北邮信号与系统matlab实验作业:习题2
信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot, stem, hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。
信号与系统matlab实验试题
、已知某连续系统的系统函数s 4,试用 Matlab 画出该系统的零极点1H ( s)1)3(s图,并分析系统的稳定性。
clc,clear;num=[1 -4];den=[-2 3 -1];zs=roots(num);ps=roots(den);figure(1);plot(real(zs),imag(zs),'o',real(ps),imag(ps),'kx','markersize',12);axis([0 4 -1 1]);grid on;sys=tf(num,den);figure(2);pzmap(sys);axis([0 4 -1 1]);系统不稳定2、已知序列 h(n)= [1, 3,2,0,5]-1f(n) = [1 , 2, 3, 1]2求:y(n) = h(n) *f(n) ,并画出 h( n)、f(n)以及 y( n)的图形(要求在一个大图上画 3 个从上到下排列的子图)。
n1=-1:3;h=[1 3 2 0 5];n2=2:5;f=[1 2 3 1];figure(1);subplot(3,1,1)stem(n1,h)grid on;xlabel(' 输入序列h(n)')subplot(3,1,2)stem(n2,f)grid on;xlabel(' 单位序列响应f(n)')y=conv(h,f)n=n1(1)+n2(1):n1(length(n1))+n2(length(n2))subplot(3,1,3)stem(n,y)grid on;xlabel(' 输出响应y(n)')、已经离散信号z2并写3 f (n) 的z变换为 F ( z),求其单边逆 z 变换 f ( n)z 2z2出其表达式。
F1=sym('(z^2)/(z^2-z-2)');f1=iztrans(F1)f1=simple(f1)表达式: f1 =1/3*(-1)^n+2/3*2^n4、已知序列 f (n)2n e 3n u( n) ,求序列 f(n) 的单边 z 变换 F(z),并写出 F(z)的表达式。
信号与系统matlab实验傅里叶分析及应用报告答案
实验二傅里叶分析及应用姓名学号班级一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件需要一台PC机和一定的matlab编程能力三、实验内容2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。
符号运算法:Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))');Fw = fourier(Ft);ezplot(abs(Fw)),grid on;phase = atan(imag(Fw)/real(Fw));ezplot(phase);grid on;title('|F|');title('phase');w+4 sin(w) w sin(lZ2 conj(f2 sin(1/2 cos(w)-nsin(1Z2 v^2-sin(w) w+4 sin(w) w sin(lZ2 w)2)/w*))/(2 (2 sin(1/2 w)2cos(w)+sin(l^0---------------------------------------------------------------4-6 ・2 0 2 4 6w3、试用Matlab命令求Fj ■)二103 j ■的傅里叶反变换,并绘出其时域信号图4 abs((2 sm(1/2 w)2c o s(w)+s i n(1 fi. w)2-sin(w) w+4 w sm(W 戒时3210[注意:⑴写代码时j i]abs((2 hBavisidB(l)-1) (5 exp(-3 i exp[-5 i t]))syms tFw = sym('10/(3+iw)-/(5+iw)'); ft = ifourier(Fw,t);F = abs(ft);ezplot(F,[-3,3]),grid on;4、已知门函数自身卷积为三角波信号,试用Matlab命令验证FT的时域卷积定理。
MATLAB实验报告北京邮电大学
Matlab实验报告学院:信息与通信工程学院班级:201321113学号:2013210381班内序号:18姓名:石雪原实验题目1.实现重叠相加和重叠保留算法一.实验原理重叠相加法和重叠保留法的实质都是以逐段地方式通过循环卷积来完成线性卷积的计算。
将输入序列x (n)进行分段,每段长为N,且N>M(M为有限长因果序列h (n)的长度),x (n) 逐段与h (n)进行循环卷积,在重叠保留法中需在x (n)序列首部加入长度为M-1的0序列。
在算法中,在获得N个点的输入后,进行N+M-1点循环卷积计算,之后输出N个点。
通过for循环逐段进行循环卷积,使用FFT和IFFT 计算两个有限长序列的N点循环卷积结果。
二.源代码和流程图重叠相加法代码function [Y]=overpl(x,h,N)Lx=length(x); % 序列长度M=length(h); %h (n )长度x=[x,zeros(1,N-1)];t=zeros(1,M-1);Y=zeros(1,Lx+M-1);a=floor(Lx/N);for k=0:aA=x(k*N+1:k*N+N);y1=fft(A,Lx+M-1); % 利用fft 进行运算y2=fft(h,Lx+M-1);y3=y1.*y2;q=ifft(y3,Lx+M-1);Y(k*N+1:k*N+M-1)=q(1:M-1)+t(1:M-1);Y(k*N+M:k*N+N)=q(M:N);t(1:M-1)=q(N+1:N+M-1);endY(1:Lx+M-1);对应流程图图一:每段利用fft和ifft实现循环卷积图二:对X (n)逐段进行循环卷积然后相加得输出线性卷积结果y (n)重叠保留法代码fun cti on [Y]二overlpsav(x,h,N)Lx=le ngth(x);M=le ngth(h);M仁M -1;L=N-M1;h=[h,zeros(1,N-M)];图x=[zeros(1,M1),x,zeros(1,N-1)];a 二floor ((Lx+M1-1)/(L))+1; Y=zeros(1,N); for k=0:a-1 xk=x(k*L+1:k*L+N); b=fft(xk,N); C=fft(h,N); Z=b.*C;Y (k+1,:)=ifft(Z,N); end Y=Y (:,M:N): Y=( Y(:))'对应流程图装成单列向量再转置成行向量 输出输入数据 x I 各段搭接长 长度及脉冲 —\度M1,有效 响应长度k数据长度L将h 延长 至循环 长度N㈡把x 前面 加上(M- 1)个零各段进 行卷积把 K+1X N 阶输出矩 阵Y 初始 化Y 中各行均去 掉前M-1个样 Z 本,转置后构V成新的Y三.实验结果重叠相加法x=[1,2,3] h二[1,2,3] N=41 5]? 3X] 1 K 12 9 0緒=1 1 10 12 9 0重叠保留法x=[1,2,3,4,5,6,7,8,9,10] h=[1,0,-1] N=4四.结果分析(有关运算量的定量分析结果)有限长因果序列x (n)h (n)的长度分别为N和M直接计算线性卷积y (n),y(n)可视为N个序列的叠加结果,序列长度为M 所以每生成一个序列需完成M次乘法,共需完成MN次乘法运算。
