新版人教版高中数学必修一期末综合测试题含答案

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

人教a版高一数学期末考试试题及答案

人教a版高一数学期末考试试题及答案

人教a版高一数学期末考试试题及答案人教A版高一数学期末考试试题一、选择题(每题4分,共40分)1. 函数f(x) = 2x - 3的零点是()A. x = 3/2B. x = -3/2C. x = 1D. x = 02. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B为()A. {1, 2}B. {2}C. {1}D. 空集3. 若a,b,c是等差数列,则下列等式成立的是()A. 2b = a + cB. 2b = a - cC. 2b = a + c + 1D. 2b = a - c + 14. 函数y = x^2 - 4x + 4的图像开口方向是()A. 向上B. 向下C. 向左D. 向右5. 已知函数f(x) = x^2 - 6x + 8,g(x) = 2x - 3,若f[g(x)] = 0,则x的值为()A. 1B. 2C. 3D. 46. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的点积为()A. 7B. 8C. 9D. 107. 已知直线l:y = 2x + 1与直线m:y = -x + 3平行,则直线l 与直线m之间的距离为()A. √2B. √5C. √10D. 2√28. 已知函数f(x) = |x|,则f(-2) + f(2)的值为()A. 0B. 2C. 4D. 69. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值为()A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^2 + 210. 已知函数f(x) = sin(x) + cos(x),求f'(x)的值为()A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)二、填空题(每题4分,共20分)11. 已知等比数列{an}的首项a1 = 2,公比q = 3,则a5的值为______。

【人教版】高中数学必修一期末模拟试题(含答案)

【人教版】高中数学必修一期末模拟试题(含答案)

