摆锤冲击试验方法
GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)
GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法GB/T 232—1999金属材料弯曲试验方法
GB/T 233—2000金属材料顶锻试验方法
GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法
GB/T 238—2013金属材料线材反复弯曲试验方法
GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法GB/T 241—2007金属管液压试验方法
GB/T 242—2007金属管扩口试验方法
GB/T 244—2008金属管弯曲试验方法
GB/T 245—2008金属管卷边试验方法
GB/T 246—2007金属管压扁试验方法
GB/T 1172—1999黑色金属硬度及强度换算值
GB/T 2038—1991金属材料延性断裂韧度JIC试验方法
GB/T 2039—2012金属材料单轴拉伸蠕变试验方法
GB/T 2107—1980金属高温旋转弯曲疲劳试验方法
GB/T 2358—1994金属材料裂纹尖端张开位移试验方法。
5-陶瓷材料的力学性能
2)显微结构对弹性模量的影响 弹性模量不仅与结合键有关,还与组成相的种类、
分布比例及气孔率有关。陶瓷的弹性模量E与气孔率p的 关系可表示为
E E0(1 ) 1 2.5
E0是气孔率为零时的弹性模量 b为与陶瓷制备工艺有关的
弹性模量随孔隙率的升高而降低
3)温度对弹性模量的影响 由于原子间距及结合力随温度的变化而变化,所以弹性
由于四点弯曲试样工作部分缺陷存在的概率较大, 所以同一材料的四点抗弯强度比三点抗弯强度低。
材料的韦伯常数越小,三点抗弯强度和四点抗弯 强度的差值就越大。
二、抗拉强度
设计陶瓷零件时常用抗拉强度值作为判据; 陶瓷材料由于脆性大,在拉伸试验时易在夹持部位断裂,
另外,夹具与试样轴心不一致产生附加弯矩,所以往往 测不出陶瓷材料真正的抗拉强度。 为保证陶瓷材料拉伸试验的精确性,需要在试样和夹头 设计方向做一些工作,例如: 在平行夹头中加橡胶垫固定薄片状试样,可以防止试样 在夹持部位断裂,并利用试样的弹性变形减少附加弯矩。
t不- Z再r发O2生由,亚所稳以态相变变成增稳韧定失态去,作t- 用Zr。O2 →m- ZrO2相变
(3) 微裂纹增韧
引起微裂纹的原因:
① 相变体积膨胀产生微裂纹; ② 由于温度变化基体相与分散相之间热膨胀系数不同引发微裂纹; ③ 还可能是材料原来已经存在的微裂纹。
第六节 陶瓷材料的疲劳
用的摩擦化学问题。
第五节 陶瓷材料的断裂韧度与增韧
一、陶瓷材料的断裂韧度
陶瓷材料在室温下,甚至T/Tm<0.5的温度范围很难产生塑性 变形,其断裂方式为脆性断裂,所以陶瓷材料的裂纹敏感性 很强,因此,断裂力学性能是评价陶瓷材料力学性能的重要 指标。
I型是陶瓷材料最常遇到的情况:
金属陶瓷复合材料的力学性能和应用
金属陶瓷复合材料的力学性能和应用金属陶瓷复合材料是一种新型的材料,具有独特的力学性能和
应用价值。
本文将从力学性能和应用两个方面对金属陶瓷复合材
料进行分析。
1、力学性能
金属陶瓷复合材料的力学性能主要包括强度、硬度、韧性和耐
磨性等方面。
一般来说,金属与陶瓷的组合可以使材料既具有金
属的强度和韧性,又具有陶瓷的硬度和耐磨性。
例如,钨钢复合材料具有高强度、高硬度和高耐磨性,是极好
的刀具材料;钨铁热障复合材料具有较高的热稳定性和耐磨性,
可用于高温环境下的摩擦零件等;不锈钢陶瓷复合材料则具有较
高的耐腐蚀性。
2、应用
金属陶瓷复合材料的应用范围广泛,主要在航空、航天、电力、机械、化工等领域。
以下是一些应用案例:
(1)航空领域
飞机零件中,需要同时考虑材料的轻量化和力学性能,金属陶瓷复合材料在此方面有很好的应用前景。
