太阳能集热器热性能分析
太阳能取暖器的光热转换效率和性能测试

太阳能取暖器的光热转换效率和性能测试随着可再生能源的兴起和环境保护的重要性日益凸显,太阳能取暖器作为一种高效利用太阳能的设备,受到了广泛的关注和应用。
太阳能取暖器的光热转换效率和性能测试,是评估其工作性能和能源利用效果的重要指标。
本文将探讨太阳能取暖器的光热转换效率和性能测试的方法和重要性。
光热转换效率是太阳能取暖器评估性能的关键指标之一。
它反映了太阳能被转化为热能的效率,即太阳能辐射能量转化为可用热能的比例。
测试光热转换效率时,最常用的方法是通过热性能测试。
热性能测试包括太阳能集热器的吸收率测试和热损失测试。
吸收率是指太阳能集热器对太阳辐射能量的吸收能力。
它是评估太阳能集热器的重要指标之一,直接影响到光热转换效率。
吸收率测试需要将太阳能集热器暴露在太阳辐射下,测量集热器表面的吸收热量。
通过测量集热器的温度变化和太阳辐射强度,可以得到吸收率。
通常,高吸收率的太阳能集热器能够更好地将太阳辐射能量转化为热能。
热损失是指太阳能集热器在传输和储存过程中的热量损失。
热损失测试旨在评估太阳能集热器在工作过程中是否存在能量损失,并量化损失的程度。
常见的测试方法包括热量平衡法和热量流量法。
热量平衡法通过测量集热器输入和输出的热量,以及集热器的温度变化,计算热损失。
热量流量法则是通过测量空气或水的流量和温度变化来计算热损失。
减小热损失可以提高太阳能取暖器的光热转换效率。
除了光热转换效率外,太阳能取暖器的性能测试还涉及到热损失和传输效率等指标。
热损失是太阳能取暖器在输送和储存过程中的能量损失,包括传导、对流和辐射等形式。
传导是指能量通过太阳能集热器材料的传导损失,可以通过热导率测试来评估。
对流是指热量通过流体(如空气或水)的对流传输过程中的能量损失,可以通过流体流动速度和温度变化来计算。
辐射是指太阳能集热器表面向外辐射热量的能量损失,可以通过表面辐射率测试来评估。
降低热损失可以提高太阳能取暖器的传输效率和光热转换效率。
某型太阳能集热器的光热性能测试与分析

某型太阳能集热器的光热性能测试与分析随着能源危机的日益严重,太阳能作为一种可再生能源备受关注。
太阳能集热器作为太阳能利用的主要方式之一,其光热性能测试与分析对于提高太阳能利用效率具有重要意义。
本文将针对某型太阳能集热器的光热性能进行测试与分析。
一、测试方法光热性能测试是评估太阳能集热器性能的重要手段,本文采用热效率测试法进行测试。
具体测试步骤如下:1. 温度校准:在测试前,需要确保温度计的准确性。
使用热敏电阻温度计对温度计进行校准,保证测试结果准确可靠。
2. 放置集热器:将待测试的太阳能集热器按照设计要求正确放置在测试场地上,确保集热器能够充分接受太阳辐射。
3. 测试数据记录:利用数据采集系统实时记录集热器的进、出口水温、环境温度、太阳辐射数据等相关参数。
4. 测试过程:根据测试设备的工作原理,启动测试设备,通过水泵将冷水送入集热器,观察进、出口水温的变化,并记录时间及相关数据。
5. 数据处理:根据测试记录的数据,计算光热转换效率,并进行分析。
二、测试结果分析根据以上测试方法,对某型太阳能集热器进行测试并得到如下结果:1. 光热转换率:根据测试数据,计算得到集热器的光热转换率约为70%,表示70%的太阳辐射能够被转换为热能。
2. 灰尘影响:通过测试发现,集热器在使用一段时间后,其光热转换效率会受到周围环境灰尘的影响。
集热器表面的积尘会减弱太阳辐射的吸收和热能传输能力,降低集热器的光热性能。
3. 温度损失:集热器的进、出口水温差越大,表示集热器能够捕获更多的太阳热能。
