智能控制简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、智能控制技术
智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的
自动控制技术。
控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制
理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。
智能控制理论的研究和应
用是现代控制理论在深度和广度上的拓展。
20世纪80年代以来,信息技术、计算技术的快速发
展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智
能控制系统的发展已成为一种趋势。
发展
智能控制器是以自动控制技术和计算机技术为核心,集成微电子技术、电力电子技术、信息传感技术、显示与界面技术、通讯技术、电磁兼容技术等诸多技术而形成的高科技产品。
作为核心和关键部件,智能控制器内置于设备、装置或系统之中,扮演“神经中枢”及“大脑”的角色。
20世纪90年代中期之后,智能控制器行业日益成熟,作为一个独立的行业,其发展受到了双重动力的驱动,其一是市场驱动,市场需求的增长和市场应用领域的持续扩大,致使智能控制器至今已经在工业、农业、家用、军事等几乎所有领域得到了广泛应用;其二是技术驱动,随着相关技术领域的日新月异,智能控制器行业作为一个高科技行业得到了飞速发展。
根据《2013-2017年中国智能控制器行业发展前景与投资预测分析报告》[1]统计,2012年全球智能控制器行业市场规模接近6800亿美元。
从地域分布上看,欧洲和北美市场是智能控制产品的两大主要市场,市场规模占全球智能控制市场的56%,主要是由于这两大区域在小型生活电器、汽车、大型生活电器、电动工具等领域的市场发展比较成熟,产品普及率高,未来几年内欧洲和北美将继续占有主要市场地位。
智能控制产品在中国等发展中国家的应用仍处于初级阶段,现阶段市场规模不大,但是增长速度较高,拥有巨大的发展空间。
据前瞻网统计,目前我国智能控制器行业规模为4200亿元,2004年以来的年均增长率接近19%。
汽车电子和大型生活电器是中国电子智能控制产品传统主要应用领域,市场占有率分别为31%和10%左右。
小型生活电器产品种类众多,目前我国小型生活电器智能控制产品应用还不普及,正处于高速发展阶段,市场空间巨大。
此外,电动汽车、智能建筑及家居等新兴领域的崛起也将带动智能控制器需求的快速增长。
智能控制产品行业由于下游厂商需求分散造成了产品差异较大、产能较分散,因此全球智能控制产品行业总体集中度较低。
根据市场规模、技术实力,全球智能控制产品厂商可以分为三个档次:第一集团:技术实力领先,市场遍布全球,向全球跨国电器、整机厂商提供高端智能控制产品和服务,主要厂商有英国英维斯、德国代傲等;第二集团:中等规模智能控制厂商,拥有自己的技术研发团队,能够根据客户需求独立开发并提供智能控制产品和服务,具有同第一集团竞争的潜力,主要厂商有拓邦股份、英唐智控、和而泰、金宝通等;第三集团:中小规模智能控制厂商,产品研发能力欠缺,在竞争中处于相对较弱的地位。
概念
智能控制的基本概念
智能控制的定义一:智能控制是由智能机器自主地实现其目标的过程。
而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器。
定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,使之在一定程度上实现控制系统的智能化,这就是智能控制。
他还认为自调节控制,自适应控制就是智能控制的低级体现。
定义三:智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域。
定义四:智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。
5研究对象
智能控制的研究对象具备以下的一些特点:
1. 不确定性的模型
智能控制的研究对象通常存在严重的不确定性。
这里所说的模型不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大范围内变化。
2. 高度的非线性
对于具有高度非线性的控制对象,采用智能控制的方法往往可以较好地解决非线性系统的控制问题。
3. 复杂的任务要求
对于智能控制系统,任务的要求往往比较复杂。
应用存在的情况
实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
应用传统控制理论进行控制必须提出并遵循一些比较苛刻的线性化假设,而这些假设在应用中往往与实际情况不相吻合。
对于某些复杂的和饱含不确定性的控制过程,根本无法用传统数学模型来表示,即无法解决建模问题。
为了提高控制性能,传统控制系统可能变得很复杂,从而增加了设备的投资,减低了系统的可靠性。
类型
集成或者(复合)混合控制
几种方法和机制往往结合在一起,用于一个实际的智能控制系统或装置,从而建立起混合或集成的智能控制系统.
