模态试验及分析的基本步骤精选版

合集下载

模态试验分析流程与详细方法

模态试验分析流程与详细方法

模态试验分析方法简介1 试验模态分析的基本步骤试验模态分析一般分为如下的四个步骤:第一步:建立测试系统所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。

第二步:测量被测系统的响应数据这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。

在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。

第三步:进行模态参数估计即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。

第四步:模态模型验证它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。

以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下:2、建立测试系统建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。

接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下:2.1激振方式的确定:激振方式有很多种,主要分为天然振源激振和人工振源激振。

天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机械振动,人体晃动和打桩等。

其中爆破和张拉释放这两种方法应用较为广泛。

在工程实际中应当根据被测对象的特点,选取适当的激振方式。

2.2传感器的选择:传感器是测试系统的一次仪表,它的可靠性,精确度等参数指标直接影响到系统的质量。

模态试验及分析的基本步骤

模态试验及分析的基本步骤

模态试验及分析的基本步骤本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March模态试验及分析的基本步骤1.动态数据的采集及响应函数分析首先应选取适当的激励方式。

激励方式可以是正弦、随机或瞬态中的任何一种。

激励方式不同,相应的模态参数识别方法也不同。

目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。

然后进行数据采集。

对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。

在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

2.建立结构数学模型根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。

由于采用的识别方法不同,数学建模可分为频域建模和时域建模。

根据阻尼特性及频率藕合程度又可分为实模态和复模态等。

3.参数识别按识别域的不同可分为频域法、时域法和混合域法。

激励方式不同,相应的识别参数方法也不尽相同。

并非越复杂的方法识别的结果越可靠。

对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。

4.振型动画参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。

但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

车身部件的模态试验1.测点选择和传感器布置为提高模态参数的识别精度,必须合理布置激励点和响应点的位置,最大限度地减少模态丢失。

简支梁模态分析实验

简支梁模态分析实验

2、打开测试分析系统开关,待指示灯指示正常后, 打开电脑桌面“动态信号集成系统”数据采集软 件,进入操作界面。 3、创建一个新项目,分析类型选为频谱分析,并 设置运行参数、系统参数、通道参数等。
系统参数包括采样频率、分析频率、采样方式、 采样批次等
通道参数包括通用参数、触发参数、几何参数、 标定信息、通道子参数等 参数设置如表1所示:
简支梁模态分析实验
蒋达
一、实验目的
1.学习并掌握简支梁结构模态参数的测试 与分析方法,能够使用测试分析系统以及 相应的软件;
2.掌握环境激励下进行模态参数识别的原 理和方法。

二、实验仪器及实验框图
1.实验仪器: TST5912模态测试系统 IEPE压电加速度传感器 GCB-TST5912A动态信号测试分析系统 计算机及结构模态分析软件 简支梁桥模型 力锤等
2.实验框图:
测试系统如下图:
LMS数据采集分析系统
加速度传感器 力锤
测点1
测点5
测点8
三、实验步骤
1、测点布置,参考点的选择 简支梁长180cm,宽15cm,实验方案中,如图把梁9 等分,每段长20cm,梁上布置测点。测点布置如下:
选择了8个测点,编号分别为1-8,对应接入测 试系统的1-8通道,并选择测点3为参考点。
6、新建工程文件,选择合适的方法建立结构文 件,建立好结构文件后,建立数据文件,对采 集到的数据导入,如图:
重叠显示,如图:
7)FFT变换:对于随机信号,加窗类型为汉宁窗, 平均方式为线性平均。
8、在幅频曲线上选择曲线的峰值
实验结果:
作参数识别, 即可得到简支梁模型的频率、阻尼比以及振幅、 相位等信息。
4、通道平衡,清零,开始采样。进行环境激励, 可采用多位置击打激励的方式,采样时间一般以 大于3分钟为宜,系统提供内部采样时钟计时,可 打开,实时观测采样时长,采样过程中可在任意 窗口随时查看其他的实时谱信号,该软件具有自 动保存数据功能。 5、数据的处理与分析。打开桌面的“TST模态分 析软件”,在弹出的提示窗口中选择“不测力 法”。