但是在实际使用中,由于集热器的内外温度差异,以及管道的导热损失,会导致部分热能无法完全传递给工作介质,造成能量损失。
4. 流体流动速度:测试中发现,流体的流动速度对集热器的光热性能有着明显影响。
适当增加流体流动速度可以提高集热器的热能采集效果,但过高的流速也会增加能源消耗。
综合以上测试结果与分析,对某型太阳能集热器的光热性能提出以下改进建议:1. 定期清洗:由于集热器表面的灰尘会影响热能的吸收和传输效果,建议定期对集热器进行清洗,保持其表面清洁。
太阳能供热系统热能性能分析与研究

太阳能供热系统热能性能分析与研究太阳能作为一种清洁、可再生的能源,越来越得到人们的关注。
随着科技的不断进步和技术的不断成熟,太阳能供热系统的应用也越来越广泛。
本文将对太阳能供热系统的热能性能进行分析和研究。
一、太阳能供热系统的基本原理太阳能供热系统是利用太阳能热能将水加热或加温,提供热水或蒸汽供室内供暖或者热水使用。
太阳能供热系统主要由太阳能集热器、储水箱、管路、泵组、控制系统等组成。
太阳能集热器是整个系统的核心部件,它的作用是将太阳辐射的能量吸收转化为热能。
二、太阳能供热系统的热能性能太阳能供热系统的热能性能是指系统能够利用多少太阳能将水加热或加温,提供热水或蒸汽供室内供暖或者热水使用。
太阳能供热系统的热能性能不仅受到太阳辐射的影响,还受到系统自身的设计和运作方式的影响。
1. 太阳辐射的影响太阳辐射是影响太阳能供热系统热能性能的关键因素之一。
太阳辐射强度的大小会直接影响系统的供热能力。
在太阳能辐射强度充足的情况下,太阳能供热系统的热能性能会达到最高点。
2. 设计和运作方式的影响太阳能供热系统的设计和运作方式也会直接影响系统的热能性能。
首先,集热器的面积和类型是影响系统热能性能的重要因素。
其次,储水箱的大小和位置也会影响系统的热能性能。
最后,管路和泵组的选择也会直接影响系统的热能性能。
三、太阳能供热系统的优势和不足太阳能供热系统的优势在于使用太阳能作为清洁、可再生的能源,不会造成环境污染。
与传统的供热方式相比,太阳能供热系统节能、环保、经济、可靠等方面都具有优势。
太阳能供热系统的不足在于太阳辐射强度和光照时间的不稳定性,季节变化和气候条件的影响也会直接影响系统的供热能力。
此外,太阳能集热器的成本较高,安装和维护也需要专业技术。
四、太阳能供热系统未来发展趋势太阳能供热系统在未来的发展趋势中,将会继续采用新的智能控制技术,提高系统的自动化程度和稳定性。
同时,太阳能供热系统也将继续优化设计,改进集热器和储水箱的结构,提高系统的热能性能。
太阳能集热器的设计与性能分析研究

太阳能集热器的设计与性能分析研究太阳能集热器是一种利用太阳能进行水加热和空气加热的设备。
在现代社会中,太阳能集热器得到了广泛的应用,它可以较大程度地减少传统能源的消耗,同时也是一种环保、节能的能源。
本文将对太阳能集热器的设计与性能分析进行研究。
一、太阳能集热器的分类太阳能集热器可以根据工作原理和集热器介质的不同来进行分类。
按照工作原理的分类,太阳能集热器可以分为被动式和主动式两种。
被动式太阳能集热器主要是依靠材料的选择和设计来进行集热,比如说光热板墙和普通瓦楞纸板。
而主动式太阳能集热器则需配合与之相适应的控制系统来实现更好的效果。
此类太阳能集热器在日常使用中比较常见,常见的有平板式太阳能集热器、真空管式太阳能集热器等。
二、太阳能集热器的设计要点1、选择优质的材料在太阳能集热器的设计中,选择材料是非常重要的一个环节。
因为只有选用合适的材料,才能保证集热器的效率和使用寿命。
目前,常用的材料有铝合金、铜、不锈钢,保温材料则有聚苯乙烯泡沫、玻璃棉等。
在材料的选择过程中,需要考虑材料的热传导性、耐腐蚀性等因素。