例如,铝陶瓷复合材料可用于制造高温静叶环等;钛合金陶瓷复合材料可用于制造航空发动机部件等。
(2)化工领域
化工领域中,材料要求较高的化学稳定性和机械性能,金属陶瓷复合材料可作为替代方案。
例如,不锈钢陶瓷复合材料可用于制造高强度和耐腐蚀的化工泵和阀门等。
(3)电力领域
金属陶瓷复合材料的高耐磨性在电力领域中也有广泛的应用。
例如,使用陶瓷制成的电气绝缘件,具有较高的耐磨性和耐高温性,可用于高压开关等设备中。
总之,金属陶瓷复合材料是一种具有良好力学性能和广泛应用
前景的新型材料,可用于制造各种机械零件、工具和化学设备等。
随着技术的不断进步,金属陶瓷复合材料的应用范围将会不断扩大。
金属陶瓷合金
金属陶瓷合金金属陶瓷合金是一种由金属和陶瓷相组成的材料,具有金属和陶瓷的特性和优点,广泛应用于航空、汽车、电子、医疗等领域。
本文将从材料性质、制备工艺、应用领域等方面详细介绍金属陶瓷合金。
一、材料性质金属陶瓷合金具有优良的力学性能和化学稳定性。
其力学性能主要表现在高强度、高硬度和良好的耐磨性上。
与普通金属相比,金属陶瓷合金的硬度更高,可达到1000~2000HV,甚至更高。
此外,金属陶瓷合金还具有较好的抗腐蚀性能,能够在高温、酸碱等恶劣环境下长期稳定工作。
二、制备工艺制备金属陶瓷合金的主要工艺包括粉末冶金、熔融冶金和溶胶-凝胶法等。
其中,粉末冶金是最常用的制备方法之一。
该方法主要通过粉末混合、压制和烧结等步骤来获得金属陶瓷合金。
熔融冶金方法则是将金属和陶瓷相一起熔炼,形成均匀的合金液,然后通过冷却凝固得到金属陶瓷合金。
溶胶-凝胶法是一种比较新颖的制备方法,通过溶胶和凝胶的转变过程来制备金属陶瓷合金。
三、应用领域金属陶瓷合金由于其独特的性能,在多个领域得到广泛应用。
在航空领域,金属陶瓷合金常用于制造高温结构件,如涡轮叶片、燃烧室等。
其高温强度和耐磨性使其能够在高速飞行和高温环境下保持良好的性能。
在汽车领域,金属陶瓷合金常用于制造发动机零部件,如活塞环、气门等。
其高硬度和耐磨性使其能够承受高速运动和高温高压环境的考验。
在电子领域,金属陶瓷合金常用于制造半导体封装材料、电子陶瓷等。
其高导电性和优良的热稳定性使其成为电子器件的重要材料。
在医疗领域,金属陶瓷合金常用于制造人工关节、牙科修复材料等。
其生物相容性和耐磨性使其能够在人体内长期稳定使用。
金属陶瓷合金是一种具有优良性能和广泛应用的材料。
通过不同的制备工艺,可以获得不同性能和形态的金属陶瓷合金。
随着科学技术的不断进步,金属陶瓷合金在各个领域的应用将得到更加广泛和深入的发展。
陶瓷的力学性能包括哪些内容
陶瓷的力学性能包括哪些内容
陶瓷作为一种常见材料,在工程领域中有着广泛的应用。
其独特的力学性能是其被广泛使用的重要原因之一。
陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度、韧性等几个方面。
硬度
陶瓷通常具有较高的硬度,这使得陶瓷在抗磨损方面表现突出。
陶瓷的硬度主要取决于其晶体结构和化学成分。
硬度高意味着陶瓷在磨擦和表面损耗方面有着良好的表现,使其在耐磨领域得到广泛应用。
抗弯强度
陶瓷的抗弯强度是指陶瓷在受到弯曲载荷时抵抗变形和破坏的能力。
由于陶瓷在工程上通常用于承受一定的弯曲应力,其抗弯强度是评估其在这种情况下表现的重要参数。
抗压强度
陶瓷的抗压强度是指陶瓷在受到压缩载荷时抵抗破坏的能力。
在一些工程应用中,陶瓷可能需要承受来自各个方向的压力,因此抗压强度是评估陶瓷材料综合承载能力的重要指标之一。
韧性
尽管陶瓷通常以其高硬度和脆性著称,但某些陶瓷材料也具有一定的韧性。
韧性是指材料抵抗断裂的能力,而不是材料硬度。
在一些需要承受冲击或振动载荷的工程应用中,具有一定韧性的陶瓷材料表现出色。
综上所述,陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度和韧性等方面。