(完整word版)信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin (pi/4*n )。
*0。
8。
^n ;stem(n,x);xlabel( 'n’ );ylabel( 'x (n)’ );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace (—4,7); a=1; t0=2;y=sinc(a*t-t0);plot(t,y);t=linspace(—4,7);a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7);t0=2;y=sinc (a *t —t0); plot(t,y );三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz , 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot , stem , hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz ,20Hz ,30Hzxa = cos(2*pi*f1*t) ;subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)’) ;ylabel('Xa(t)’) ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '。
信号与系统matlab实验傅里叶分析及应用报告答案
实验二傅里叶分析及应用姓名学号班级一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件需要一台PC机和一定的matlab编程能力三、实验内容2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。
符号运算法: Ft=sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase');3、试用Matlab 命令求ωωωj 54-j 310)F(j ++=的傅里叶反变换,并绘出其时域信号图。
[注意:(1)写代码时j i]syms tFw = sym('10/(3+iw)-4/(5+iw)');ft = ifourier(Fw,t);F = abs(ft);ezplot(F,[-3,3]),grid on;4、已知门函数自身卷积为三角波信号,试用Matlab命令验证FT的时域卷积定理。
MATLAB数学实验第二版课后练习题含答案
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
北邮Matlab仿真 实验
[键入公司名称]Matlab仿真实验[键入文档副标题]2010211201陈建文102109872012-12-10实验报告主要内容是对3个实验的完成过程的介绍和总结目录数字信号的FFT分析 (2)DTMF信号的编码 (6)FIR数字滤波器的设计和实现 (10)错误分析 (14)经验总结 (15)实验一:数字信号的FFT分析:实验目的:(1)用傅立叶变换进行分析是基本参数的选择。
(2)经过离散时间傅立叶变换和有限长度离散傅立叶变换后信号频谱上的区别,前者DTMF时间域是离散信号,频率域还是连续的,而DFT在两个区域中都是离散的。
(3)离散傅立叶变换的基本原理、特性,以及经典的快速算法,体会快速算法的效率(4)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时域分析的学习和研究大侠基础。
(5)建立DFT从整体上可看成是有窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如DVD AC3和 MPEG Audio。
实验内容和要求:(1)离散信号的频谱分析:设信号 x(n)=0.001*cos(0.45n*pi)+sin(0.3n*pi)-cos(0.302n*pi-pi/4)此信号的0.3pi和0.302pi的两根频谱线相距很近,谱线0.45pi的幅度很小,请选择合适的序列长度N和窗函数,用DFT分析其频谱,要求得到清楚的三根谱线。
(2)DTMF信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF)拨号数字0——9的数据,采用快速傅立叶变换(FFT)分析这10个号码DTMF拨号是的频谱。
设计思路1:只要将x(n)表达式敲入,再利用fft(x(n),N)函数进行傅立叶变换,之后再用subplot函数进行图形绘制,本题关键在于N的确定,只有合适的大小才能满足题目要求。
代码1:N = 1000; % Length of DFT n = [0:1:N-1];xn = 0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);Xk = fft(xn,N);xn1=0.001*cos(0.45*n*pi);Xk1 = fft(xn1,N);xn2=sin(0.3*n*pi);Xk2 = fft(xn2,N);xn3=-cos(0.302*n*pi-pi/4);Xk3 = fft(xn3,N);k=[0:1:N/2];subplot(5,1,1);stem(k,abs(xn(1:1:(N/2+1))),'.');title('x(n)');xlabel( 'k');axis([140,240,0,4]);subplot(5,1,2);stem(k,abs(Xk(1:1:(N/2+1))),'r.');title('DFT0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4)');xlabel('k');axis([140,240,0,4]);subplot(5,1,3);stem(k,abs(Xk1(1:1:(N/2+1))),'g.');title('DFpi)');xlab el('k');axis([140,240,0,4]);subplot(5,1,4);stem(k,abs(Xk2(1:1:(N/2+1))),'b');title('DFTsin(0.3*n*pi)');xlabel('k');axis([140,240,0,4]);subplot(5,1,5);stem(k,abs(Xk3(1:1:(N/2+1))));title('DFT -cos(0.302*n*pi-pi/4)');xlabel('k');axis([140,240,0,4]);3 / 15截图 1:从图中可以看出,后边三幅图片的频谱特性还是有比较明显的区别的。