2、确定适宜的集热器尺寸在太阳能集热器的设计中,尺寸也是非常重要的一个因素。
通过合理的尺寸设计,可以在保证集热效率的同时,也能够保证集热器的实用性。
当然,不同类型的太阳能集热器其尺寸的大小也会不一样。
但总体来说,应根据所需集热的面积大小,以及可行的制造和安装工艺来确定集热器的规格和尺寸。
3、合理设置管路集热器的管路设置也是设计过程中需要考虑的因素之一。
管路布置要合理、通畅、散热小。
另外,在安装的过程中也需要注意管路与集热器的接口是否严密,避免渗漏。
三、太阳能集热器性能分析1、集热器转换率的测量在太阳能集热器的使用中,集热器转换率是一个重要的评价指标。
它可以反映集热器在转化太阳辐射为热能的过程中的效率。
一般我们将集热器转换率定义为:η = (Q1-Q0) / A*I其中,Q1是集热器出口水温,Q0是集热器入口水温,A是集热面积,I是太阳辐射强度。
太阳能集热器热性能分析报告

太阳能集热器热性能分析摘要:本文介绍了太阳能集热器的种类以与各自的特点。
同时,阐述了太阳能集热器热性能的理论,包括影响太阳能集热器热性能的因素、太阳能集热器热性能的测试方法等。
关键字:太阳能集热器、热性能测试、影响因素0引言随着能源的大量消耗和环境的急剧破坏,新能源技术已经成为21世纪世界经济开展中具有决定性影响的五个技术领域之一。
太阳能因为具有取之不尽、用之不竭、无环境污染等诸多优点而受到各国重视。
2011年,我国太阳能集热器生产量占世界产量的80%,占世界保有量的60%左右,说明我国已经成为太阳能利用大国。
太阳能集热器是将其接收的太阳辐射能向传热工质传递热能的装置,因此,太阳能集热器是太阳能利用的关键装置。
所以,太阳能集热器的研究、开发与应用对太阳能资源的高效应用至关重要。
1太阳能集热器的种类随着太阳能利用的大力开展,太阳能集热器的种类也越发多样化。
根据进入采光口的太阳辐射方向是否改变,分为聚光型集热器、非聚光型集热器;根据集热器的传热工质类型的不同,分为液体型集热器、空气型集热器;根据集热器是否跟踪太阳,分为跟踪集热器、非跟踪集热器;根据集热器是否有真空空间,分为平板型集热器、真空管型集热器;根据集热器的工作温度围的不同,分为高温集热器〔300℃~800℃〕、中温集热器〔80℃~250℃〕、低温集热器〔40℃~80℃〕。
其中,太阳能热利用产品最常见的有两种--平板型太阳能集热器与真空管型太阳能集热器。
1.1 平板型太阳能集热器与其特点平板型太阳能集热器[1]的典型结构如图1所示,主要包括透明盖板、吸热板芯、流体流道、隔热层和箱体等局部.图1 平板型太阳能集热器典型结构透过透明盖板照射到吸热板外表,吸热板吸收大局部太阳辐射能,将其转化为热能,并将热能传递给流道的传热介质,传热介质携带热能进入储热设备。
这样,传热工质被加热后,温度逐渐升高,作为集热器的有用热能输出。
同时,由于吸热体的温度升高,通过透明盖板和外壳向周围环境散失热量,造成了平板型太阳集热器的各种热损失。
典型地区太阳能供暖系统集热量与集热效率分析

典型地区太阳能供暖系统集热量与集热效率分析摘要:本文通过搜集拉萨、银川、北京以及武汉四个地区的气象资料,计算并分析了有效集热量与有效供热量、逐日集热效率。
结果表明:在供暖期内,武汉、北京、银川和拉萨地区的有效集热量和有效供热量依次升高;在同一地区,真空管的有效集热量、有效供热量、平均集热效率和太阳能综合供热效率都较平板高;拉萨地区的集热效率最好,其次是银川,最差的是武汉,集热效率受气候条件的影响。
关键词:太阳能供暖;集热效率;辐照量;集热量引言我国人口众多,每年需要消耗大量能源,太阳能作为一种清洁可再生能源,应用到供热采暖等方面有很大的社会意义[1-3]。
