离子交换树脂的实际使用

离子交换树脂的实际使用
离子交换树脂的实际使用

1、离子交换树脂柱

离子交换树脂是放置在树脂柱中进行工作的,这有利于发挥它的功能,并便于再生。

国外糖厂树脂柱的有效容积(装载树脂量)一般为3~10m3,直径2.3~3.3m,高3.3~4m,树脂床的高度0.6~2m。树脂柱为立式圆筒形结构,两端密封,能承受一定的工作压力。它通常用钢板焊接制成,内壁整体衬上耐酸、碱的橡胶层,小型树脂柱可全用不锈钢制造。

树脂柱总高度约为树脂层的两倍,以备树脂工作时体积膨胀和防止反洗时树脂被冲走。如果树脂的粒度较大,对通过液体的阻力较小,树脂层可较高,并相应缩小柱体的直径。但如树脂粒度较细,对液体的阻力较大,则树脂层不宜高,以免影响液体的通过,降低它的生产能力。有些装载细颗粒树脂的柱,树脂层的高度只约0.8m,但它的工作周期时间亦较短。

树脂柱的底部装上细孔平板及筛网,树脂放置在筛网之上。一种设计采用三层筛网,分别为60、20、10目,也有采用70目筛,以适应颗粒较小的树脂。有些设计不用筛网,在底部装设有大量微缝小孔的分配器,汇集从树脂床流出的液体。在树脂柱的顶部,装有糖浆入料管及入料分配器,进入的糖浆经过它均匀分布,然后向下通过树脂层,在底部集中排出。在树脂层的上方还有另一套分配器,连接洗水管及再生溶液管,洗水与再生液分别从该处进入,从上向下通过树脂层,到底部排出。底部分配器还连接反

冲洗水管,当树脂反洗时,从底部进水,均匀地冲动树脂层,将树脂中夹杂的悬浮物冲走,经顶部分配器排出。另在柱顶部接有压缩空气管,在开始入料前,开入压缩空气将树脂颗粒略为压紧,使形成树脂床。树脂柱底部亦接有压缩空气管,必要时可通过压缩空气反冲树脂层,使其疏松,然后再开水管反洗树脂。柱底部还有树脂装卸管。树脂柱内全部附件及连接管路的材料均为不锈钢,成分通常为1Cr18Ni12Mo2Ti。树脂柱的一种设计如右图。早期的树脂柱亦有在底部用石英砂作为阻隔树脂的介质(不用筛网),先放置一层15cm厚的从4~6mm 到6~11mm大小的石英块,在它的上面再装一层15cm 厚的从2.5×1.5mm 到3.5×1.5mm大小的石英砂,上面再装树脂。

树脂柱最主要的规格参数是它装载的树脂量BV(Bed Volume,m3)。树脂柱的处理能力与它的树脂装载量成正比。各种物料的流量和速率以BV或BV/h为计算单位。糖液通过树脂层与树脂接触的时间为通过速度BV/h的倒数,如通过速度为

3BV/h,则接触时间为1/3小时;若树脂层高1.2m ,则糖液通过树脂层的流速为6cm/min(按树脂柱横截面计) 。

树脂柱的工作是周期性的,工作效率不够高。近年发展了多种连续工作的装备,只用一个系统,树脂在器内连续地缓慢地移动,流出器外与液体一起用低速泵输送,经过循环管流回器内,在这个循环中顺次进行各项操作;或者分为交换柱和再生柱,连续循环工作。具体的设计有多种,如Higgins系统Asahi系统和双

柱系统等。它们已较多地用在水处理和化工行业中,但在制糖工业中还用得较少。加拿大Macdonald等用小型模拟设备研究了连续离子交换系统在甜菜糖厂的应用,说明它的脱色效果更稳定,树脂的效能可更充分地利用。

2、离子交换树脂柱的工作过程

树脂柱在连续通入糖液时,树脂逐渐吸附了色素和杂质,其性能就逐渐下降,流出糖液的色值逐渐升高。例如,两种原来色值不同(725IU和2900IU)的糖液在分别通过两种不同树脂柱:苯乙烯系树脂和丙烯酸系树脂,通过不同BV数的糖液后的脱色率变化如下表。