(完整版)信号与系统Matlab实验作业
(完整版)信号与系统Matlab实验作业实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab 画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。
二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t f t e u t u t =----的波形图。
function y=u(t) y=t>=0; t=-3:0.01:3;f='exp(t)*(u(6-3*t)-u(-6-3*t))'; ezplot(f,t); grid on;2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的< p="">波形图。
t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)'; f2='exp(0.4*t)*sin(8*t)'; figure(1) ezplot(f1,t); grid on; figure(2) ezplot(f2,t); grid on;t=-10:0.01:10; f='sin(t)/t'; ezplot(f,t); grid on;t=0:0.01:10;f='(sign(t-3)+1)/2'; ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为?,幅度为1/?的矩形脉冲,即t=t 1处的冲击信号为11111()()0 t t t x t t t otherδ??<<+?=-=画出0.2?=, t 1=1的单位冲击信号。
t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))'; ezplot(f,t); grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。
基于MATLAB的信号与系统实验指导编程练习
2连续时间信号在M A T L A B中的表示2-1.利用MATLAB命令画出下列连续信号的波形图(1)>> t=0:0.01:3;>> ft=2*cos(3*t+pi/4);>> plot(t,ft),grid on;>> axis([0 3 -2.2 2.2]);>> title('2cos(3t+pi/4)')(2)>> t=0:0.01:3;>> ft=2-exp(-t);>> plot(t,ft),grid on;>> title('(2-exp(-t))u(t)')(3)>> t=-1:0.01:1;>> ft=t.*(uCT(t)-uCT(t-1));>> plot(t,ft),grid on>> axis([-1 1 -0.2 1.2]);>> title('t[u(t)-u(t-1)]')(4)>> t=-1:0.01:3;>> ft=(1+cos(pi*t)).*(uCT(t)-uCT(t-2)); >> plot(t,ft),grid on>> axis([-1 3 -0.2 2.2]);>> title('[1+cos(pi*t)][u(t)-u(t-2)]')2-2.利用MATLAB命令画出下列复信号的实部、虚部、模和辐角(1)>> t=0:0.01:3;>> ft=2+exp(i*(pi/4)*t)+exp(i*(pi/2)*t);>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 4]);grid on;>> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on;>> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相角');axis([0 3 0 2]);grid on;(2)t=0:0.01:3;>> ft=2*exp(i*(t+pi/4));>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 2]);grid on;>> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on;>> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相角');axis([0 3 0 4]);grid on;2-3.利用MATLAB命令产生幅度为1、周期为1、占空比为0.5的一个周期矩形脉冲信号>> t=-0.5:0.01:3;>> ft=square(2*pi*t,50);>> plot(t,ft);grid on;axis([-0.5 3 -1.2 1.2]);>> title('幅度为1、周期为1、占空比0.5的周期举行脉冲信号')3连续时间信号在MATLAB中的运算3-1.试用MATLAB命令绘出以下信号的波形图(1)>> syms x t;>> t=-1:0.01:1;>> x=exp(-t).*sin(10*pi*t)+exp(-0.5*t).*sin(9*pi*t);>> plot(t,x)(2)>> syms x t;>> t=-1:0.01:1;>> x=sinc(t).*cos(10*pi*t);>> plot(t,x)3-2.已知连续时间信号f(t)的波形如图3-6所示,试用MATLAB 命令画出下列信号的波形图先画出图3-6:>> t=-2:0.01:2;>>f=(-t-1).*(-uCT(t+2)+uCT(t+1))+uCT(t+1)+uCT(t)-uCT(t-1)-(t-1).