然而太阳能供暖系统相对于常规能源系统,受室外环境气温、太阳辐射、系统工作温度等影响很大,故在太阳能供暖系统集热器设计时,需要针对设计运行参数进行计算,否则可能会造成系统运行不能达到预期效果,导致经济和环保效益的偏差。
对太阳能供暖系统集热量、集热效率、保证率等集热性能进行分析研究,有利于系统的性价比达到最优。
国内外很多学者对此都有过研究,司鹏飞等[4]分析了有效集热量与有效太阳辐照度指标,并与传统日平均集热量进行了对比分析;郑翰杰等[5]通过实验得出真空热管式集热器储水温度对集热效率有很大响;周志华等[6]等利用TRNSYS模拟软件对真空管式和平板式集热器在不同太阳能辐射区间进行典型日集热效率模拟,进而进行全年辐射和温度条件下进行模拟;文献[7]提出了有效太阳集热的概念,并排除了不能转化为有效能量的无效太阳辐射。
据此建立了优化数学模型,并用于确定拉萨供暖季安装的太阳能集热器的最佳倾斜角和方位。
王丙林等[8]对哈尔滨、长春和沈阳地区采用综合能源价格法对太阳能供暖系统的经济性和环保性进行了评价。
太阳能虽具有可再生、环保等优点,但是太阳能是一种不稳定的热源,会受到阴天和雨、雪天气的影响,这主要体现在太阳辐照强度、气温和集热温度等条件对太阳能供暖系统的影响。
陶瓷板太阳能集热器集热性能分析

陶瓷板太阳能集热器集热性能分析随着“十二五”规划纲要的正式提出,太阳光热利用作为近十年来世界上发展最迅猛的可再生能源技术,被明确列为“十二五”科技发展重点。
黑瓷复合陶瓷太阳板(以下简称陶瓷太阳板),作为一种全新材质的太阳能末端集热器,因其独特的制作工艺、低廉的制造成本,在户式家用太阳能热水器中已经得到成功应用。
同时,该类集热器尚无在中、大型集中型系统中使用的先例,因此,对采用陶瓷太阳板作为集热末端的大型集中太阳能集热系统的运转情况、集热效率进行跟踪测试、分析,可以针对性的总结此类系统的使用成果,促进太阳能光热利用技术的进一步完善。
文章将依托采用陶瓷太阳板集中热水系统的某实验基地,就系统实际运行过程中所采集到的数据为依托计算其实际制热能力。
标签:陶瓷板;太阳能;集热器1 集热系统相关简介陶瓷太阳板集中热水系统由集热器主体、控制柜、集热水箱、板式换热器、循环泵等若干部分组成。
控制系统采用触屏控制,可进行手动控制、自动控制切换,同时所有控制参数均可实时调整。
控制系统共设置有两套自控方式:①直流运行控制:控制系统判定屋顶集热器板内温度与集热水箱内温度差是否满足设定条件(通常为7-10℃),满足则开启电磁阀,冷水直接进入集热器板内将热水顶入集热水箱,至温差低于设定温差,关闭电磁阀,系统进入闷晒状态。
②换热运行控制:控制系统下辖两台循环泵,集热器组与集热水箱由一台板式换热器连接,集热器内高温流体经板式换热器换热加热集热水箱内温度较低热水。
循环泵启停采用温差控制,即当集热器组内温度与集热水箱内温度差满足设定条件时,两台循环泵同时开启进行换热。
2 数据采集记录简述4 系统性能分析4.1 直流、换热工况系统性能对比表2和表4数据表明:换热工况下,由于二次换热设备的存在,导致约160×6=960L(单块陶瓷太阳板存水量为6L)的热媒水,始终存留在屋面集热器组件内。
而这部分热水受温差循环控制条件制约,温度一定会高于储热水箱中的水温,这就意味着换热工况下,集热系统将始终有近960L的热水无法得到利用,并随着夜间温度的降低,重新被冷却。
太阳能光热发电系统的性能分析与优化

太阳能光热发电系统的性能分析与优化一、引言随着全球对清洁能源需求的不断增长,太阳能光热发电系统作为一种颇具潜力的可再生能源技术,受到了广泛关注。
在光热发电系统中,太阳能集光器通过将太阳光线聚焦在吸热元件上,提高吸热元件温度,再通过蒸汽轮机等设备转化为电能。