根据不同的工程需求,选择合适的陶瓷材料可以充分发挥其优异的力学性能,实现更广泛的应用。
1。
陶瓷材料的化学性能和力学性能
陶瓷的组织结构十分稳定,不但在室温下不会氧化,即使在1000℃以上的高温卜也不会氧化.由于陶瓷具有稳定的化学结构,因而对酸、碱、盐类以及熔融的有色金属均有较强的抵抗能力,所以在工业中得到广泛应用。
陶瓷是多晶固体资料,它多是由离子键构成的离子晶体,也有由共价键组成的共价晶体,这类晶体布局具有显着的方向性。
联系健和晶体构造决议了陶瓷具有很高的抗压强度和硬度,而抗拉强度和剪切强度则于刻氏,陶瓷的朔性变形才能极差,很容易发作脆性断裂,其抗冲击才能很低,耐疲惫的性能也很差,这是陶瓷资料在工程应用中的最大缺点。
陶瓷材猜中很多气孔的存在,也是陶瓷出现脆性的因素。
陶瓷资料的组成相不同时,其弹性模量也不相同.各类陶瓷资料弹性模量由大到小的排列顺序为:碳化物、氮化物、硼化物、氧化物。
陶瓷的弹性模量一般比金属高。
陶瓷资料的硬度值取决其内部组成和结构。
陶瓷资料常用的划痕硬度叫傲莫氏硬度,是以资料间彼此刻划能否发生划痕来测定的,由此反映资料抵抗破坏的才能,它只表明各种资料硬度的相对巨细。
莫氏硬度分为15级,莫氏硬度按照硬度由小到大的顺序排列,硬度等级高的资料能够划破低硬度的资料表面陶瓷资料的熔点高,大多在2000℃以上,有的可达3000℃以上。
而且具有优秀的高温强度。
大都陶瓷的高温抗端变才能较强,陶瓷是常用的耐高温工程资料。
陶瓷资料线胀系数一般都比较小.不同的陶瓷资料,其导热功能相差悬殊,有的是良导热体,有的则是绝热资料.热导率极低的陶瓷资料具有热安稳性好、耐高温、耐热冲击、红外线透过率高等许多特性,因此,可用于特殊冶金、高温模具、航天航空等各工业领域。
陶瓷的组织布局十分安稳,不但在室温下不会氧化,即便在1000℃以上的高温卜也不会氧化.因为陶瓷具有安稳的化学布局,因而对酸、碱、盐类以及熔融的有色金属均有较强的抵抗才能,所以在工业中得到广泛应用。
水泥垫块 1v1。
金属材料力学性能的五个指标
金属材料力学性能的五个指标
力学性能的五个指标:
1、脆性
脆性是指材料在损坏之前没有发生塑性变形的一种特性。
它与韧性和塑性相反。
脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。
铸铁、陶瓷、混凝土及石头都是脆性材料。
与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。
2、强度
金属材料在静载荷作用下抵抗永久变形或断裂的能力。
同时,它也可以定义为比例极限、屈服
强度、断裂强度或极限强度。
没有一个确切的单一参数能够准确定义这个特性。
因为金属的行为随着应力种类的变化和它应用形式的变化而变化。
强度是一个很常用的术语。
3、塑性
金属材料在载荷作用下产生永久变形而不破坏的能力。
塑性变形发生在金属材料承受的应力超过弹性极限并且载荷去除之后,此时材料保留了一部分或全部载荷时的变形。
4、硬度
金属材料表面抵抗比他更硬的物体压入的能力。
5、韧性
金属材料抵抗冲击载荷而不被破坏的能力。
韧性是指金属材料在拉应力的作用下,在发生断裂前有一定塑性变形的特性。
金、铝、铜是韧性材料,它们很容易被拉成导线。
结构材料与力学性能
结构材料与力学性能结构材料和力学性能是现代工程领域中至关重要的概念。
无论是建筑、航空、汽车还是电子设备,都需要使用高性能的结构材料来确保其安全和可靠性。
本文将探讨结构材料的种类以及其对力学性能的影响。
一、金属材料金属材料是目前工业应用最广泛的结构材料之一。
它们通常具有高强度、可塑性和导电性等特点。
常见的金属材料包括钢铁、铝合金和镁合金等。
这些材料可以广泛应用于航空、汽车和建筑等领域。
金属材料的力学性能通常通过强度和塑性来衡量。
强度是材料抵抗外部力量破坏的能力,而塑性则是指材料在受力下变形的能力。
提高金属材料的强度可以通过合金化、热处理和加工过程来实现。