*(uCT(t-1)-uCT(t-2))-uC T(t-2);>> plot(t,f)>> axis([-4 4 -1 2])>> title('图3-6')>> t=-2:0.01:2;>> f1=funct2(t-1);>> f2=funct2(2-t);>> f3=funct2(2*t+1);>> f4=funct2(4-t/2);>> f5=(funct2(t)+funct2(-t)).*uCT(t);>> subplot(231);plot(t,f1);grid on;title('f(t-1)');axis([-3 3 -1 2]);>> subplot(232);plot(t,f2);grid on;title('f(2-t)');axis([-3 3 -1 2]);>> subplot(233);plot(t,f3);grid on;title('f(2t-1)');axis([-3 3 -1 2]);>> subplot(234);plot(t,f4);grid on;title('f(4-t/2)');axis([-3 3 -1 2]);>> subplot(235);plot(t,f5);grid on;title('(f(t)+f(-t))u(t)');axis([-3 3 -1 2]);3-3.试用MATLAB命令绘出如图3-7所示信号的偶分量和奇分量>> t=0:0.01:2;>> f=(uCT(t)-uCT(t-2)).*(-t+1);>> plot(t,f);title('图3-7')>> f1=fliplr(f);>> fe=(f+f1)/2;fo=(f-f1)/2;>> subplot(211),plot(t,fe);grid on>> title('fe')>> subplot(212),plot(t,fo);grid on;title('fo')4连续时间信号的卷积计算4-1用MATLAB命令绘出下列信号的卷积积分的时域波形图>> dt=0.001;t1=-0.5:dt:3.5;>> f1=uCT(t1)-uCT(t1-2);>> t2=t1;>> f2=uCT(t2)+uCT(t2-1)-uCT(t2-2)-uCT(t2-3);>> [t,f]=ctsconv(f1,f2,t1,t2,dt);6周期信号的傅里叶级数及频谱分析6-1已知周期三角信号如图6-5所示,试求出该信号的傅里叶级数,利用MATLAB编程实现其各次谐波的叠加,并验证其收敛性。
信号与系统 matlab实验报告
信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。
通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。
实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。
在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。
通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。
实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。
这就需要进行信号的采样和重构。
在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。
实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。
在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。
此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。
实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。
在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。
通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。
实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。
在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。
通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。
信号与系统实验指导全部实验答案
信号与系统实验指导全部实验答案实验一连续时间信号的MATLAB 表示实验目的 1.掌握MATLAB 语言的基本操作,学习基本的编程功能; 2.掌握MATLAB 产生常用连续时间信号的编程方法;3.观察并熟悉常用连续时间信号的波形和特性。
实验原理:1. 连续信号MA TLAB 实现原理从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。
然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB 处理,并且能较好地近似表示连续信号。
MATLAB 提供了大量生成基本信号的函数。
比如常用的指数信号、正余弦信号等都是MATLAB 的内部函数。
为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。
实验内容:正弦信号抽样信号矩形脉冲信号单位跃阶信号实验编程:(1)t=0:0.01:3;K=2;a=-1.5;w=10; ft=K*exp((a+i*w)*t); A=real(ft); B=imag(ft); C=abs(ft);D=angle(ft);subplot(2,2,1),plot(t,A),grid on;title('实部');subplot(2,2,2),plot(t,B),grid on;title('虚部'); subplot(2,2,3),plot(t,C),grid on;title('取模'); subplot(2,2,4),plot(t,D),grid on;title('相角');实部2211-1-2-1取模相角25100-5(2)t=0:0.001:3;y=square(2*pi*10*t,30);方波信号plot(t,y);axis([0,1,-1,1]); title('方波信号');0.5-0.5-1 00.20.40.60.81(3)t=-2:0.01:2;y=uCT(t+0.5)-uCT(t-0.5); plot(t,y),grid on axis([-2,2,0,1.5]); xlabel('t(s)'),ylabel('y(s)') title('门函数')10.50 -2-1.5-1-0.5门函数y (s )0t(s)0.511.52实验二连续时间LTI 系统的时域分析实验目的1.运用MATLAB 符号求解连续系统的零输入响应和零状态响应; 2.运用MATLAB 数值求解连续系统的零状态响应; 3.运用MATLAB 求解连续系统的冲激响应和阶跃响应;4.运用MATLAB 卷积积分法求解系统的零状态响应。