锤击法模态测试流程

锤击法模态测试流程

锤击法模态测试流程锤击法模态测试可是个挺有趣的事儿呢,我来给你好好讲讲这个流程哈。

一、准备工作。

咱们先得把要用的设备都找齐喽。

像力锤这可是关键的家伙事儿,就像厨师的锅铲一样重要。

它有不同的锤头,咱得根据测试对象的特点来挑。

然后还有加速度传感器,这就像是测试对象的小耳朵,能把那些振动的信息都收集起来。

再就是数据采集仪啦,它负责把传感器听到的那些信息都记录下来呢。

除了设备,测试对象也得准备好呀。

要把测试对象放在一个相对稳定的地方,不能让它在测试的时候晃来晃去的,不然测出来的数据可就乱套了。

比如说要是测个小零件,就得把它稳稳地固定在一个夹具上。

要是测个大家伙,像大型机械结构啥的,那也得保证它周围没有太多干扰的东西。

二、传感器的安装。

传感器安装可是个细致活。

咱们得找个合适的地方把加速度传感器贴上去或者固定好。

这个地方呢,最好是能比较准确地反映测试对象的振动情况。

比如说如果是个梁结构,那可能在梁的中间或者两端安装传感器就比较合适。

安装的时候要小心哦,不能把传感器弄坏了。

要是不小心把传感器搞坏了,就像战士上战场没带枪一样,整个测试就没法好好进行啦。

而且要保证传感器和测试对象接触良好,这样它才能准确地感受到振动呢。

三、力锤的敲击。

力锤敲击这一步很有讲究呢。

咱们拿力锤敲测试对象的时候,不能乱敲一气。

要选择合适的敲击点,一般来说呢,要均匀地在测试对象的不同位置敲。

敲的时候力度也得控制好,不能太轻,太轻了传感器可能都感觉不到振动的变化;也不能太重,太重了可能会对测试对象造成损伤,就像你打一个小宠物,下手太重可不行。

而且每次敲击的方向也要尽量保持一致,这样测出来的数据才更有可比性。

四、数据采集。

当我们用力锤敲的时候,数据采集仪就开始工作啦。

它会把传感器传过来的振动信号和力锤敲击的力信号都记录下来。

这个过程就像是一个小秘书在认真地做会议记录一样,不能出一点差错。

要保证采集到的数据是完整的,没有丢失或者错误的部分。

在采集数据的时候呢,可能还需要设置一些参数,像采样频率这些,要根据测试对象的特性和测试的要求来设置好,不然采集到的数据可能就不准确啦。

abaqus模态分析操作流程

abaqus模态分析操作流程

abaqus模态分析操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Abaqus 模态分析操作流程。

1. 模型准备。

确定模型几何形状和材料属性。

DASP模态分析的步骤

DASP模态分析的步骤

在学习模态分析之前,了解一下一些基本知识:1 模态分析:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。

坐标变换的变换矩阵为模态矩阵,其每列为模态振型。

模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中描述的相应向量,转换到"模态坐标系统"中来描述,模态试验就是通过对结构或部件的试验数据的处理和分析,寻求其"模态参数"。

2 模态参数:模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。

3实模态和复模态:按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。

对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。

4最佳激励点的选取:视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。

如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。

5模态分析目的:模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

6原点导纳位置的选择:当一点激励多点响应时(SIMO方法),激励点即原点导纳的位置;当用多点激励一点响应时(MISO方法),响应点即为原点导纳的位置。

原点导纳应避开感兴趣模态的结点,以免丢失模态。

7测点的命名:响应点用数字来命名,激励点用一字母加数字来命名。

应避免重名,重名会导致频响函数错误。

在掌握了了上述基本知识后,开始进行模态试验及分析,主要过程如下:<1>新建:新建一个模态文件,输入或修改试验名、试验号和数据路径,然后进行参数设置,包括传感器类型、总测点数和原点导纳的位置。