而增加金属材料的塑性可以通过冷加工和合金元素的控制来实现。
二、陶瓷材料陶瓷材料具有优异的耐高温性能和化学稳定性,因此在高温环境下得到广泛应用。
陶瓷材料通常具有较高的硬度和脆性,这使得它们在力学性能方面与金属材料有所不同。
陶瓷材料的力学性能主要取决于其结晶和微观结构。
通过改变陶瓷材料的成分、晶体结构和制备工艺,可以优化其力学性能。
一些新型陶瓷材料,如氧化锆和碳化硅,具有较高的强度和韧性,已经在航空航天和核能领域得到应用。
三、聚合物材料聚合物材料由大量有机分子组成,具有良好的绝缘性和化学稳定性。
它们广泛应用于塑料制品、橡胶制品和粘合剂等领域。
与金属和陶瓷材料相比,聚合物材料通常具有较低的强度和刚性,但却具有较高的韧性。
聚合物材料的力学性能主要取决于分子结构、分子量和交联程度。
通过调整聚合物的化学结构和添加增塑剂等方式,可以提高其力学性能。
例如,聚苯乙烯是一种常见的聚合物材料,可以通过控制其分子量分布和交联程度,获得不同的力学性能。
四、复合材料复合材料由两种或多种不同的材料组合而成,可以充分发挥各种材料的优点,从而获得更好的力学性能。
常见的复合材料包括纤维增强复合材料和层状复合材料。
纤维增强复合材料由纤维增强剂和基体材料组成,具有较高的强度和刚度。
复合材料的力学性能与纤维增强剂和基体材料的性质密切相关。
金瓷结合的机制
金瓷结合的机制1. 引言金瓷结合是一种将金属和陶瓷材料结合在一起的技术,通过金属和陶瓷的特性互补,实现了新材料的性能优化。
本文将详细介绍金瓷结合的机制,包括金瓷结合的原理、常见的金瓷结合方法以及金瓷结合材料的应用领域。
2. 金瓷结合的原理金瓷结合是通过金属和陶瓷之间的化学键和物理键结合来实现的。
金属和陶瓷具有不同的特性,金属具有良好的导电性、导热性和可塑性,而陶瓷具有优异的耐磨性、耐高温性和化学稳定性。
金瓷结合的原理可以概括为以下几点:•化学键结合:金属和陶瓷在界面处形成化学键,通过原子之间的电子共享或转移来实现结合。
这种化学键结合可以增强金瓷结合材料的力学性能和化学稳定性。
•物理键结合:金属和陶瓷在界面处形成物理键,通过原子之间的静电作用力、范德华力等相互作用来实现结合。
这种物理键结合可以提高金瓷结合材料的界面结合强度和耐磨性。
•界面相容性:金属和陶瓷之间的界面需要具有相容性,即界面处的晶格结构、热膨胀系数等物理特性要匹配。
如果界面相容性不好,会导致金瓷结合材料在使用过程中出现开裂、剥离等问题。
3. 常见的金瓷结合方法金瓷结合可以通过多种方法实现,下面介绍几种常见的金瓷结合方法:3.1 焊接结合焊接结合是将金属和陶瓷材料进行熔接,使它们在界面处形成结合。
常见的焊接结合方法有电弧焊、激光焊、等离子弧焊等。
焊接结合可以实现金属和陶瓷之间的高强度结合,但需要注意控制焊接温度和焊接过程中的气氛,以避免材料的烧结和氧化。
3.2 粘接结合粘接结合是将金属和陶瓷材料通过粘接剂进行结合。
粘接剂可以是有机胶、无机胶、金属粉末等。
粘接结合的优点是可以实现大面积的结合,并且可以在室温下进行。
但粘接结合的界面强度较低,容易受到外界环境的影响。
3.3 烧结结合烧结结合是将金属和陶瓷材料一起进行烧结,使它们在界面处形成结合。
烧结结合可以在高温下进行,通过烧结过程中的扩散和晶界迁移来实现结合。
烧结结合可以实现金属和陶瓷之间的高强度结合,但需要控制烧结温度和烧结时间,以避免材料的烧结不完全和晶粒长大过度。
材料的力学性能和弹性模量
材料的力学性能和弹性模量材料的力学性能和弹性模量是材料科学中非常重要的参数,它们与材料的力学行为和性能密切相关。
本文将对材料的力学性能和弹性模量进行详细介绍和分析。
一、力学性能1. 强度:材料的强度是指材料在受力情况下能够承受的最大应力。
强度高的材料具有较高的抗拉、抗压等能力,常用来制造承重结构或需要抗外力作用的零部件。
2. 韧性:材料的韧性是指材料在受力情况下能够吸收能量的能力。
韧性高的材料能够在受到冲击或弯曲时发生塑性变形而不易断裂,常用于制造需要抗冲击或吸能的零部件。