一、选择题1.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是 A .(0,1) B .(e ,e 3) C .(e ,e 2)D .(1,e 3)2.已知函数()f x 是定义在(,0)(0,)-∞+∞上的偶函数,当(0,)x ∈+∞时,2(1),02()1(2),22x x f x f x x ⎧-<≤⎪=⎨->⎪⎩,则函数2()8()6()1g x f x f x =-+的零点个数为( )A .20B .18C .16D .143.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .44.已知函数()()()2331log 6log 1y x a a x x =--++在[]0,1x ∈内恒为正值,则实数a 的取值范围是( ) A .133a << B .3a > C .3133a << D .33a >5.函数2ln 8x y x =-的图象大致为( )A .B .C .D .6.物理学规定音量大小的单位是分贝(dB ),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010lgII η=(其中0I 是人耳能听到声音的最低声波强度).我们人类生活在一个充满声音的世界中,人们通过声音交换信息、交流情感,人正常谈话的音量介于40dB 与60dB 之间,则60dB 声音的声波强度1I 是40dB 声音的声波强度2I 的( )A .32倍 B .3210倍C .100倍D .3lg2倍 7.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣8.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-9.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度的最大值为( ) A .1B .74C .114D .7210.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.对于函数sin ,[0,2]()1(2),(2,)2x x f x f x x π∈⎧⎪=⎨-∈+∞⎪⎩现有下列结论:①任取12[2,,)x x ∈+∞,都有()()121f x f x -≤; ②函数()y f x =在[]4,5上先增后减 ③函数()()ln 1y f x x =--有3个零点:④若关于x 的方程()()0f x m m =<有且只有两个不同的实根1x ,2x ,则123x x += 其中,正确结论的序号为_______________(写出所有正确命题的序号) 14.函数()22|cos |cos 3x x f x =+-在区间[0,2]π内的零点个数是_____. 15.已知函数2()log x f x =,实数,a b 满足0a b <<,且()()f a f b =,若()f x 在2,a b ⎡⎤⎣⎦上的最大值为2,则1b a+=________. 16.已知函数(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,则实数a 的取值范围是________.17.已知函数()()1f x a =-[]0,2上是减函数,则实数a 的取值范围是_____.18.当12x x ≠时,有1212()()()22x x f x f x f ++<,则称函数()f x 是“严格下凸函数”,下列函数是严格下凸函数的是__________. ①y x =②||y x =③2y x ④2log y x =19.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 20.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 三、解答题21.改革开放40多年来,从开启新时期到跨入新世纪,从站上新起点到进入新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌.40年来,我们始终坚持保护环境和节约资源,坚持推进生态文明建设.扬州市政府也越来越重视生态系统的重建和维护,若已知市财政下拨一项专款100(单位:百万元),分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态受益可表示为投放资金x (单位:百万元)的函数()M x (单位:百万元),()4010xM x x=+,处理污染项目五年内带来的生态受益可表示为投放资金x (单位:百万元)的函数()N x (单位:百万元),()0.25N x x =.(1)设分配给植绿护绿项目的资金为x (百万元),则两个生态项目五年内带来的收益总和为y ,写出y 关于x 的函数解析式和定义域;(2)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y 的最大值,并求出此时对两个生态项目的投资分别为多少?22.已知关于x 的方程()2320,,,0ax bx c a b c R a ++=∈≠,其中0a b c ++=,且()320a b c c ++>.(1)求证:关于x 的方程2320ax bx c ++=有两个不等的实根; (2)若21ba-<<-,且1x ,2x 是方程2320ax bx c ++=的两个实根,求12x x -的取值范围.23.已知函数()2log f x x =,()241g x ax x =-+.(1)若函数()()y f g x =的值域为R ,求实数a 的取值范围;(2)函数22()()()h x f x f x =-,若对于任意的1,22x ⎡∈⎤⎢⎥⎣⎦,都存在[]1,1t ∈-使得不等式()22th x k >⋅-成立,求实数k 的取值范围. 24.已知函数121()log 21axf x x -=-,a 常数.(1)若2a =-,求证()f x 为奇函数,并指出()f x 的单调区间;(2)若对于35,22x ⎡⎤∈⎢⎥⎣⎦,不等式1221log (21)log (21)4xx m x ⎛⎫+->-- ⎪⎝⎭恒成立,求实数m 的取值范围.25.已知函数()22mf x x x=-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.26.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-. (1)求()UA B ;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.2.C解析:C 【分析】解方程()0g x =,得1()2f x =或1()4f x =,作出()f x 的图象,由对称性只要作0x >的部分,观察()f x 的图象与直线12y =和直线14y =的交点的个数即得. 【详解】2()8()6()10g x f x f x =-+=,1()2f x ∴=或1()4f x = 根据函数解析式以及偶函数性质作()f x 图象, 当02x <≤时,()()21f x x =-.,是抛物线的一段, 当(]()()12,2,22,1,2,3,,22时,>∈+=⋯=-x x k k k f x f x ,是由(]22,2,∈-x k k 的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y 轴右侧的图象,根据对称轴可得y 左侧的结论,6x >时,1()8f x ≤,()y f x =的图象与直线12y =和14y =的交点个数,分别有3个和5个,∴函数g(x)的零点个数为2(35)16⨯+=,【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论.3.