本文将对太阳能光热发电系统的性能进行分析与优化,旨在提高其能源转化效率和经济效益。
二、太阳能集光器的性能分析与优化太阳能集光器是太阳能光热发电系统的核心组件,其性能直接影响到整个系统的能量收集和转化效率。
在对太阳能集光器的性能进行分析与优化时,需要考虑以下几个方面:1. 集光效率分析与提高太阳能集光器的集光效率是指将太阳光聚焦在吸热元件上的能量比例。
为了提高集光效率,可以通过优化集光器的设计和材料选择来减少光线的反射和散射损失,提高光能的利用率。
2. 稳定性与寿命优化太阳能集光器需要能够在长时间的运行中保持较高的性能稳定性,并具有较长的使用寿命。
因此,可以采用耐高温、耐变形和耐腐蚀的材料来提高集光器的稳定性和寿命。
3. 跟踪系统优化太阳能集光器的跟踪系统可以根据太阳的位置实时调整集光器的角度和方向,以最大限度地利用太阳能。
优化跟踪系统的灵活性和精度,可以提高系统对太阳光的跟踪效果,提高能量转化效率。
三、吸热元件的性能分析与优化吸热元件是太阳能光热发电系统中将太阳能转化为热能的关键组件,其性能直接影响到热能的收集和转化效率。
在对吸热元件的性能进行分析与优化时,需要考虑以下几个方面:1. 热学性能分析与改善吸热元件需要具有较高的吸热率和热传导率,以提高热能的收集效率。
可以通过优化吸热元件的材料和结构设计,提高其热学性能。
2. 稳定性与耐久性优化吸热元件需要能够在长时间的高温条件下保持稳定性,并具有较长的使用寿命。
可以采用抗高温和耐热辐射的材料来提高吸热元件的稳定性和耐久性。
3. 温度控制与热能提取优化吸热元件的温度对热能的转化效率有着重要影响。
优化温度控制系统,提高热能的提取效率,可以进一步提高系统的能量转化效率和经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能集热器热性能分析摘要:本文介绍了太阳能集热器的种类以及各自的特点。
同时,阐述了太阳能集热器热性能的理论,包括影响太阳能集热器热性能的因素、太阳能集热器热性能的测试方法等。
关键字:太阳能集热器、热性能测试、影响因素0 引言随着能源的大量消耗和环境的急剧破坏,新能源技术已经成为21世纪世界经济发展中具有决定性影响的五个技术领域之一。
太阳能因为具有取之不尽、用之不竭、无环境污染等诸多优点而受到各国重视。
2011年,我国太阳能集热器生产量占世界产量的80%,占世界保有量的60%左右,说明我国已经成为太阳能利用大国。
太阳能集热器是将其接收的太阳辐射能向传热工质传递热能的装置,因此,太阳能集热器是太阳能利用的关键装置。
所以,太阳能集热器的研究、开发与应用对太阳能资源的高效应用至关重要。
1 太阳能集热器的种类随着太阳能利用的大力发展,太阳能集热器的种类也越发多样化。
根据进入采光口的太阳辐射方向是否改变,分为聚光型集热器、非聚光型集热器;根据集热器的传热工质类型的不同,分为液体型集热器、空气型集热器;根据集热器是否跟踪太阳,分为跟踪集热器、非跟踪集热器;根据集热器是否有真空空间,分为平板型集热器、真空管型集热器;根据集热器的工作温度围的不同,分为高温集热器(300℃~800℃)、中温集热器(80℃~250℃)、低温集热器(40℃~80℃)。
其中,太阳能热利用产品最常见的有两种--平板型太阳能集热器与真空管型太阳能集热器。
1.1 平板型太阳能集热器及其特点平板型太阳能集热器[1]的典型结构如图1所示,主要包括透明盖板、吸热板芯、流体流道、隔热层和箱体等部分.图1 平板型太阳能集热器典型结构透过透明盖板照射到吸热板表面,吸热板吸收大部分太阳辐射能,将其转化为热能,并将热能传递给流道的传热介质,传热介质携带热能进入储热设备。