3. 延展性:材料的延展性是指材料在受力情况下能够发生塑性变形的能力,即能够被拉长或压扁。
延展性高的材料具有较好的可加工性和适应性,常用于制造需要复杂形状或变形的零部件。
4. 脆性:材料的脆性是指材料在受力情况下发生断裂的倾向。
脆性高的材料容易发生断裂,常用于制造需要刚性和脆性的结构或零部件。
二、弹性模量弹性模量是材料在弹性阶段的应力和应变之间的比例关系。
常用的弹性模量包括杨氏模量、剪切模量和泊松比。
1. 杨氏模量:杨氏模量是指材料在拉伸或压缩过程中单位面积的应力与应变之间的比值。
杨氏模量越大,材料的刚度越高,即抵抗外力变形的能力越强。
2. 剪切模量:剪切模量是指材料在剪切过程中单位面积的剪应力与剪应变之间的比值。
剪切模量描述了材料在剪切应力作用下的变形特性。
3. 泊松比:泊松比是指材料在受力方向上的拉伸或压缩与垂直方向上的应力变形之间的比值。
泊松比描述了材料在受力作用下的变形特性,对材料的破坏和失效具有重要的影响。
三、材料选择和应用材料的力学性能和弹性模量是根据具体应用需求进行选择的。
不同的材料在力学性能和弹性模量上具有各自的优势和适用范围。
1. 金属材料:金属材料具有优异的强度和韧性,常用于制造机械零件、建筑结构和汽车零件等需要抗拉、抗压和抗冲击能力的领域。
2. 高分子材料:高分子材料具有良好的延展性和可加工性,常用于制造塑料制品、橡胶制品和纤维材料等需要复杂形状和变形能力的领域。
陶瓷材料的力学性能
工程陶瓷材料的塑性、韧性值比金属材料低得多, 对缺陷十分敏感,因而其力学性能数据的分散性 大,强度可靠性较差,常用韦伯模数表征其强度 均匀性。 工程陶瓷材料的制备技术、气孔、夹杂物、晶界、 晶粒结构均匀性等因素对其力学性能有显著影响, 因此,在讨论工程陶瓷的力学性能前,应首先了 解这种材料的组成和结构特点。
核电站:能耐2000℃高温
[耐温能力:900℃ →1200~1300℃
发动机 热效率:30%→50% 重量 ↓20% 耗油量 ↓ 30%
由此可见,工程陶瓷材料较好地适应了 近代科学技术发展的需要,具有广阔的应用 前景。目前在机械、冶金、化工、纺织等行 业中,用工程陶瓷材料制作耐高温、耐磨损、 耐腐蚀的零部件越来越多。
14
如图10-2所示,陶瓷在压缩加载时,其σ-ε曲 线斜率比拉伸时的大,此与陶瓷材料复杂的 显微结构和不均匀性有关。从该图中还可看 出,陶瓷材料的抗压强度值比其抗拉强度值 大得多。这是由于材料中的缺陷对拉应力十 分敏感所致。在工程应用中,选用陶瓷材料 时要充分注意这一特点。
15
§10.2.2 陶瓷材料的塑性变形
27
由表10-4可见,陶瓷材料的抗压强度远大于其抗拉强 度,两者相差10倍左右,因而陶瓷材料特别适于制造受压 缩载荷作用的零件。压缩试样尺寸为直径9.0±0.05mm,长 度18±0.10mm,两端面研磨成平面并互相平行。
表10-4 某些材料的抗拉强度和抗压强度
材料
抗拉强度/MPa 抗压强度/MPa 抗拉强度/抗压强度
这是由其共价键和离子键的键合结构所决 定的。
共价键具有方向性,使晶体具有较高的抗 晶格畸变、阻碍位错运动的阻力。离子键晶 体结构的键方向性虽不明显,但滑移系受原 子密排面与原子密排方向的限制,还受静电 作用力的限制,其实际可动滑移系较少。此 外,陶瓷材料都是多元化合物,晶体结构较 复杂,点阵常数较金属晶体大,因而陶瓷材 料中位错运动很困难。 (见表10-2)
第五章 陶瓷材料的力学性能11
陶瓷材料的力学性能
引言
陶瓷广泛应用于我们的日常生活中,如建筑材料、饮 食餐具等以及国家战略战备设施,如武器装备、航天领 域上。 传统的陶瓷制品以天然粘土为原料,通过混料、成型、 烧结而成,性能特点是强度低,脆性高。 目前研究的陶瓷分为结构陶瓷和功能陶瓷。
结构陶瓷
主要利用的是材料的耐高温、强度、硬度、韧性、耐磨
(2)相变增韧
必要条件 有亚稳的四方氧化锆颗粒存在