信号与系统——Matlab部分习题
课程设计(论文)课程名称:信号与系统课程论文题目:信号与系统——MATLAB课程设计姓名:系:专业:物理学(电子信息工程方向)年级:大学二年级学号:指导教师:职称:2017年 5 月22日目录摘要---------------------------------------------------------------------- 1关键词-------------------------------------------------------------------- 1一、M2-7 --------------------------------------------------------------- 21、问题重述--------------------------------------------------------------- 22、问题分析--------------------------------------------------------------- 23、仿真程序与仿真结果----------------------------------------------------- 2(1)仿真程序---------------------------------------------------------------------------------------------------------- 2频率为262Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 2频率为294Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 3频率为330Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 3频率为349Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 4频率为392Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 4频率为440Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 5频率为494Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 5频率为524Hz的正弦信号声音波形 ------------------------------------------------------------------------------- 6结果分析:--------------------------------------------------------------------------------------------------------------- 6(2)仿真程序:------------------------------------------------------------------------------------------------------- 6仿真结果:--------------------------------------------------------------------------------------------------------------- 7结果分析:--------------------------------------------------------------------------------------------------------------- 7(3)仿真程序:------------------------------------------------------------------------------------------------------- 7仿真结果:--------------------------------------------------------------------------------------------------------------- 7结果分析:--------------------------------------------------------------------------------------------------------------- 8二、M3-3 ------------------------------------------------------------------ 81、问题重述--------------------------------------------------------------- 82、问题分析--------------------------------------------------------------- 83、仿真程序与仿真结果----------------------------------------------------- 8(1)仿真程序:------------------------------------------------------------------------------------------------------- 8仿真结果:--------------------------------------------------------------------------------------------------------------- 8结果分析:--------------------------------------------------------------------------------------------------------------- 9(2)仿真程序:------------------------------------------------------------------------------------------------------- 9仿真结果:--------------------------------------------------------------------------------------------------------------- 