通过糖液BV数苯乙烯系树脂丙烯酸系树脂

原色值725 原色值2900 原色值725 原色值2900

0 90 90 90 90

10 84 60 84 75

20 81 53 82 69

30 79 46 81 67

40 77 - 81 -

它说明了,在糖液原色值较高时,树脂性能下降得较快,能处理的糖液总量较少;浅色糖液的处理量则较大。这两类树脂初时的脱色率相同,但苯乙烯系树脂的性能下降较快,而丙烯酸系树脂下降较慢,即较耐污染。树脂柱使用一定时间后,脱色效能不足,

就要停下来再生。这个脱色工作时间一般为8~20小时;在处理低色值糖液时可延长到数十小时。停用后各种辅助工作和再生的时间需数小时。离子交换树脂的具体使用过程如下:

(1〕预备工作

将树脂与水混合一起倾入树脂柱中,借助水的浮力使树脂自然沉积,在柱内均匀堆积,密度一致。在准备使用前,先将水排净,然后通入压缩空气,压出余水,并将树脂压成“床”。再生后的树脂亦要用无离子水浸泡,使用前排水和通压缩空气。

(2)入料

树脂柱入料前,先开入约1BV的甜水浸润树脂层,随后开入脱糖时回收的稀糖液及浓糖液,各需时10~15分钟,控制流量速度约为2.5BV/h,使树脂中糖液浓度逐渐升高。这个过程称为上糖或甜化(sweetening)。然后再开入所处理的糖浆,并注意流出液的浓度和色值,当浓度达50~60oBx和色值符合要求时,即转入正常脱色运行。

(3)正常运行

控制一定的入料速度,使流出糖浆色值符合指标规定。

入料流量速度的数值,视所处理原料的质量及所要求的脱色效果而定。对于已经过澄清处理的原糖回溶糖浆,一般控制2~

3BV/h;而对于白糖回溶糖浆,因其本身色值已较低,可用较大流速(如5BV/h);若流量过高,则脱色效果可能达不到要求。在运行一段时间后,树脂吸附积聚的杂质较多,脱色能力降低,

流出糖液的色值逐渐升高,当达到限定数值时,即停用该柱而转用其他备用树脂柱。

(4)脱糖

在停止入料后,要将树脂床中的糖汁尽量排出,这称为脱糖(desweetening)开入前段回收的浓糖液将树脂层中的脱色糖浆压出,控制流速约2.5BV/h,处理约30分钟。随后开入稀糖液洗出浓糖液至贮箱备用。流速与时间同上。再以无离子水洗出稀糖液,供溶糖之用。约洗20分钟,当洗出液低于浓度0.5oBx 时可弃去。

(5)反洗

从树脂柱底部开入70~80℃的软水(汽凝水),以4~6BV/h的流速反方向冲洗树脂层,使在工作时被压紧的树脂层松散,并自行按颗粒大小重新铺排成床,增大颗粒之间的空隙,以便于下一步再生时,树脂能与再生液充分接触和进行反应。反洗还可将树脂层中混杂的悬浮物冲走。这项操作通常需要数十分钟,直至洗出液无明显混浊为止。为防止反洗时树脂被冲走而损失,反洗流速不可过大;洗出水通过简单的隔筛(如曲筛或网袋)收回流失的树脂。

树脂反洗后进行再生。如果所处理的糖液含溶解性杂质不多,只是由于运行一段时间后,树脂层被压实,或被悬浮物阻塞而影响糖液通过,树脂仍有较好的交换能力,则在反洗清除悬殊浮物并用无离子水浸渍一段时间后,仍可再入料工作,待下一次反洗后

才进行再生,以减少再生剂用量。

3、离子交换树脂的再生

(1)常规的再生处理

离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。

树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。

树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。

再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如:钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍(用NaCl 量为117g/L 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸

附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。

氯型强碱性树脂,主要以NaCl溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含

10%NaCl + 0.2%NaOH的碱盐液再生,常规用量为每升树脂用150~200gNaCl,及3~4gNaOH。OH型强碱阴树脂则用4%NaOH溶液再生。

树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。

为加速再生化学反应,通常先将再生液加热至70~80℃。它通过树脂的流速一般为1~2BV/h。也可采用先快后慢的方法,以充分发挥再生剂的效能。再生时间约为一小时。随后用软水顺流冲洗树脂约一小时(水量约4BV),待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止。

一些树脂在再生和反洗之后,要调校pH值。因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性。而一些脱色树脂(特别是弱碱性树脂)宜在微酸性下工作。此时可通入稀盐酸,使树脂pH值下降至6左右,再用水正洗,反洗各一次。