t相的晶粒尺寸是影响 t-m相变的一个重要因素,Ms点随 晶粒尺寸的减少而降低。氧化锆的室温组织存在一个临 界粒径dc,ddc的晶粒室温下已经转变成m相;ddc的晶 粒冷却到室温仍保留为 t 相。所以只有 ddc 的晶粒才有 可能(但不一定)产生相变韧化作用。 当裂纹尖端应力场最高值一定的情况下,应力诱发 t-m 相变存在一个临界晶粒直径d1。只有d1ddc的晶粒才会 应 力 诱 发 相 变 ( stress induced phase transformation),即这部分晶粒才对相变韧化有贡献。
• 表5.2(P111)给出了试验规程及计算公式。 • 表5.4(P111)是劳氏硬度和维氏硬度的对比情况。
三、克劳维尔硬度
四、硬度与其它性能之间的关系
• 图5.5
五、陶瓷材料的表面接触特性
• 1、与金属材料相同,陶瓷材料表面也存在 局部微凸起,其外侧常有水蒸气或碳-氢化 合物形成的表面层,陶瓷材料表面加工还 可以产生显裂纹或其他缺陷。
• 图5.20。
(2)共价键型陶瓷材料
• 图5.21。
3、加载速率对陶瓷强度的影响
• 图5.22。
第五节 陶瓷材料的断裂韧性
一、陶瓷材料的断裂韧性
一、陶瓷材料的断裂韧性
二、陶瓷材料的断裂韧性的测定
工程力学第8节 聚合物、陶瓷材料的力学性能
表11-3 聚合物及其他材料的抗拉强度
名称
低压聚乙烯 (PE) 尼龙-610
• 聚合物的主要机械、力学性能
1)聚合物为密度最小的工程材料,其密度一般为 1000~2000kg/m3,仅为钢铁材料的1/8~1/4,不到 工程陶瓷密度的一半。重量轻、强重比大是聚合 物的突出优点。
2)聚合物的弹性变形量可达到100%~1000%,而一 般金属材料只有0.1%~1.0%。
3)聚合物刚度差, 弹性模量约为0.4~4.0GPa,而一般 金属材料为50~300GPa。
• 陶瓷材料的断裂特 征:绝大多数陶瓷 材料在常温下拉伸 或弯曲,均不产生 塑性变形,呈现脆 性断裂的特征,如 图所示。
• 陶瓷材料弹性变形特点
1)与金属材料相比弹性模量大(见表 11-4),陶瓷 材料的弹性模量不仅与结合键有关,还与其组成 相的种类、分布比例及气孔率有关。因此陶瓷的 成型与烧结工艺对弹性模量影响重大。
• 新型工程陶瓷:采用高纯、超细的人工合成材料, 精确控制其化学组成,经过特殊工艺加工而得到的 结构精细、力学性能和热学性质优良的陶瓷材料。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝和 氧化锆增韧陶瓷。
• 工程陶瓷材料的力学性能特点:耐高温、硬度高、 弹性模量大、耐磨损、抗腐蚀、抗蠕变能力强。
例如:在发动机上使用高性能工程陶瓷材料,除 耐磨、耐腐蚀外,还由于材料耐高温,无需冷却系 统,可使热效率提高20%,发动机重量减轻20%, 耗油量降低30%以上。
73
240
190 110
陶瓷材料的力学性能分析
陶瓷材料的力学性能分析引言:陶瓷材料是一种被广泛应用于工业和日常生活中的材料。
与金属材料相比,陶瓷材料具有优异的抗腐蚀性、绝缘性能和高温稳定性。
然而,由于其脆性和低韧性,陶瓷材料在受力时容易发生破裂。
因此,对陶瓷材料的力学性能进行分析非常重要,既有助于优化其设计和优化,又能提高其可靠性和耐用性。
1. 弹性模量的分析:弹性模量是衡量材料在受力时的刚度的物理量。
对于陶瓷材料来说,其分子结构通常较密,键合力较强。
因此,陶瓷材料通常具有高弹性模量。
例如,氧化铝在室温下的弹性模量约为380 GPa,而钢的弹性模量则约为200 GPa左右。
这说明,相同荷载下陶瓷材料通常会产生更小的变形,表现出更好的刚度。
2. 抗弯强度的分析:抗弯强度是衡量材料抵抗弯曲破坏的能力。
由于陶瓷材料的脆性特性,其抗弯强度相较于金属材料较低。
陶瓷材料在弯曲时容易出现裂纹扩展,导致材料的破坏。
因此,设计陶瓷结构或组件时需要注意避免过大的应力集中和裂纹扩展。
3. 硬度的分析:硬度是衡量材料抵抗局部变形或划痕的能力。