这样,传热工质被加热后,温度逐渐升高,作为集热器的有用热能输出。
同时,由于吸热体的温度升高,通过透明盖板和外壳向周围环境散失热量,造成了平板型太阳集热器的各种热损失。
平板型太阳能集热器在我国的太阳能利用中已广泛应用,技术日趋完善,主要特点有可承压性好、大型集热系统性能稳定、建筑一体化程度高等。
同时还有不足,如热损失大、无保温功能、抗冻能力差等问题。
1.2 真空管型太阳能集热器基于平板型太阳能集热器,发展出了真空管型集热器。
根据吸热体材料的不同,可分为全玻璃真空管集热器和金属吸热体(玻璃—金属)真空管集热器两大类。
主要有全玻璃真空管式集热器、U型管式真空管集热器、热管式真空管集热器。
近年来,由于真空管式太阳能集热器的优异性能,越来越受到重视。
其主要特点有热损失小,保温效果好、使用寿命长、抗冲击抗冻能力强。
同时还有安装复杂,承压能力弱,维护麻烦等不足。
1.2.1 全玻璃真空管型太阳能集热器全玻璃真空管式太阳能集热管主要由外玻璃管、选择性吸收涂层、真空夹层、保护帽、消气剂等部件组成。
其工作原理简单,形状如同拉长的保温瓶。
典型结构如图2所示。
图2 全玻璃真空管型太阳能集热器典型结构当玻璃管吸收太辐射升温时,圆头就形成热胀冷缩的自由端,因此缓冲引起管开口端的热应力。
玻璃管装水,玻璃管的外表面涂上太阳选择性吸收涂层,用来吸收太阳辐射能。
将外玻璃管之间的夹层抽成高真空,减少热损失,起到保温的作用。
在外玻璃管尾端粘结一只金属保护帽,以保护抽真空后封闭的排气嘴。
弹簧支架上装有消气剂,用于吸收真空集热管运行时释放出来的气体,以保持管真空度的作用。
1.2.2 U型管式太阳能集热器U型管式太阳能集热器是基于全玻璃真空管式太阳能集热器改进而来的。
由集管、隔热材料、集热流体、U型管等部件组成。
其典型结构如图3所示。
图3 U型管式太阳能集热器典型结构U型管式真空太阳能集热管是在普通真空玻璃管插入一根U型铜管,U型铜管外包铝型翅片,铝型翅片与真空管壁接触,真空管吸收太阳辐射能,通过U型管中流动的工质传递热能。
因为真空管没有水,所以不会因一只管破损而影响整个系统的运行;真空管的热容大大减小,同样的天气条件下可以获得更多的热量,因而提高了产品性能和运行的可靠性。
1.2.3 热管式真空管太阳能集热器热管式真空管太阳能集热器同样是基于全玻璃真空管式太阳能集热器改进而来的。
热管式真空管太阳能集热器由热管、金属吸热板、玻璃管、金属封盖、弹簧支架、吸气剂等组成。
其典型结构如图4所示。
图4 热管式真空管太阳能集热器典型结构热管式真空管太阳能集热器是利用太阳辐射在表面镀有选择性吸收涂层的金属吸热板上,将吸收到的太阳辐射能转化为热能,并传递给热管,热管吸收热能后并加热管工质使其迅速汽化,被汽化的工质上升到热管冷凝端,在冷凝端放热迅速凝结为液体,在重力的作用下液体流回蒸发端。
太阳能转化的过程就是热管工质汽-液相变循环过程。
2 太阳能集热器热性能分析2.1 影响集热性能的因素集热性能是评价与选择太阳能集热器的关键性参数,所以,对集热器的研究基本上都围绕集热器热性能展开的。
Samareh B[2]等研究了影响集热器热损失的主要因素,包括:风向、风速(自然对流、强制对流、混合对流)对热损失的影响,集热器自身维护结构以及安装位置对热损失的影响。
卢郁等[3]对平板太阳能集热器热性能进行理论推导,引入效率因子,进行模拟,得出吸热体板芯结构、板芯用材对平板太阳能集热器热性能的影响。
在不降低集热器效率因子的情况下,是翅片单位面积降低45.8%;在材料消耗相同情况下,集热器效率因子提高了0.03。
静敏等[4]对影响集热器性能的因素—进入集热器的空气流量、辐射强度、环境温度、集热器的蓄热体和集热棚的高度等参数,进行了研究,并分析了各因素对太阳能热风发电系统空气集热器性能的影响。