树脂在使用较长时间后,由于它所吸附的一部分杂质(特别是大分子有机胶体物质)不易被常规的再生处理所洗脱,逐渐积累而

将树脂污染,使树脂效能降低。此时要用特殊的方法处理。例如:阳离子树脂受含氮的两性化合物污染,可用4%NaOH溶液处理,将它溶解而排掉;阴离子树脂受有机物污染,可提高碱盐溶液中的NaOH浓度至0.5~1.0%,以溶解有机物。

近年国内研究用糖化钙溶液对使用过的树脂进行再生,再生液返回生产流程再用,不需要排放。免除了再生废液处理的问题。(2)特殊的再生处理

污染较严重的树脂,可用酸或碱性食盐溶液反复处理,如先用10%NaCl +1%NaOH碱盐溶液溶解有机物,再用4%HCl 或分别用10%NaOH 及1%HCl溶解无机物,随后再用

10%NaCl+1%NaOH处理,在约70℃下进行。

如果上述处理的效果未达要求,可用氧化法处理。即用水洗涤树脂后,通入浓度为0.5%的次氯酸钠溶液,控制流速2~4BV/h,通过量10~20BV,随即用水洗涤,再用盐水处理。应当注意,氧化处理可能将树脂结构中的大分子的连接键氧化,造成树脂的降解,膨胀度增大,容易碎裂,故不宜常用。通常使用50周期后才进行一次氧化处理。由于氯型树脂有较强的耐氧化性,故树脂在氧化处理前应用盐水处理,变为氯型,这还可避免处理过程中的pH值变化,并使氧化作用比较稳定。

(3)再生废液的处置

糖厂用树脂脱色,树脂再生的废液含有大量的色素和有机物,颜色很深。用原糖生产精糖时,每100吨糖的再生废液量约为6~

9m3。要经过处理才能排放(或循环),这也是一个难题。Ionresin详细研究了用化学方法处理再生液,使色素和其他有机物沉淀,除去杂质后再循环使用,减少排放,并充分利用其中的氯化钠。由于再生液中色素的浓度比糖汁中高10倍以上,液体数量较小,没有糖液的粘性,并能容许强烈的条件如强碱性和高温等而无需顾虑糖的分解,用化学处理比较方便。再生液加入5~10%容积的石灰乳(浓度为含CaO100g/L),加热到60℃并轻微搅拌,大量的有色物沉淀析出。再加入碳酸钠或二氧化碳、磷酸钠或磷酸并保持碱性,都可使较多的有色物沉淀。处理后的液体添加少量食盐可返回作树脂的初级再生液,其后再用新的盐水再生。

对废液的处理还研究过多种方法:用颗粒活性炭吸附,用次氯酸钠、次氯酸钙、氯气或臭氧将它氧化,用超过滤或反渗透法分离它的有机物,或用粉状树脂吸附等。最近Guimaraes等研究用微生物将它的有色物降解,取得较好效果。

4、离子交换树脂的工作寿命

离子交换树脂在使用较长时间后,由于吸附的杂质未能在再生时完全洗脱除去,性能就逐渐下降,每个工作周期所能处理的糖液量逐渐减少。一般在使用300~500周期后,其性能就不符合要求,需要更新(或转作其他用途)。例如,一个日处理240吨原糖的炼糖厂,一级脱色使用丙烯酸树脂(总量5m3 )。在使用

不同周期数时,每个周期处理的糖液量及所达到的脱色率的平均值如下表。

周期次序每周期处理糖液量BV 糖液脱色率%

1~200 48 85

201~300 45 84

301~400 45 82

401~450 45 79

451~500 42 70

501~550 34 61

可见,树脂在使用超过450周期后,处理能力及脱色率均明显下降。按使用450周期计算,每m3树脂处理的糖浆固溶物量约为14000吨。

另一炼糖厂规模为600~700/d,使用丙烯酸树脂总量为12.5m3。每周期处理糖浆量为54BV(运行18小时,流速

3BV/h),脱色率约80%。工作寿命为300周期。由此算出每m3树脂处理糖浆固溶物量约为12,000吨。

无疑,树脂的工作寿命在很大程度上决定于原料的色值及前面的清净处理的效果。树脂在长期使用过程中会有一些损失(破碎与流失),因此,长期连续运行的树脂柱,每年约需补充5%。