陶瓷材料通常具有较高的硬度,这是由于其结构中离子键的特性决定的。
离子键通常具有较高的键能量,使得陶瓷材料表现出较高的硬度。
通常采用维氏硬度测试来评估陶瓷材料的硬度。
4. 破裂韧性的分析:破裂韧性是衡量材料在受到应力时不发生破坏的能力。
陶瓷材料由于其脆性特性,破裂韧性较低。
破裂韧性的分析包括测量陶瓷材料的断裂韧性,研究材料的断裂过程等。
改善陶瓷材料的破裂韧性是提高其可靠性和耐久性的关键。
5. 应力分析与模拟:应力分析与模拟是通过对陶瓷材料施加特定荷载,进行力学性能分析的一种方法。
通过模拟不同应力条件下的材料行为,可以精确地预测材料的破坏点以及应力分布等。
这有助于设计出更优越的陶瓷材料结构。
结论:陶瓷材料的力学性能分析对于材料的设计和应用具有重要意义。
通过分析弹性模量、抗弯强度、硬度和破裂韧性等参数,我们可以更好地理解陶瓷材料在受力时的行为,并采取相应的措施来改善其性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外
切
锌
力
应
单
在
力
晶
晶
作
的
面
用
拉
上
下
伸
的
的
照
分
变
片
解
形
? 滑移的机理:
? 把滑移看作是晶体的一部分相对于另一 部分的刚性滑移是不对的,大量研究表 明:滑移是通过滑移面上位错的运动来 实现的。(P188)
刃形位错在切应力作用下在滑 移面上的运动
晶体通过位错运动产生滑 移时,并不需要整个晶体 的上半部分原子相对于下 半部分原子一起位移 ,而 只有少数原子产生滑移, 因而所需临界切应力小,
拉伸试验可获得的力 学性能指标:
? 1、弹性模量: ? 2、规定非比例伸
长应力:
? 是金属材料有明显 塑性变形时的强度
? 3、抗拉强度: ? 4、断后伸长率: ? 5、截面收缩率:
三、塑性变形材料学基础
(一)、金属单晶体的塑性变形 单晶体的塑性变形的基本方式有两种: 滑移 孪生。 金属常以滑移方式发生塑性变形。
数数值和符号相同时, 则该晶面与该晶向互
相垂直, 如(111)[111]
。
以图中的晶面ABB'A'?为例, 晶面指数的标定过程如 下:
①设定一空间坐标系(原点在欲定晶面外, 并使晶面在
三条坐标轴上有截距或无穷大。)
②以晶格常数a为长度单位, 写出欲定晶面在三条坐标 轴上的截距:1∞∞
③截距取倒数:100 ④截距的倒数化为最小整数:100 ⑤将三整数写在园括号内:(100) 晶面ABB' A' 的晶面指数即为(100)。 同样可得晶面ACC'A'和ACD'的晶面指数分别为
复习:立方晶系的晶向表示方法
以图中的晶向OA为例, 说明晶向指数的标定 过程。
? ①设定一空间坐标系, 原点在欲定晶向的一 结点上。
? ②写出该晶向上另一结点的空间坐标 值:100
? ③将坐标值按比例化为最小整数:100
? ④将化好的整数记在方括号内:[100]
向OA的晶向指数为[100]
。
得到晶
第二章
材料力学性能
第一节 金属和陶瓷的力学性能
一、金属中的应力与应变:
? 1 、轴向拉伸时的应 力与应变:
? (表达方式及单位)
? 2 、应力与应变之间 的关系(在弹性范围 内)
? 3 、剪切变形时的应 力与应变:
? (表达方式及单位)
? 4 、应力与应变之间 的关系(在弹性范围 内)
? 二、拉伸试验和应 力-应变图:
? 同样方法可得晶向OB、OC的晶向指数分别
为[110]
、[111]
。
? 晶向指数的一般标记为[ uvw]。
? [ uvw]实际表示一组原子排列相同的平行晶 向。
? 晶向指数也可能出现负数。(若两组晶向的
全部指数数值相同而符号相反, 如[110]
与
[ ], 则它们相互平行或为同一原子列, 但
方向相反。)
? 若只研究该原子列的原子排列情况, 则晶向
[110]
与[ ] 可用一指数[110]
表示。
? 原子排列情况相同而在空间位向不同(即不 平行)的晶向统称为晶向族, 用尖括号表示, 即<uvw>。如:
?