模态分析方法与步骤

模态分析方法与步骤

模态分析方法与步骤下面我将从模态分析的定义、方法、步骤和案例实践等方面进行详细介绍。

一、模态分析的定义模态分析是指通过对系统的不同动态模态(如结构模态、振动模态等)进行分析和评估,以揭示系统的特性、行为和潜在问题。

其目的是为了更好地了解系统的功能、性能、稳定性等,并为系统的优化提供依据。

二、模态分析的方法1.实验方法:通过实际测试和测量,获取系统的模态参数(如固有频率、阻尼比、模态形态等),从而分析系统的动态特性。

2.数值模拟方法:利用数学建模和计算机仿真技术,建立系统的动力学模型,并进行模拟分析,以获取系统的模态响应和模态特性。

3.统计分析方法:通过对大量历史数据或采样数据的分析,探索系统的模态变化规律和概率分布情况。

三、模态分析的步骤1.确定分析目标:明确需要进行模态分析的对象、目的和要求。

例如,是为了定位系统的故障、评估系统的稳定性、优化系统的结构等。

2.数据采集和处理:根据分析目标,确定所需的数据类型和采集方法,例如使用传感器进行采集或获取历史数据。

然后对采集到的数据进行处理,如滤波、时域变换、频域分析等。

3.建立模型:根据已有的数据和系统特性,建立适当的模型。

例如,对其中一结构物进行模态分析时,可以建立结构的有限元模型。

4.分析模态特性:利用实验、仿真或统计方法,分析系统的模态特性,如固有频率、振型等。

可以绘制频谱图、振型图等,以便直观地展示结果。

5.识别问题和改进方案:基于对系统模态特性的分析,识别潜在问题,并提出相应的改进方案。

例如,如果发现其中一模态频率太低,可能意味着系统存在过度振动或共振问题,需要采取相应的措施来改进。

6.验证和优化:对改进方案进行验证和优化,以确保其有效性和可行性。

可以通过迭代分析和实验评估来逐步完善方案。

四、模态分析的案例实践1.桥梁的模态分析:对大跨度桥梁的模态分析可以帮助提前发现潜在的共振问题,并优化桥梁的设计和结构。

例如,可以通过数值模拟方法对桥梁的振动特性进行分析,以确定固有频率和振型,并预测桥梁在不同外界激励下的动态响应。

模态分析教程及实例讲解PPT学习教案

模态分析教程及实例讲解PPT学习教案

② 假定为自由振动(忽略阻尼):M u Ku 0
③ 假定为谐运动: K2M u 0

这相个应方的程向的量根 是是{u}Ii,,即即特特征征向值量,。i 的范围从1到自由度的数目,
注意:
•模态分析假定结构是线性的(如, [M]和[K]保持为常数) •简谐运动方程u = u0cos(t), 其中 为自振圆周频率(rad/s)
有预应力的结构进行模态分析。例如旋转的涡轮叶片。 循环对称结构模态分析。允许对循环对称结构的一部分进行建模,
而分析产生整个结构的振型。 ANSYS的模态分析都是线性分析。 ANSYS中的模态提取方法:
Block Lanzos(默认)、子空间、PowerDynamics、缩减法、非对称法、阻 尼法和QR 阻尼法。后两种允许结构中包含阻尼。
第18页/共74页
频率分析的相关知识
频率分析就是计算结构的共振频率及对应振动模态,不计 算位移和应力
固有频率:结构趋向于振荡的频率,固有的振动频率。 基本频率:最低的固有频率
固有振动模态:特定的固有频率对应唯一的振动形式。 每种模态对应着特定的固有频率
第19页/共74页
频率分析的相关知识
振幅:大 振幅:小
振动频率:是单位时间里摆动的次数。 1秒钟内的次数用Hz(赫兹)来表示。 周期:摆动1次所需要的时间。
钟摆的形状(长度)决定了其固有的数值。 钟摆越长周期越长,钟摆越短周期越短。
第11页/共74页
频率分析的相关知识
固有频率(以钟摆为例) 钟摆的振动所经过的时间越来越小,最后停了下来。 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振动)。 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。 钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动称为自由振动。 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的振动称为强迫振动。

第八章 模态分析

第八章  模态分析
– 是一种功能强大的方法,当提取中型到大型模型(50.000 ~ 100.000个自由度)的大量振型时(40+),这种方法很有效; – 经常应用在具有实体单元或壳单元的模型中; – 在具有或没有初始截断点时同样有效。(允许提取高于某个 给定频率的振型); – 可以很好地处理刚体振型; – 需要较高的内存。
• 子空间法比较适合于提取类似中型到大型模型的较 少的振型(<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对任何关于 单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。
• PowerDynamics 法适用于提取很大的模型(100.000个自由
建议: 由于结构的振动特性决定结构对于各种动力载荷的响应
情况,所以在准备进行其它动力分析之前首先要进行模态分析。
计算模态分析
通用运动方程:
• 假定为自由振动并忽略阻尼:
• 假定为谐运动:
这个方程的根是ωi平方, 即特征值, i 的范围从1到自由度的 数目, 相应的向量是{u}I, 即特征向量。
注意• 模态分析假定结构是线性的(如, [M]和[K]保持为常数)
• 在模态分析中一般忽略阻尼,但如果阻尼的效果比较明显, 就要使用阻尼法: – 主要用于回转体动力学中,这时陀螺阻尼应是主要的; – 在ANSYS的BEAM4和PIPE16单元中,可以通过定义实常数 中的SPIN(旋转速度,弧度/秒)选项来说明陀螺效应; – 计算以复数表示的特征值和特征向量。 • 虚数部分就是自然频率; • 实数部分表示稳定性,负值表示稳定,正值表示不确定。
工程实例
① 振动筛—利用共振 ② 破碎机---利用共振 ③ 汽车—避免共振 ④ 电脑机箱—避免共振 ⑤ 悬索桥—避免共振 ⑥ 飞机机翼颤振—避免共振 ⑦ 风扇叶片—表面共振 ⑧ 机床—避免共振