9结果分析:--------------------------------------------------------------------------------------------------------------- 9三、M4-3 ----------------------------------------------------------------- 101、问题重述:------------------------------------------------------------ 102、问题分析-------------------------------------------------------------- 103、仿真程序与仿真结果---------------------------------------------------- 10(1)仿真程序:----------------------------------------------------------------------------------------------------- 10仿真结果:------------------------------------------------------------------------------------------------------------- 10结果分析:------------------------------------------------------------------------------------------------------------- 10(2)仿真程序:----------------------------------------------------------------------------------------------------- 11仿真结果:------------------------------------------------------------------------------------------------------------- 11结果分析:------------------------------------------------------------------------------------------------------------- 12(3)女声变男声:-------------------------------------------------------------------------------------------------- 12仿真程序:------------------------------------------------------------------------------------------------------------- 12仿真结果:------------------------------------------------------------------------------------------------------------- 12结果分析:------------------------------------------------------------------------------------------------------------- 124、自主学习内容---------------------------------------------------------- 125、阅读文献-------------------------------------------------------------- 126、发现问题-------------------------------------------------------------- 127、问题探究-------------------------------------------------------------- 13信号与系统——MATLAB课程设计摘要:1.(1)掌握信号的建模,了解基本信号及其特点;(2)掌握基本信号的叠加及播放;(3)掌握MA TLAB对语音信号的读取与播放及其时域波形分析。
北邮数字信号处理MATLAB实验报告
数字信号处理软件实验——MatLab仿真实验报告学院:电子工程学院班级:2013211202姓名:学号:实验一:数字信号的 FFT 分析1、实验内容及要求(1) 离散信号的频谱分析:设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。
(2) DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。
2、实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。
(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。
(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。
(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。
(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。
3.设计思路及实验步骤1)离散信号的频谱分析:该信号中要求能够清楚的观察到三根谱线。
由于频率0.3pi 和0.302pi 间隔非常小,要清楚的显示,必须采取足够大小的N ,使得分辨率足够好,至少到0.001单位级,而频率0.45pi 的幅度很小,要清楚的观察到它的谱线,必须采取幅度够大的窗函数,使得它的频谱幅度变大一些。
同时还要注意频谱泄漏的问题,三个正弦函数的周期(2pi/w )分别为20,40,1000,所以为了避免产生频谱泄漏(k=w/w0为整数),采样点数N 必须为1000的整数倍。
北邮数字信号处理Matlab仿真实验
《数字信号处理》Matlab 实验一.离散信号的 FFT 分析知识点:利用FFT 对信号频谱进行分析,用DFT 进行信号分析时基本参数的选择,以及信号经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT )后信号频谱上的区别。
实验教学内容:1.用Matlab 编程上机练习。
已知: N=25。