萃取的操作方法

萃取的操作方法 萃取操作方法在分析中使用较广泛的萃取方法为间歇法(亦称单效萃取法)。这种方法是取一定体积的被萃取溶液,加入适当的萃取剂,调节至应控制的酸度。然后移入分液漏斗中,加入一定体积的溶剂,充分振荡至达到平衡为止。静置待两相分层后,轻轻转动分液漏斗的活塞、使水溶液层或有机溶剂层流人另一容器中,使两相彼此分离。假如被萃取物质的分配比足够大时,则一次萃取即可达到定量分离的要求。假如被萃取物质的分配比不够大,经第一次分离之后,再加入新鲜溶剂,重复操作,进行二次或三次萃取。但萃取次数太多、不仅操作费时,而且轻易带人杂质或损失萃取的组分。 §11-4离子交换分离法 利用离子交换剂和溶液中的离子发生交换作用而使离子分离的方法,称为离子交换分离法。20世纪初期,工业上就开始用天然的无机离子交换剂泡沸石来软化硬水。但这类无机离子交换剂的交换能力低,化学稳定性和机械强度差,使用受到很大限制。 近年来合成了有机离子交换剂——离子交换树脂,基本上克服了无机离子交换剂的缺点因此离子交换分离法在生产和科研各方面得到了广泛的使用。 一、离子交换树脂的结构和性质 (一)结构 离子交换树脂是具有网状结构的复杂的有机高分子聚合物。网状结构的骨架部分一段很稳定,不溶于酸、碱和一般溶剂。在网状结构的骨架上有许多可被交换的活性基团。根据活性基团的不同、离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两大类。 1.阳离子交换树脂 阳离子交换树脂具有酸性基团,如使用最广泛的强酸性磺酸型聚苯乙烯树脂,它是以苯乙烯和二乙烯苯聚合,经浓硫酸磺化而制得的聚合物。 这种树脂的化学性质很稳定,具有耐强酸、强碱、氧化剂和还原剂的性质,因此使用非常广泛。 各种阳离子交换树脂含有不同的活性基因、常见的有磺酸基(-SO3H)、羧基(-COOH)和酚基(-OH)等。根据活性基团离解出H 能力的大小不同,阳离子交换树脂分为强酸性和弱酸性两种。例如含-SO3的为强酸性阳离子交换树脂,常用R-SO3H表示(R表示树脂的骨架),合-COOH和-OH的弱酸性阳离子交换树脂,分别用R-COOH和R-OH表示。 强酸性阳离子交换树脂使用较广泛,弱酸性阳离子交换树脂的H 不易电离,所以在酸性溶液中不能使用,但它的选择性较高而且易于洗脱。 2.阴离子交换树脂

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

树脂在使用前的活化方法概述

树脂使用前的活化(转) 对于初次使用需要激活或者说完全再生的树脂而言,整理网友的资料如下: (1)新的离子交换树脂常含有反应溶剂、未参加反应的物质和少量低分子量的聚合物、铁、铅、铜等杂质。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。因此,新树脂在投运前要进行预处理,转换为指定的离子型式。 (2 )阳离子交换树脂(含碱性基团的强酸阳树脂)的预处理步骤:首先用清水对树脂进行 冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。然后用?4~5%勺HCI和NaOH在交换 柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处 (3 )阴离子交换树脂(含酸性基团的强碱阴树脂)的预处理步骤:同上,只是酸碱的使用交换位置。 (4)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (5 )各种树脂因品种、用途不一,预处理的方法也有区别,预处理时的酸碱浓度及接触时 间等,可具体参考各型号树脂的介绍。 (6 )预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (7)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。 有网友提出如何检测树脂失效的问题。整理答案:新树脂必须先送到有关部门检测合 格后再使用。树脂必须符合阴阳树脂的验收标准,主要检测指标:全交换容量、含水率、耐磨率、有效粒径、湿真密度、湿视密度、不均匀系数等。 根据厂家提供的再生装置及离子交换树脂再生的需要可以得知,这次,我们采用的树 脂应该是强酸性阳离子(Na+)交换树脂。因为它的再生装置只有一个盐箱,用的是NaCI (当 然不是吃的那种),听说是工业专用的粗盐。弱酸性的阳离子交换树脂也用NaCI再生,但它 需要在碱性条件下才能有较高的交换能力,而这套设备不提供碱性条件。(关于离子交换树 脂种类、型号的详细情况可以在一些厂家的网站上找到,偶去的是这里,, &ArticlePage=&lnfold=7&Menuld=38613&Mainld=67491 。在中国水网论坛、中国化学化工论