模态分析方法与步骤

模态分析方法与步骤

模态分析方法与步骤模态分析方法与步骤一、模态分析包括下列6种方法:1.降阶法(reduced householder method):该方法为一般结构最常用的方法之一。

其原理是在原结构中选取某些重要的节点为自由度,称为主自由度(master degree of freedom),再用该主自由度来定义结构的质量矩阵及刚度矩阵并求出其频率及振动模态,进而将其结果扩展至全部结构。

在解题过程中该方法速度较快,但其答案较不准确。

主自由度的选择依照所探讨的模态、结构负载的情况而定:a. 主自由度的个数至少为所求频率个数的两倍。

b. 选择主自由度的方向为结构最可能振动的方向。

c. 主自由度节点位于较大质量或转动惯量处及刚性较低位置。

d. 如果弯曲模态为主要探讨模态,则可省略旋转自由度。

e. 主自由度的节点位于施力处或非零位移处。

f. 位移限制为零的位置不能选为主自由度节点,因为这种节点具有高刚性的特性。

可以用M命令来定义主自由度。

此外,也可由ANSYS自动选择自由度。

2. 次空间法(subspace method):通常用于大型结构中,仅探讨前几个振动频率,所得到结果较准确,不需要定义主自由度,但需要较多的硬盘空间及CPU时间。

求取的振动模态数应该小于模型全部自由度的一半。

3. 非对称法(unsymmetrical method):该方法用于质量矩阵或刚度矩阵为非对称时,例如转子系统。

其特征值(eigenvalue)为复数,实数部分为自然频率;虚数部分为系统的稳定度,正值表示不稳定,负值表示稳定。

4. 阻尼法(damped method):该方法用于结构系统具有阻尼现象时,其特征值为复数,虚数部分为自然频率;实数部分为系统的稳定度,正值表示不稳定,负值表示稳定。

5. 区块法(block lanczos method):该方法用于大型结构对称的质量及刚度矩阵,和次空间方法相似,但收敛性更快。

6. 快速动力法(power dynamics method):该方法用于非常大的结构(自由度大于100,000)且仅需最小几个模态。

第十二章 模态分析及模态试验

第十二章 模态分析及模态试验
工程信号分析及处理
汽车学院 靳晓雄
2018年11月9日星期五
同济大学汽车学院振动噪声研究所
1
第十二章 模态分析与模态试验
12-1 引言 12-2 频响函数与模态参数的关系 12-3 模态识别的图解方法 12-4 模态识别的曲线拟合法 12-5 模态试验系统 12-6 传感器及其安装 12-7 传感器的标定 12-8 试验结果的检验
——模态密度
同济大学汽车学院振动噪声研究所 10
当系统p点作用激振力时,结构l点的响应为:
X l ( ) li qi ( )
n
X l ( ) Hlp ( ) Fp ( )
n
li pi ( 2 ) F ( ) i 1 mi jci ki
n
i 1
一、迭代法 将频响函数表示为模态的实虚频形式
H R ( ) Ri X i
i 1 N
1 i2 Ri (1 i2 )2 (2i )2
1 Xi kii
2018年11月9日星期五
同济大学汽车学院振动噪声研究所
22
H I ( ) I iYi
i 1
N
(2 i )2 i Ii (1 i2 )2 (2i )2
j 1
M
各阶模态频率可以先根据频响函数确定,对预 估计 的初始值。 ER 令: 0 得线性方程组: X i
R R X RH R
T
(1) (2)
24
I I Y I H R
T
2018年11月9日星期五
同济大学汽车学院振动噪声研究所
i i
T
上式还可表示为:
H ( )

铁道客车及动车组模态试验方法及评定

铁道客车及动车组模态试验方法及评定

铁道客车及动车组模态试验方法及评定以铁道客车及动车组模态试验方法及评定为标题的文章铁道客车和动车组是现代铁路交通的重要组成部分,为了确保其运行安全和性能可靠,需要对其进行模态试验和评定。