这里Q=0.9+j0.3。
可以推导出 ,首先根据这个式子计算X(k)的理论值,然后计算输入序列x(n)的32个值,再利用基2时间抽选的FFT 算法,计算x(n)的DFT X(k),与X(k)的理论值比较(要求计算结果最少6位有效数字)。
解:format long Q=0.9+0.3i;WN=exp(-2*pi*1i/32);Xk=(1-Q^32)./(1-Q*WN.^[0:24]); xn=Q.^[0:24]; Xkfft=fft(xn,32); for (k0=1:1:25)difference=Xk(k0)-Xkfft(k0); end;subplot(3,1,1);stem(abs(Xk(1:1:24)),'.');title('DFT x(n)');xlabel('k');axis([0,35,0,15]);subplot(3,1,2);stem(abs(Xkfft(1:1:32)),'g.');title('FFT x(n)');xlabel('k');axis([0,35,0,15]);subplot(3,1,3);stem(abs(difference(1:1:25)),'r.');title('Xk-Xkfft');xlabel('k');axis([0,35,0,15]);0n N-1()0 n 0, n Nn Q x n ⎧≤≤=⎨<≥⎩11,011)()()(kk1nk1-=--===∑∑-=-=N k QW Q QW W n x k X NNnN N n NN n ,2. 假设信号 x(n) 由下述信号组成:请选择合适的长度 N 和窗函数,用 DFT 分析其频谱,得到清楚的三根谱线。
北邮数字信号处理软件实验Matlab
数字信号处理软件实验MATLAB 仿真2015年12月16日实验一:数字信号的 FFT 分析● 实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。
(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT )后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。
(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。
(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。
(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。
● 实验内容及要求⏹ 离散信号的频谱分析设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。
⏹ DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。
00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--●MATLAB代码及结果⏹离散信号的频谱分析clf;close all;N=1000;n=1:1:N;x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);y=fft(x,N);mag=abs(y);w=2*pi/N*[0:1:N-1];stem(w/pi,mag);axis([0.25 0.5 0 2]);xlabel('频率');ylabel('X(k)');grid on;DTMF 信号频谱分析clear;close all;column=[1209,1336,1477,1633];line=[697,770,852,941]fs=10000;N=1024;ts=1/fs;n=0:N-1;f=0:fs/N:fs/N*(N-1);key=zeros(16,N);key(1,:)=cos(2*pi*column(1)*n*ts)+cos(2*pi*line(1)*n*ts);key(2,:)=cos(2*pi*column(2)*n*ts)+cos(2*pi*line(1)*n*ts);key(3,:)=cos(2*pi*column(3)*n*ts)+cos(2*pi*line(1)*n*ts);key(4,:)=cos(2*pi*column(1)*n*ts)+cos(2*pi*line(2)*n*ts);key(5,:)=cos(2*pi*column(2)*n*ts)+cos(2*pi*line(2)*n*ts);key(6,:)=cos(2*pi*column(3)*n*ts)+cos(2*pi*line(2)*n*ts);key(7,:)=cos(2*pi*column(1)*n*ts)+cos(2*pi*line(3)*n*ts);key(8,:)=cos(2*pi*column(2)*n*ts)+cos(2*pi*line(3)*n*ts);key(9,:)=cos(2*pi*column(3)*n*ts)+cos(2*pi*line(3)*n*ts);key(10,:)=cos(2*pi*column(2)*n*ts)+cos(2*pi*line(4)*n*ts);figure (1);for i=1:5subplot(1,5,i)plot(f,abs(fft(key(i,:))));grid;endfigure (2);for i=1:5subplot(1,5,i)plot(f,abs(fft(key(i+5,:))));grid;end0-9数字故障分析和解决方法对于取样点数N难以确定。
北京邮电大学MATLAB实验报告
DSP--MATLAB实验报告实验名称:MATLAB第一次上级实验学生姓名:班级:班内序号:学号:日期:1.实验要求(1) 常用数字信号序列的产生:熟悉Matlab 产生数字信号的基本命令,加深对数字信号概念的理解,并能够用Matlab 产生和绘制出一些常用离散信号序列。
请用Matlab 画出下列序列的波形(-10<n<10):a) δ(n)b) 单位阶跃序列2 u(n-5)c) 矩形序列R(n)d) y(n)=2sin(0.3πn)+ 0.5cos2(0.6πn)(2)加、减、尺度(乘除)和移位是数字信号处理中最基本的算术运算,将上述基本序列进行这些基本运算,得到多个序列构成的组合序列。
(3)请用您的计算机声卡采用一段您自己的声音x(n),长度为45秒,单声道,取样频率44.1kHz,16bit/样值,然后与给定的一段背景音乐y(n) 按下式叠加为一个声音信号z(n):z(n) = 0.7x(n) + 0.3y(n)要求在同一个Figure 中,画出采集声音x(n)、背景音乐y(n)和混音z(n) 的时域波形;2关键算法分析产生δ(n),单位阶跃序列 2 u(n-5),矩形序列R(n),y(n)=2sin(0.3πn)+ 0.5cos2(0.6πn)序列,首先在matlab中新建一个m文件,将各种序列的定义写进去,再在命令窗口中写入命令语句,便可得到。