离子交换树脂的交换原理是什么

离子交换树脂的交换原理是什么 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成; (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它 置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有

关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 (文档由洛阳宏昌工贸整理提供)

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

离子交换树脂结构及交换原理

一. 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 三离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它

置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 以001×7强酸阳离子交换树脂为例说明: 001×7强酸阳离子交换树脂是一种凝胶型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当原水当中的Ca2+,Mg2+等阳离子-扩散到树脂的孔道中时,由于该树脂对Ca2+,Mg2+等阳离子选择性强于对H+的选择性,,所以H+就与进入树脂孔道中的Ca2+,Mg2+等阳离子发生快速的交换反应,Ca2+,Mg2+等阳离子被固定到树脂交换基团上面,被交换下来的H+向树脂的孔道中-扩散,最终扩散到水中。 (1)边界水膜内的扩散水中的Ca2+,Mg2+等阳离子向树脂颗粒表面迁移,并扩散 通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Ca2+,Mg2+等阳离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点; (3)离子交换 Ca2+,Mg2+等阳离子与树脂基团上的可交换的H+进行交换反应; (4)交联网孔内的扩散被交换下来的H+在树脂内部交联网孔中向树脂表面扩散。 (5)边界水膜内的扩散最终扩散到水中。 四离子交换树脂的再生 鉴于离子交换树脂反应的可逆性,反应后的树脂通过处理,重新转化为原来的离

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

阳离子交换树脂的处理再生操作规程精编WORD版

阳离子交换树脂的处理 再生操作规程精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

阳离子交换树脂的处理再生操作规程 1、适用范围:1号、2号、3号、树脂罐。 2、职责:树脂处理再生人员严格按照本标准处理。 3、工作原理: 离子交换树脂是一种聚合物,带有相应的功能基因,一般情况下,常规的钠离子交换树脂带有大量的钠离子,当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基因与镁离子结合,这样水中的钙镁离子含量降低,水的硬度降低,硬水变成软水,这是软化水设备的工作过程。 当树脂上的大量功能基因与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能集团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力。 4、工作流程: 4.1、小反洗:再生前应对中间排液管上面进行小反洗,洗去进水时积聚在中间排液装置上的污物,小反洗是先关闭进水阀及出水阀,再打开小反洗进水阀及反洗排水阀直至冲洗干净,小反洗结束后关闭小反洗进水阀及反洗排水阀。 4.2、大反洗:打开大反洗进水阀,使水从树脂底部流入,顶部流出,这样可以把顶部拦截的污物冲走,排除破碎的树脂和树脂中的气泡,这个过程一般需要5-15分钟。 4.3、吸盐(再生):即将盐水注入树脂罐的过程,用盐泵将浓度为3%-8%的盐水从罐的底部进入,缓缓流过树脂层,从顶部阀门排出,进盐大约1小时左右,可适当延长浸泡时间。

4.4、慢冲洗(置换):用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程仍有大量的功能集团上的钙离子、镁离子被钠离子置换,这个过程是再生的主要过程,这个过程一般与吸盐的过程一样,一般大约1小时左右。 4.5、快冲洗:为了将残留的盐彻底冲洗干净,用于实际工作相当的流速对树脂进行冲洗,直到冲出符合规定的软化水。 4.6、产水:当树脂罐产出符合规定的软化水时,投入正常运行,应在用前,使用中、使用后,随时检测软化水的硬度,防止不合格水进入生产用水。 5、注意事项 5.1、离子交换树脂罐一定保持一定水分,切勿脱水。 5.2、保持一定温度,一般在5℃-40℃之间。 5.3、保证再生液的量及浓度,冬天温度底时,应适当延长树脂与再生液的接触时间,若树脂再生效果不理想时,应加大进盐量,延长浸泡时间,提高盐水浓度,如果采取以上措施还不合格,应更换树脂。 5.4、定期检查盐泵及树脂罐的阀门是否能正常运行。 5.5、二级软化时应悬挂标识牌,标明罐的级别。 2012年12月24日

离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么? 氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。氢型阳离子交换树脂不溶于水和一般溶剂。和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。 二离子交换树脂的结构 离子交换树脂的内部结构,如2.1所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