本文将介绍铁道客车及动车组模态试验的方法和评定过程。

一、铁道客车及动车组模态试验方法1. 试验目标和内容铁道客车及动车组模态试验的目标是评估车辆的振动特性和动力学性能,包括车体的固有频率、振型、阻尼比等。

试验内容主要包括静态试验和动态试验两部分。

2. 试验装置和设备为了进行模态试验,需要准备相应的试验装置和设备。

静态试验主要使用试验台和测力传感器等设备,动态试验则需要使用振动台、激振器、加速度传感器等设备。

3. 试验步骤模态试验一般分为准备工作、试验准备、试验执行和数据处理四个步骤。

准备工作包括确定试验方案、选择试验装置和设备,制定试验计划等。

试验准备阶段需要进行试验装置的校准和试验设备的安装调试。

试验执行阶段是实际进行试验的过程,需要按照试验方案进行振动激励、数据采集等操作。

数据处理阶段是对试验数据进行分析和评定,得出相应的结论。

二、铁道客车及动车组模态试验评定1. 试验数据处理试验数据的处理是模态试验评定的重要环节。

首先需要对试验数据进行滤波处理,去除噪声干扰。

然后进行傅里叶变换,将时域数据转化为频域数据。

接着进行频谱分析,得到车体的固有频率和振型等信息。

2. 评定指标铁道客车及动车组的模态评定主要包括以下几个指标:固有频率、振型、阻尼比和模态质量等。

固有频率是车体固有振动的频率,是衡量车体刚度和质量分布的重要指标。

振型是车体在不同频率下的振动形态,可以直观地反映车体的振动特性。

阻尼比是衡量车体振动衰减能力的指标,越大表示振动衰减越快。

模态质量是指车体在不同频率下各模态的质量分布,可以反映车体结构的合理性和均匀性。

3. 评定结果根据试验数据处理和评定指标,可以得出铁道客车及动车组的模态评定结果。

评定结果可以用来指导车体设计和改进,提高车辆的运行安全性和舒适性。

结构模态分析实验报告

结构模态分析实验报告

一、实验目的1. 理解结构模态分析的基本原理和方法;2. 掌握结构模态分析实验步骤和数据处理方法;3. 培养动手能力和分析问题的能力;4. 提高对结构动力性能的认识。

二、实验原理结构模态分析是研究结构在受到外部激励时,其自由振动特性的过程。

结构模态分析主要包括以下几个步骤:1. 建立结构模型:根据结构的特点,建立相应的力学模型;2. 划分单元:将结构划分为若干个单元,如梁、板、壳等;3. 单元刚度矩阵:根据单元的几何尺寸和材料特性,计算单元刚度矩阵;4. 总刚度矩阵:将单元刚度矩阵组装成总刚度矩阵;5. 求解特征值和特征向量:求解总刚度矩阵的特征值和特征向量,得到结构的固有频率和振型。

三、实验内容1. 实验设备:结构模态分析实验台、计算机、传感器、数据采集系统等;2. 实验材料:实验台结构、传感器、数据采集卡等;3. 实验步骤:(1)搭建实验台:将实验台结构固定在实验台上,确保结构稳定;(2)安装传感器:在实验台结构上安装传感器,用于测量结构的振动响应;(3)连接数据采集系统:将传感器与数据采集系统连接,设置采集参数;(4)进行实验:对实验台结构施加激励,采集结构的振动数据;(5)数据处理:对采集到的数据进行处理,计算结构的固有频率和振型。

四、实验结果与分析1. 实验数据:实验过程中,采集到实验台结构的振动数据,包括位移、速度、加速度等;2. 数据处理:对实验数据进行处理,计算结构的固有频率和振型;3. 结果分析:(1)固有频率:实验结果表明,实验台结构的固有频率分别为f1、f2、f3、f4、f5等;(2)振型:实验结果表明,实验台结构的振型分别为第1阶振型、第2阶振型、第3阶振型等;(3)分析:根据实验结果,分析实验台结构的动力性能,如刚度、稳定性等。

五、结论1. 通过本次实验,掌握了结构模态分析的基本原理和方法;2. 学会了结构模态分析实验步骤和数据处理方法;3. 提高了动手能力和分析问题的能力;4. 对结构动力性能有了更深入的认识。

(完整版)ANSYS模态分析实例和详细过程

(完整版)ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped),QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。

(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu-Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。