<100> = [100] + [010] + [001]
? 在立方晶系中, 一个晶面指数与一个晶向指
(110)、(111)。
? 晶面指数的一般标记为(hkl)。(hkl)实际表 示一组原子排列相同的平行晶面。
? 晶面的截距可以为负数, 在指数上加负号。 如( )面。
? 若某个晶面(hkl)的指数都乘以-1, 则得到 ( )晶面, 则晶面(hkl)与( ), 属于一组 平行晶面,
? 如晶面ACD'(111)与晶面A'C'B( ), 这两 个晶面一般用一个晶面指数(111)来表示。
? 因而金属的塑性,面心立方晶格好于体心立方 晶格, 体心立方晶格好于密排六方晶格。
面 心 立
密
排 六 方
方
? ⑶滑移时,晶体两部分 的相对位移量是原子间 距的整数倍.
? 滑移的结果在晶体表面 形成台阶,称滑移线,
若干条滑移线组成一个 滑移带。
? (在光学显微镜下无法分辨 出滑移带内滑移台阶,因此, 滑移带也常常称为滑移线)
滑移变形的特点 :
⑴ 滑移只能在切应力 的作用下发生。 产生 滑移的最小切应力称
临界切应力 .
晶面间距示意图
? 沿其发生滑移的晶面和 晶向分别叫做 滑移面和 滑移方向 。通常是晶体 中的密排面和密排方向。
? ⑵ 滑移常沿晶体中 原子密度最大的晶面 和晶向发生。因为原 子密度最大的晶面和 晶向之间原子间距最 大,结合力最弱,产 生滑移所需切应力最 小。
1、 滑移
? 任何晶面上都可分解为 正应力和切应力。正应 力只能引起晶格的弹性 变形及将晶粒拉断。只 有在切应力的作用下金 属晶体的晶格在发生弹 性扭曲后进一步造成滑 移而产生塑性变形。
外
切
锌
力
应
单
在
力
晶
晶
作
的
面
用
拉
上
下
伸
的
的
照
分
变
片
解
形
?
? 滑移是晶体在切应力的作用 下, 晶体的一部分相对于另一 部分沿一定的 晶面( 滑移面) 和晶向 发生滑动 位移的现象 。
排列方式和排列密度不一样。 在体心立方晶格中,原子密度最大的晶面为
{110}, 称为密排面; 原子密度最大的晶向为<111>, 称为密排
方向。 在面心立方晶格中, 密排面为{111}, 密排
方向为<110> 。
一个滑移面和其上的一个滑移方向构成一个 滑移 系。(以下以体心立方晶格为例 )
? 滑移系越多,金属发生滑移的可能性越大,塑 性也越好,其中 滑移方向对塑性的贡献比滑移 面更大。
晶面族
? 在立方晶系中, 由于原子的排列具有高度的 对称性, 往往存在有许多原子排列完全相同 但在空间位向不同(即不平行)的晶面, 这些 晶面的总称为晶面族, 用大括号表示, 即 {hkl}。
? 在立方晶胞中(111)、( )、( )、( ) 同 属{111}晶面族。
复习:
晶面原子密度: 是指其单位面积中的原子数 。 晶向原子密度:是指其单位长度上的原子数 。 不同晶体结构中不同晶面、不同晶向上原子
? 从滑移带的结构可知, 金属即使进行了大量的 塑性变形,这些变形也 只是集中在一小部分的 滑移面,许多潜在的滑 移面上并没有进行滑移, 大多数原子对于其邻居 来讲并移动。
⑷ 滑移的同时伴随着晶体的转动
? 如图所示:当外力作 用于单晶体试样时, 它在某些相邻层晶面 上所分解的切应力使 晶体发生滑移,而 正 应力则组成一 力偶,