阴阳离子交换树脂的再生标准操作程序

1目的 建立阴、阳离子交换树脂从失效至恢复有将近交换作用的标准操作程序。 2范围 去离子水站失效阴阳离子交换树脂的再生操作。 3责任 纯水站班长负责组织去离子水岗位操作工正确实施失效阴阳离子交换树脂的再生操作。 车间工艺员、质监员负责再生操作的监督和检查,使再生质量符合要求。 去离子岗位操作工有按操作规程正确操作的责任。 4参考文件 SOP文件之作业指导文件。 5内容 732#苯乙烯强酸型阳离子交换树脂。 以检测阳床显中性时,阳床交换饱和失效,需及时再生。 检查阳床阀门是否处于关闭状态。 打开阳床的进酸阀和上排阀。 检查酸泵的进出酸阀门,溶液浓度是否达要求。

开启酸泵,慢慢打开泵后流量计的阀门,流量控制在500L/h。 小时后,先关闭流量计阀门,再关酸泵。 关闭进酸阀进行酸浸泡1小时。 开启过滤水泵,打开阳床下进水阀和上排阀,流量控制在500L/h,进行反冲15分钟。 打开阳床上进水阀的下排水阀,同时关闭阳床下进水阀和上排阀,进行正冲洗。随时用PH值纸进行测试,当PH值在5~6时,再生结束,关闭各阀门和酸泵待用。 717#苯乙烯碱型阴离子交换树脂(1#阴床、2#阴床) 经检测酸碱度下降(PH值﹤7)或有CL-反应时需及时再生。 检查阴床的进出阀门是否处于关闭状态。 打开阴床进碱阀和上排阀。 打开碱泵前的进碱阀。 开启碱泵的回流阀。 开启碱泵、慢慢打开流量计前阀门,流量控制在500L/h。 1小时后,关闭流量计前阀。 关碱泵。 关闭阴床进碱阀,浸泡1小时。 开启过滤水泵,打开阳床上进水阀。 开启流量计前时水阀,流量控制在500L/h,打开阴床下进水阀。 过滤水经过阳床再流入阴床,反冲洗15分钟。 打开阴床上进水阀和下连通阀。 关闭阴床下进水阀和上排阀,打开上进水阀和下排阀进行下冲洗。 用PH试纸测PH值达8~9时,出水按规范初纯水制取工艺操作制取初纯水待用,此再生操作结束。 注意 随时注意测定PH值。 酸碱处理池中的废酸碱应调至中性至排出。 酸碱经流过的管道应彻底冲洗。

离子交换树脂实验报告

中南大学化学化工学院化工专业实验 T11.离子交换实验(分离工程,指导教师:蒋崇文) 一、实验目的与要求 1. 学习采用离子交换树脂分离柠檬酸的基本原理。 2. 掌握离子交换法的基本操作技术。 3. 掌握离子交换法穿透曲线的测定方法 二、实验原理 待分离组分柠檬酸(HA表示)的溶液,在与强碱性树脂(HOR表示)进行离子交换时,3交换组分之间遵守如下化学计量关系: HA?3HOR?3AR?3HO233离子交换柱操作过程,可用流出曲线表征,称为穿透曲线,图11-1示。横坐标为流出液体的体积,纵坐标为流出液中离子浓度。流出曲线反映了恒定流速时,不同时刻流出液中离子浓度的变化规律。流出曲线中的a和b段,离子交换树脂未饱和,流出液中不含被交换离子,随着离子交换树脂开始饱和,流出液中开始出现被交换离子,流出液浓度为0.05C 时0称为穿透点c,流出曲线中的d段,离子交换树脂进一步被饱和,流出液中被交换离子继续增加,流出曲线到达e点时,树脂被完全饱和,流出液中离子浓度达到进料液中水平0.95C0成为饱和点。此时流出的体积为饱和体积。离子交换的实验装置图11-2示。 离子交换的穿透曲线11.1图 中南大学化学化工学院化工专业实验