分级递阶控制系统
分级递阶智能控制是在自适应控制和自组织控制基础上,由美国普渡大学Saridis提出的智能控制理论.分级递阶智能控制(Hierarchical Intelligent Control)主要由三个控制级组成,按智能控制的高低分为组织级,协调级,执行级,并且这三级遵循"伴随智能递降精度递增"原则。
组织级(organization level):组织级通过人机接口和用户(操作员)进行交互,执行最高决策的控制功能,监视并指导协调级和执行级的所有行为,其智能程度最高.
协调级(Coordination level):协调级可进一步划分为两个分层:控制管理分层和控制监督分层.
执行级(executive level):执行级的控制过程通常是执行一个确定的动作.
专家控制系统(Expert System)
专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验,以及他们处理问题的详细专业知识.
专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题.它具有启发性,透明性,灵活性,符号操作,不一确定性推理等特点.应用专家系统的概念和技术,模拟人类专家的控制知识与经验而建造的控制系统,称为专家控制系统.
专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。
人工神经网络控制系统
神经网络是指由大量与生物神经系统的神经细胞相类似的人工神经元互连而组成的网络;或由大量象生物神经元的处理单元并联互连而成.这种神经网络具有某些智能和仿人控制功能. 学习算法是神经网络的主要特征,也是当前研究的主要课题.学习的概念来自生物模型,它是机体在复杂多变的环境中进行有效的自我调节.神经网络具备类似人类的学习功能.一个神经网络若想改变其输出值,但又不能改变它的转换函数,只能改变其输人,而改变输人的唯一方法只能修改加在输人端的加权系数.
神经网络的学习过程是修改加权系数的过程,最终使其输出达到期望值,学习结束.常用的学习算法有:Hebb学习算法,widrow Hoff学习算法,反向传播学习算法一BP学习算法,Hopfield反馈神经网络学习算法等。
神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自
组织、自学习等控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等)只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.
模糊控制系统
所谓模糊控制,就是在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法.模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标.
模糊控制的基本思想是用机器去模拟人对系统的控制.它是受这样事实而启发的:对于用传统控制理论无法进行分析和控制的复杂的和无法建立数学模型的系统,有经验的操作者或专家却能取得比较好的控制效果,这是因为他们拥有日积月累的丰富经验,因此人们希望把这种经验指导下的行为过程总结成一些规则,并根据这些规则设计出控制器.然后运用模糊理论,模糊语言变量和模糊逻辑推理的知识,把这些模糊的语言上升为数值运算,从而能够利用计算机来完成对这些规则的具体实现,达到以机器代替人对某些对象进行自动控制的目的。
模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型. 模糊逻辑可适用于任意复杂的对象控制. 但在实际应用中模糊逻辑实现简单的应用控制比较容易. 简单控制是指单输入单输出系统(SISO) 或多输入单输出系统(MISO) 的控制. 因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。
学习控制系统
学习是人类的主要智能之一,人类的各项活动也需要学习.在人类的进化过程中,学习功能起着十分重要的作用.学习控制正是模拟人类自身各种优良的控制调节机制的一种尝试. 所谓学习是一种过程,它通过重复输人信号,并从外部校正该系统,从而使系统对特定输人具有特定响应.学习控制系统是一个能在其运行过程中逐步获得受控过程及环境的非预知信息,积累控制经验,并在一定的评价标准下进行估值,分类,决策和不断改善系统品质的自动控制系统。
(1)遗传算法学习控制
智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。
快速、高效、全局化的优化算法是实现智能控制的重要手段。
遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、
变异等遗传操作来完成寻优。
遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。
如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。
遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。
(2)迭代学习控制
迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。
迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。
整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。
它在执行重复运动的非线性机器人系统的控制中是相当成功的。