单位取样序列x=impseq(0,-20,120);n=[-20:120]; >> plot(n,x)单位阶跃序列2 u(n-5) :x=stepseq(5,-20,120),n=[-20:120];plot(n,2*x)矩形序列R(n):x1=stepseq(-10,-10,60),n1=[-10:60],x2==stepseq(10,-10,60),n2=[-10:60],y=x1-x2,n= [-10:60],plot(n,y)y(n)=2sin(0.3πn)+ 0.5cos2(0.6πn):n=[0:0.1:20];x=2*sin(0.3*pi*n)+0.5*cos(2*0.6*pi*n);plot(n,x)加法:δ(n)+ 2 u(n-5):x1=impseq(0,-20,120);n=[-20:120];x2=2*stepseq(5,-20,120),n=[-20:120];y=x1+x2,plot(n,y)减法:δ(n)- 2 u(n-5):x1=impseq(0,-20,120);n=[-20:120]; x2=2*stepseq(5,-20,120),n=[-20:120];y=x1-x2,plot(n,y)乘法: δ(n)- 2 u(n-5): x1=impseq(0,-20,120);n=[-20:120]; x2=2*stepseq(5,-20,120),n=[-20:120];y=x1.*x2,plot(n,y)一个figure中显示多个波形:[y,fs,bits]=wavread('我的声音'),t1=(0:length(y)-1)/fs;[x,fs,bits]=wavread('天空之城'),t2=(0:length(x)-1)/fs;subplot(2,2,1),plot(t1,y);subplot(2,2,2),plot(t2,x);3. 程序运行结果单位取样序列单位阶跃序列2 u(n-5)矩形序列:y(n)=2sin(0.3πn)+ 0.5cos2(0.6πn)::加法:δ(n)+ 2 u(n-5) 乘法: u(n)*R5:移位:一个figure中显示多个波形:4. 总结通过这次实验,我对MATLAB的使用了解了许多,尤其是在对声音和图像的处理方面。
信号与系统课后matlab作业
M2-1(1)t=-2:0.001:4;T=2;xt=rectpuls(t-1,T); plot(t,xt)axis([-2,4,-0.5,1.5])图象为:(2)t=sym('t');y=Heaviside(t); ezplot(y,[-1,1]);grid onaxis([-1 1 -0.1 1.1])图象为:(3)A=10;a=-1;B=5;b=-2;t=0:0.001:10;xt=A*exp(a*t)-B*exp(b*t); plot(t,xt)图象为:(4)t=sym('t');y=t*Heaviside(t);ezplot(y,[-1,3]);grid onaxis([-1 3 -0.1 3.1])图象为:(5)A=2;w0=10*pi;phi=pi/6;t=0:0.001:0.5;xt=abs(A*sin(w0*t+phi));plot(t,xt)图象为:(6)A=1;w0=1;B=1;w1=2*pi;t=0:0.001:20;xt=A*cos(w0*t)+B*sin(w1*t); plot(t,xt)图象为:(7)A=4;a=-0.5;w0=2*pi;t=0:0.001:10;xt=A*exp(a*t).*cos(w0*t); plot(t,xt)图象为:(8)w0=30;t=-15:0.001:15;xt=cos(w0*t).*sinc(t/pi);plot(t,xt)axis([-15,15,-1.1,1.1])图象为:M2-3(1)function yt=x2_3(t)yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5);(2) function yt=x2_3(t)yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5);t=0:0.001:6;subplot(3,1,1)plot(t,x2_3(t))title('x(t)')axis([0,6,-2,3])subplot(3,1,2)plot(t,x2_3(0.5*t))title('x(0.5t)')axis([0,11,-2,3])subplot(3,1,3)plot(t,x2_3(2-0.5*t))title('x(2-0.5t)')axis([-6,5,-2,3])图像为:M2-9(1)k=-4:7;xk=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1];stem(k,xk,'file')(2)k=-12:21;x=[-3,0,0,-2,0,0,3,0,0,1,0,0,-2,0,0,-3,0,0,-4,0,0,2,0,0,-1,0,0,4,0,0,1,0,0,-1];subplot(2,1,1)stem(k,x,'file')title('3倍内插')t=-1:2;y=[-2,-2,2,1];subplot(2,1,2)stem(t,y,'file')title('3倍抽取')axis([-3,4,-4,4])(3)k=-4:7;x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1]; subplot(2,1,1)stem(k+2,x,'file')title('x[k+2]')subplot(2,1,2)stem(k-4,x,'file')title('x[k-4]')(4)k=-4:7;x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1]; stem(-fliplr(k),fliplr(x),'file') title('x[-k]')M3-1(1)ts=0;te=5;dt=0.01;sys=tf([2 1],[1 3 2]);t=ts:dt:te;x=exp(-3*t);y=lsim(sys,x,t);plot(t,y)xlabel('Time(sec)') ylabel('y(t)')(2)ts=0;te=5;dt=1;sys=tf([2 1],[1 3 2]);t=ts:dt:te;x=exp(-3*t);y=lsim(sys,x,t)y =0.6649-0.0239-0.0630-0.0314-0.0127从(1)(2)对比我们当抽样间隔越小时数值精度越高。