原料热水出阴离子交换树热水进图4-2 离子交换实验装置图11.2 离子交换的装置图 三、试剂与材料 强碱型树脂,2mol/L盐酸溶液;2mol/L氢氧化钠溶液,0.1mol/L氢氧化钠溶液,1%酚酞指示剂。 四、器材 50cm×1cm交换柱,碱式滴定管,收集试管,烧杯,150ml锥形瓶。 五、实验步骤 1. 树脂的处理 将干的强碱型树脂用蒸馏水浸泡过夜,使之充分溶胀。用2倍体积的2mol/L的氢氧化钠浸泡1小时,倾去清液,洗至中性。再用2mol/L的盐酸处理,做法同上。如此重复2次,每次酸碱用量为树脂体积的2倍。最后一次处理用2mol/L的NaOH溶液进行,放尽碱液,用清水淋洗至中性待用。 2. 装柱 取直径1cm,长度50cm的交换柱,用脱脂棉塞住玻璃柱的下部。将柱垂直置于铁架上。自顶部注入上述经处理的树脂悬浮液,关闭层析柱出口,待树脂沉降后,放出过量溶液,再加入一些树脂,至树脂沉降至25cm的高度。 3.柠檬酸水溶液的滴定 用配置好的0.2mol/L的NaOH溶液滴定2ml配置好的柠檬酸水溶液中酸的浓度,以1%酚酞溶液作指示剂,共消耗NaOH溶液22.12ml。 4.柠檬酸的离子交换 用步骤3中的柠檬酸水溶液过柱,调节流速为0.5~1mL/min(1滴/秒),同时用试管开始滴定收集液中酸的NaOH标准0.1mol/L管。用15~20,共收集约5ml收集流出液,每管收集. 中南大学化学化工学院化工专业实验 浓度。用收集液酸浓度C对收集流出液体积V作图,得到柠檬酸离子交换的穿透曲线。 六、数据处理 C=0.2mol/L 柠檬酸的浓度约0.35mol/L NaOH 表11.1 柠檬酸水溶液的滴定数据:

阳离子交换树脂制备资料

1前言 1.1离子交换树脂简介 1.1.1科技名词定义 中文名称:阳离子交换树脂 英文名称:cation exchange resin 定义1:离子交换树脂官能团上的离子只能与水中阳离子相互交换的树脂。 所属学科:电力(一级学科) ;热工自动化、电厂化学与金属(二级学科) 定义2:含功能性阴离子基团、可与带阳离子的物质进行交换反应的一类高分子量不溶性多聚体。可用于阳离子交换层析。 所属学科:生物化学与分子生物学(一级学科) ;方法与技术(二级学科) 1.1.2阳离子交换树脂分类 阳离子离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分: 1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。 2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子

交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。 1.2种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。

阴离子交换树脂

阴离子交换树脂 离子交换法2007年02月05日星期一23:04一、前言 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一 种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生) 如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 . 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3-> Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3- 注意事项 1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。 2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。 3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,

离子交换树脂的使用说明

离子交换树脂的使用说明 一、贮存与运输 离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。 二、脱水树脂复苏 树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。 三、树脂鉴别 使用单位存放树脂和填装时发生混淆,必须鉴别,确认后,投入装置,以充分发挥树脂的工作性能。 1、鉴别001×7和201×7两种树脂,可以利用湿真密度不同而区别,取一点树脂放入饱和食盐盐水中,浮在上面的是201×7阴树脂,下沉的则是001×7阳树脂。 2、鉴别强弱型阳树脂,一是外观,强酸性阳树脂为棕黄色,弱酸性阳树脂为乳白色或淡黄色,二是用转型膨胀率判断,阳树脂用盐酸转为H型,再用烧碱转为Na型,是其体积膨胀,弱酸性树脂明显大于强酸性树脂。 3、鉴别强弱型阴树脂,可以利用加酚酞的氢氧化钠浸泡10min,用无离子水洗净后,强型阴树脂呈紫色,大孔强型阴树脂呈粉红色,弱型阴树脂不变色。 四、树脂预处理 将准备装柱使用的新树脂,先用热水(清洁的自来水也可)反复清洗,阳离子交换树脂可用70—80℃的热水,阴离子交换树脂的而热性能较差一些,可用50—60℃热水。开始浸洗时,每隔15分钟换水一次,浸洗时要不时搅动,换水4—5次后,可隔约30分钟换水一次,总共换水7—8次,浸洗至浸洗水不带褐色,泡沫很少时为止。 水洗后,再经酸碱处理,阳离子交换树脂可按下述步骤处理: 1、用1N盐酸缓慢流过树脂,用量约为强酸阳树脂体积的2—3倍,弱酸阳树脂体积的3—5倍,每小时1.5倍床层体积流过。 2、用水冲洗,出水PH为5左右,用3倍树脂体积5%的NaCl溶液流过树脂,流速与1相同。 3、用1NNaOH流过树脂,用量及流速与1相同。 4、用水冲洗至出水PH为9左右。 5、用1N盐酸或硫酸,将树脂转成H-型,用量为树脂体积的3—5倍,流速与1相同。 6、酸流完后,用去离子水冲洗至出水PH值为6以上时,即可投入使用。 对于阴离子交换树脂水洗后的酸、碱处理次序,可采用碱→酸→碱次序,酸、碱用量及流速,与阳树脂相对应,弱碱阴树脂与弱酸阳树脂相对应。 五、离子交换树脂的复活处理 1、铁污染:树脂被铁污染后,颜色变深甚至发黑,可以用二倍树脂体积10%的盐酸,以约0.6m/h流速通过树脂层,然后用同样流速40℃的清水清洗,最后用过量的NaOH再生(阳树脂)。 2、硅污染:被树脂吸附的硅酸,在低PH的条件下,容易聚合为高聚物沉淀于树脂中,可用40—50℃,6%—8%NaOH溶液浸泡,再用清水洗,为避免硅污染,应适当提高再生剂的浓度和温度。