实验模态分析

实验模态分析

•Hale Waihona Puke 动力学优化设计方法实施过程
Ⅰ. 目标函数 1. 结构系统的频率特性: 为了避免共振,必须使结构的固有频率 避开激振力的频率(频 带 )。特别是对最低的前几阶频率。设结构前m阶频率是 i ,要 求经过动力学设计后相应频率的目标值是 i* ,按其偏差的加权平 方和最小来构造如下的目标函数:
J f (Pr ) Wi(ωi ωi* )2
最优解数学描述:
1 F (t , d ) max (1 f1 2 f 2 3 f 3 4 f 4 ) 4 s.t. W W0 , 10m m s2 20m m t d T1 tu , td T3 tu , d 0 D d1
式中, 分别为第1~4阶固有频率的加权系数,分别取
实验模态分析
第一个假设可以通过调节力幅比较频响曲线 第二个假设考虑激振与传感器附加质量对系统频响 函数影响 第三个假设是对响应测点布置的数量 第四个假设是测量频响函数的对比(A/B)(B/A)
实验模态分析 模态试验的基本过程
建模 频响 设别 验证
实验模态分析
实验模态分析
频响函数的定义H1 H2 Hv 频响函数原始定义H1是输出响应(如位移)频谱除以输入力频谱H1(ω) = X(ω) / F(ω),它不能用平均减少噪声,改为 H2(ω) = X(ω)·F(ω)* / F(ω)·F(ω)*= Pxf / Pff Hv(ω) = X(ω)·X(ω)* / F(ω)·X(ω)*= Pxx / Pfx
实验模态分析的实现方法及应用场合
实验模态分析的实现方法及应用场合
• 不测力法适用于桥梁及大型建筑、运行状态的机械设备、不易实现人 工激励结构的实验模态分析; • 单点拾振法和单点激励法适用于中小型结构及大型结构缩比模型的实 验模态分析; • 单点激励多点响应法(SIMO)适用于中小型结构及大型结构缩比模型的 精确实验模态分析;

锤击法模态测试流程

锤击法模态测试流程

锤击法模态测试流程一、测试前的准备。

1. 设备方面。

咱得先把测试要用的设备都找齐喽。

那肯定少不了力锤呀,这力锤就像一个小鼓手,是用来给咱的测试对象“敲敲打打”的。

还有加速度传感器呢,它就像是个小耳朵,专门去听那些被敲击后的反应。

这些设备可得检查好,就像出门前检查自己的东西有没有带齐一样。

比如说力锤的锤头有没有松动呀,加速度传感器的线有没有破损之类的。

2. 测试对象。

再看看咱们要测试的东西,也就是测试对象。

得把它安置在一个合适的地方,这个地方要尽量减少外界的干扰。

要是测试对象是个小零件,那得把它稳稳地固定住,不能让它在被锤击的时候乱动。

要是个大家伙,也得找个相对稳定的支撑,就像给它找个舒服的小窝,这样测试出来的数据才准呢。

二、开始锤击测试。

1. 锤击点的选择。

接下来就到了锤击这个环节啦。

那锤击点的选择可重要了呢。

不能随便乱敲,就像我们不能在墙上乱钉钉子一样。

要根据测试对象的形状、结构来选择合适的锤击点。

比如说,如果是个长方体的东西,我们可以沿着它的棱边或者面的中心位置开始锤击,这样能让它比较均匀地受到力的作用,就像给它做个全身按摩一样。

2. 锤击力度。

锤击的力度也有讲究哦。

不能太轻,太轻了就像给它挠痒痒,测试对象可能都没什么反应,这样得到的数据就不准确啦。

也不能太重,太重了可能会把测试对象给弄坏呢,那可就不好了。

得找到一个合适的力度,这个力度要既能让测试对象有明显的反应,又不会对它造成伤害。

就像我们和朋友开玩笑的时候,力度要刚刚好,这样大家才都开心嘛。

而且每一次锤击的力度尽量保持一致,这样得到的数据才有可比性。

三、数据采集。

1. 传感器的工作。

在锤击的时候,加速度传感器就开始工作啦。

它会很灵敏地捕捉到测试对象因为锤击而产生的振动情况。

这时候就像它在跟我们悄悄说:“看,我听到了好多有趣的东西呢。

”这些捕捉到的数据就会被传输到我们的采集设备上。

2. 采集设备的设置。

采集设备也得设置好。

比如说采样频率呀,这个得根据测试对象的特性来定。

ANSYS模态分析实例和详细过程

ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析1。

模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析.ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2。

模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1)。

建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤.(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu—Solution—Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND。