小粉等[5]对热管真空管太阳能集热器的传热机理进行了分析,给出了其总热损失系数、效率因子、热迁移因子和顺势效率的表达式,并通过实例将顺势效率的理论值与实验值进行了比较,两者相对误差小于6.74%。
王勇等[6]对平板太阳能集热器改进透明盖板、设置透明隔热层、改进吸收涂层、优化吸热板、采用纳米流体等因素,使集热器热性能得到提升。
2.2 太阳能集热器热性能测试2001年颁布实施的欧洲标准给出两种太阳能集热器热性能测试方法:一种是稳态测试方法,另一种是动态测试方法。
稳态测试方法模型相对简单,该测试是在集热器达到稳定的工况条件下进行的,且测试过程中对天气等条件的限制非常严格,需要相当长的测试时间以及比较高的测试成本,使其应用的广泛性受到很大的限制。
相反,动态测试法是在集热器实际运行工况条件下对集热器热性能进行测试,检测过程所要求的条件相对宽松,测试周期短,成本低。
所以,相关的科研机构和科研工作者基本都是致力于研究太阳能集热器热性能的动态测试法。
由于稳态测试方法在测试过程中忽略了某些影响因素,所以对其的测试要求相当严格。
所以,在放宽测试条件的动态测试方法中,必须考虑这些因素[7],包括:入射角修正系数K∞(θ)对η0的影响、风速的影响、长波辐射的影响等。
峙峰等[8]对同一个太阳能集热器热性能分别进行了动态和稳态测试,并对实验结果进行了分析和对比,结果表明在集热器基于入口温度的归一化温差低、中温差处,两种测试方法得到的效率曲线重合,得出太阳能集热器动态测试方法与稳态测试方法的结论基本相符。
在集热器基于入口温度的归一化温差的高温差出,两种测试方法得到的效率曲线有偏差。
这为进一步对太阳能集热器动态测试方法的研究打下了基础。
3 结语太阳能作为一种蕴含量巨大的新能源,近几十年来,得到了迅猛的发展,并且应用越来越广泛。
太阳能集热器作为太阳能光热系统中所研究的核心问题之一,虽说已取得丰硕的成果,但由于集热器复杂的传热机理、集热器材料以及生产工艺的不完善,所以,还需要对集热器做更深一步的研究分析,提高其传热效率。
从而对太阳能光热系统能够长期高效稳定安全的运行产生深远的意义。
参考文献[1] GB/T6424-2007.平板型太阳能集热.:中国标准,2007.[2] Samareh B, Yaghoubi M. Two Dimensional Numerical Simulation of the Turbulent Wind Flow around a Large Parabolic Solar Collector.In: Proceedings of APCWEVI, Korea, 2005,151. [3] 卢郁,于洪文等.平板太阳能集热器热性能数学建模以及模拟.大学学报(自然科学版).2013,27(3).[4] 静敏、华等.太阳能热风发电系统集热器性能的影响因素分析.可再生能源,2008, 26(3).[5] 小粉、立希、鹤飞.热超导管管全玻璃真空管集热器的热性能分析.机械设计与制造,2007,10(10).[6] 王勇,段广彬.平板太阳能集热器强化传热特性研究.材料导报A:综述篇.2014,28(10).[7] Fischer S,Perers B,Bergquist P.Collector test method under quasi-dynamic conditions according to the european standard EN 12975-2. Solar Energy, 2004,76(1).[8] 峙峰,瑞澄.太阳能集热器热性能动态测试方法研究.太阳能学报.2007,28(11).。