离子交换树脂分类

离子交换树脂分类 一、离子交换树脂的组成 离子交换树脂是一类带有功能基的网状结构高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。 H)(强酸性阳离子交换树脂) 阳离子交换树脂:骨架上结合有磺酸基(-SO 3 或羧酸基(-COOH)(弱酸性阳离子交换树脂)。 阴离子交换树脂:骨架上结合有季铵基(强碱性阴离子交换树脂),伯胺基、仲胺基、叔胺基(弱碱性阴离子交换树脂)。 二、离子交换树脂的分类 按骨架结构不同:凝胶型(干态无孔,吸水后产生微孔)和大孔型(树脂内部无论干、湿或收缩、溶胀都存在着比凝胶型树脂更大、更多的孔)。 根据所带的功能基团的特性:阳离子交换树脂(带酸性功能基,能与阳离子进行交换)、阴离子交换树脂(带碱性功能基,能与阴离子进行交换)和其它树脂。 三、离子交换树脂的命名方法 根据离子交换树脂的功能基的性质,将其分为强酸(0)、弱酸(1)、强碱(2)、弱碱(3)、螯合(4)、两性(5)和氧化还原(6)七类(各类后面的数字为其分类代号)。 离子交换树脂的骨架分为苯乙烯系(0)、丙烯酸系(1)、酚醛系(2)、环氧系(3)、乙烯吡啶系(4)、脲醛系(5)、氯乙烯系(6)七类(各类后面的数字为骨架分类代号)。

命名方法: D ¤△▼×■ D 大孔树脂在名称前加D ¤分类代号(阴、阳、酸、碱、强、弱)△骨架分类代号 ▼顺序号 ×■凝胶型树脂后加*并注明交联度 举例: 001×7强酸性苯乙烯系阳离子交换树脂 D001 大孔强酸性苯乙烯系阳离子交换树脂 D113 大孔弱酸性丙烯酸系阴离子交换树脂

阳离子交换树脂原理

阳离子交换树脂原理 离子交换树脂可分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。 而阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂则可分为强碱性和弱碱性两类。人工合成的阳离子树脂的官能团是有机酸,并按照酸性的强弱,分为强酸性和弱酸性两类。强酸性的官能团是苯磺酸,弱酸性的官能团则包括有机磷酸、羟基酸和酚等。 酸主要以+的形式与其他阳离子进行交换。例如,用+与金属离子交换会使树脂变成盐的形式。强阳离子树脂除了酸形式R-O外,生产厂家也会以钠盐R-O的形式出售,分别称为氢型和钠型强阳离子交换树脂。 强酸性阳离子树脂含有大量的强酸性基团,如磺酸基?3,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如?3,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即使用化学药品使离子交换反应向相反的方向进行,使树脂的官能基团恢复到原来的状态,以便重复利用。例如,上述的阳离子树脂一般使用强酸进行再生处理,此时树脂释放出被吸附的阳离子并与H+结合,

进而恢复到原来的组成。 弱酸性阳离子树脂含有弱酸性基团,如羧基-,能在水中离解出H+而呈酸性,但因其解离程度不高,因此一般仅程弱酸性,故而属于弱酸性阳离子树脂。树脂离解后余下的负电基团,如-(R为碳氢链基团),可与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。 如上所述,此类树脂的酸性即离解性较弱,在低pH下难以离解进而进行离子交换,只能在碱性、中性或微酸性溶液中(如pH值为5~14)起作用。这类树脂也是用酸进行再生,其再生性较强阳离子交换树脂更好。

相关文档
最新文档