定义主自由度,仅缩减法使用。

ansys模态分析报告及详细过程

ansys模态分析报告及详细过程

压电变换器的自振频率分析及详细过程1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。

(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。

结构模态测试

结构模态测试
➢ 脉冲激励是一种宽频带激励,其力的频谱较宽,—次 激励可以同时激出多阶模态,因此是一种快速测试技术, 其所需测试时间是正弦激励测试的百分之一。同时由于它 测试设备简单,灵活性大,特别适合于现场试验,从信号 分析的角度看它与随机激励法无多大原则区别,部应同时 采集力和响应信号,都需要作付里叶变换和功率谱分析。 为提高测试精度而采取的措施也大同小异。
机械工程实验教学中心
模态分析实验的步骤
➢ 2、测试结构的联结与支承方式。 ➢ 在进行敲击试验时应尽量保持试件的原有边界条
件,或将包括边界条件在内的整个系统悬挂起来, 或安置于泡沫塑料垫上,以隔绝环境的影响。采 用这种软支承方式时,支承本身的共振频率应远 低于测试结构的第一阶共振频率。一般取为第一 阶共振频率的t/10。因为试验前并不知道结构的 第一阶共振频率是多少,此时可通过改变支承刚 度,然后从预测结果中进行选择。
机械工程实验教学中心
实验原理
➢ 试验模态分析便是通过试验采集系统的输 入输出信号,经过参数识别获得模态参数。 具体做法是:首先将结构物在静止状态下 进行人为激振(或者环境激励),通过测 量激振力与振动响应,找出激励点与各测 点之间的“传递函数”,建立传递函数矩 阵,用模态分析理论通过对试验导纳函数 的曲线拟合,识别出结构的模态参数,从 而建立起结构物的模态模型。
度导纳测量,这样就需要分别对加速度和力传感 器进行标定,用户一般采用相对标定,相对标定 是用一个基准加速度计作为基准,对加速度传感 器及对固定于质量块上的力传感器进行标定。 ➢ 通过示波调整好仪器的状态(如传感器档位、放 大器增益、是否积分以及程控放大倍数等)后, 要在参数设置表中输入各通道的工程单位和标定 值。
➢ 主要模块
1. 几何建模 -将实验对象用线结构建模 2. 信号采集 -采集实验对象输入(出)信号 3. 参数识别-分析实验对象的振型 4. 动画显示-将模型、采集信号、识别出的振型导入,动画

模态分析操作指南

模态分析操作指南

模态分析软件操作说明及实例东方振动和噪声技术研究所1999.3.16目录一模态分析的步骤 (2)1.确定分析的方法 (2)2.测点的选取、传感器的布置 (2)3.仪器连接 (3)4.示波 (3)5.输入标定值 (3)6.采样 (4)7.传递函数分析 (4)8.进行模态分析 (4)二模态分析实例 (5)例一自由梁的模态分析实例 (5)例二楼房的模态分析实例 (15)模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。

模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。

试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。

具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。

东方所研制的模态分析系统,自推出以来参与了许多重大的科研项目如大型航空航天设备(长征火箭、通信卫星、大型雷达、火箭发射平台等)、大桥(火箭激振钱塘江大桥、锤击法激振乌海黄河铁路大桥属国内首次)、大楼、大坝、、机车(汽车)车辆和大型港口机械等,分析精度高、操作简便,尤其是变时基模态分析及高速模态三视图动画技术更是在国内外处于领先地步。

一、模态分析的步骤1. 确定分析的方法DASP中提供的模态分析方法有多输入单输出法、单输入多输出法和多输入多输出方法。

一般采用较多的是多输入单输出或单输入多输出方法,在这两种方法中选取时,视哪一种方法简便而定,如激励装置大、不好移动但传感器移动方便就选取单输入多输出方法(即单点激励、多点移步拾振);如传感器移动不方便但激励装置小、容易移动就选取多输入单输出方法(即单点拾振、多点移步激励)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模态试验及分析的基本
步骤
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
模态试验及分析的基本步骤
1.动态数据的采集及响应函数分析
首先应选取适当的激励方式。

激励方式可以是正弦、随机或瞬态中的任何一种。

激励方式不同,相应的模态参数识别方法也不同。

目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。

然后进行数据采集。

对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。

在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

2.建立结构数学模型
根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。

由于采用的识别方法不同,数学建模可分为频域建模和时域建模。

根据阻尼特性及频率藕合程度又可分为实模态和复模态等。

3.参数识别
按识别域的不同可分为频域法、时域法和混合域法。

激励方式不同,相应的识别参数方法也不尽相同。

并非越复杂的方法识别的结果越可靠。

对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。

4.振型动画
参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。

但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

车身部件的模态试验
1.测点选择和传感器布置
为提高模态参数的识别精度,必须合理布置激励点和响应点的位置,最大限度地减少模态丢失。

激励点的选择方法是选择几个不同的点分别激励,测得几个频响函数,比较这些频率响应函数,选择函数曲线清晰、光滑,在感兴趣的频率范围内相干函数均达到0.9以上的点作为激励点。

对于单点激励的情况,应该确保激励信号能向车身部件的三个方向有效传递。

为了尽可能准确的求解车身部件的动态特性,所有外力作用点,部件和结构的连接点,重要的响应点和质量集中点均应作为测点,某些测点的三个方向都应作为测量点,对于刚度较弱,易产生结构振动辐射噪声的部位测点的布置应适当密集。

测点的
布置应该能够明确显示研究频率范围内的结构模态振型,保证研究的关键点在测点范围内。

由于模态试验的特殊要求,选择加速度传感器时有遵循以下原则:传感器的动态范围宽、工作频段宽、低频性能好、抗干扰能力强、灵敏度好、线性度好、体积小、质量小。

传感器的选择和传感器的安装对测量结果都具有很重要的影响,安装传感器时应确保在具有足够刚性且不增加结构质量的前提下,测量规定方向的真实振动信号。

本试验采用的是带永久磁铁基座的压电式加速度传感器。

2.确定激励方式
模态试验对激励信号有以下要求:包含足够的激励成分;有足够的幅值水平;在结构存在微小非线性因素时,具有一定的抗干扰能力。

常用的激励信号是正弦激励信号(扫频和步进)、随机激励信号(宽带、周期和瞬态)与脉冲信号。

脉冲激励是一种宽频带激励,其力信号的频谱较宽,一次激励可以同时激出多阶模态,而且试验时不会对试件产生附加质量、附加刚度等副作用,同时所需测试设备简单,灵活性较大,特别适用于现场测试,因此本次模态试验的激励方式采用锤击法(脉冲激励法)。

激励点的选择主要考虑:首先,激励点的位置应避开系统任一阶振型的节点,以保证采集的测点信号有较高的信噪比,避免模态遗漏;其次,激励点应选择在便于激励能量传递的位置,一般该位置的刚度应尽量大。

响应点(或测点)的选择主要考虑:基本反应车身结构轮廓;避开各阶振型的节点;能明确显示模态振型的特征;对于模态可能较多的局部区域可增加测点。

在试验过程中,由于车身部件模型饭金冲压件,各饭件之间通过翻边或点焊联结。

倘若采用多点激励、单点拾振(移动激励点、固定响应点)的测试方法,虽然便于试验的进行,但是当敲击车身部件中部时,由于在此处刚度较弱,很容易导致激励信号失真,从而增加了敲击的难度。

因此,试验过程中采用了单点激励、多点拾振的方法。

应该指出,根据动力互易定理,单点激励多点拾振和多点激励单点拾振所得到的结果相同。

3.支承方式
被测车身部件实际工作过程总是处于一定的约束状态中,理论上试验过程中应该重现这种实际的约束状态,但这种要求在实际操作上很难达到,因此试验过程中总是考虑替代的支承方式。

替代的支承方式一般有两种:自由支承和地面支承。

自由支承也叫软支承,实验过程中自由支承只是一种近似,但当我们把支承系统的最高刚体模态频率控制在被测车身部件的最低弹性模态频率的1/5到1/10以内时,那么这种支承系统的近似引起的误差就可以忽略不计,此时的支承就可以近似为自由支承。

地面支承也叫硬支承,理论上要求被测车身部件与地面之间的加速度导纳为零,其振动响应只应包括几万赫兹以上的频率成分。

实际上这种替代的支承方式也很难实现,实际过程很难实现结构与地面连接点处的导纳比其它点的导纳小很多。

本次模态试验采用自由支承即软支承,用几根弹簧软绳将车身部件悬挂起来近似模拟自由状态,通过测试的支承系统的最高刚体模态频率和粗略测试出的车身部件的
最低弹性模态频率来验证所选择的弹簧是否满足要求,测试结果表明这种支承满足试验的精度要求,最终的试验结果表明这种近似对分析结果的影响可以忽略。

4.模态参数辨识
对采集的数据在频域内进行了参数辨识。

根据研究内容选择在0-120Hz范围辨识,辨识的方法为单模态识别法,用峰值拾取法计算频率、阻尼,峰值法计算留数。

进行模态频率的计算,得到试验模态参数如表所示,模态振型如图所示。

相关文档
最新文档