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.4.C解析:C 【分析】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意得出()()0010g g ⎧>⎪⎨>⎪⎩,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意可得()()()()23301log 0126log 0g a g a ⎧=->⎪⎨=->⎪⎩,可得311log 3a -<<,解得13a <<故选:C. 【点睛】思路点睛:求解一次函数不等式在区间上恒成立,一般限制一次函数在区间上的端点函数值符号即可,即可得出关于参数的不等式,求解即可.5.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.6.C解析:C 【分析】 先根据010lg II η=得10010I I η=,再将60dB 和40dB 代入得计算12I I 即可得答案.【详解】解:因为音量大小与强度为I 的声波的关系为010lg II η=, 所以1010I I η=,所以606101001010I I I ==,404102001010I I I ==,所以6014201010010I I I I ==,故选:C. 【点睛】本题以物理知识为背景,考查指对数的互化,运算等,是中档题.7.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.8.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.9.B解析:B 【分析】根据定义作出函数()f x 的解析式和图象,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可. 【详解】其中(1,1)A ,(3,3)B ,即()233,133313x x x f x x x x ⎧--=⎨-+⋅<<⎩或,当3()4f x =时,当3x 或1x 时,由33|3|4x --=,得9|3|4x -=,即34C x =或214G x =,当7()4f x =时,当13x <<时,由27334x x -+=,得52E x =,由图象知若()f x 在区间[m ,]n 上的值域为3[4,7]4,则区间[m ,]n 长度的最大值为537244E C x x -=-=,故选:B . 【点睛】利用数形结合思想作出函数的图象,求解的关键是对最小值函数定义的理解.10.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈,则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.①②③④【分析】当时函数的最大值为最小值为所以任取都有恒成立故①正确;函数先增后减故②正确;根据图象知函数有3个零点故③正确;根据图象知根据对称性知故④正确【详解】函数当时函数的最大值为最小值为所以解析:①②③④ 【分析】当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)xx ∈+∞,都有()()121f x f x -≤恒成立,故①正确;()1sin 4f x x π=,函数先增后减,故②正确;根据图象知,函数有3个零点,故③正确;根据图象知112m -<<-,根据对称性知123x x +=,故④正确.【详解】函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确; 当[]4,5x ∈,[]40,1x -∈,故()()()1114sin 4sin 444f x f x x x ππ=-=-=,函数先增后减,故②正确;令()()ln 10y f x x =--=,即()()ln 1f x x =-,同②,计算得到()[](](]sin ,0,21sin ,2,421sin ,4,64x x f x x x x x πππ⎧⎪∈⎪⎪=∈⎨⎪⎪∈⎪⎩,画出函数图象,如图所示:根据图象知,函数有3个零点,故③正确;()()0f x m m =<有且只有两个不同的实根12,x x ,根据图象知112m -<<-,根据对称性知123x x +=,故④正确;故答案为:①②③④.【点睛】方法点睛:函数零点问题的处理常用的方法有:(1)方程法:直接解方程得到函数的零点;(2)图像法:直接画出函数的图象得解;(3)方程+图像法:令()0f x =重新构造两个函数,数形结合分析得解.14.4【分析】根据角的范围确定余弦函数的符号去掉绝对值作函数图象利用数形结合求解函数的零点个数即可【详解】令则设则当时当时画出函数的图象易知函数的图象与直线有4个不同的交点故答案为:4【点睛】本题考查三解析:4 【分析】根据角的范围确定余弦函数的符号,去掉绝对值,作函数图象,利用数形结合求解函数的零点个数即可. 【详解】令()0f x =,则22|cos |cos 3x x +=, 设()2|cos |cos g x x x =+, 则当30,,222x πππ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦时,()3cos g x x =, 当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()cos g x x =-, 画出函数()y g x =的图象,,易知函数()y g x =的图象与直线23y =有4个不同的交点, 故答案为:4 【点睛】本题考查三角函数的求值,函数的零点个数的求法,考查转化思想以及计算能力,属于中档题.15.4【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:4【点睛】解析:4 【分析】先画出函数图像并判断01a b <<<,再根据范围和函数单调性判断2x a =时取最大值,最后计算得到答案. 【详解】如图所示:根据函数2()log x f x =的图象得01a b <<<,所以201a a <<<.结合函数图象,易知当2=x a 时()f x 在2,a b ⎡⎤⎣⎦上取得最大值,所以()222log2f aa ==又01a <<,所以12a =, 再结合()()f a f b =,可得2b =,所以2241b a+=+=. 故答案为:4 【点睛】关键点睛:解题关键在于,作出对数函数2()log x f x =的图象,得到01a b <<<,进而求解,属于中档题16.【分析】根据的值域为可知需在单调递增且即可【详解】由题意知的值域为故要使的值域为则必有为增函数且所以且解得故答案为:【点睛】本题主要考查了已知分段函数值域求参数范围属于中档题解析:112⎡⎫-⎪⎢⎣⎭,【分析】根据()ln (1)f x x x =≥的值域为[0,)+∞,可知()(12)3(1)f x a x a x =-+<需在(,1)-∞单调递增且(1)0f ≥即可. 【详解】由题意知()ln (1)f x x x =≥的值域为[0,)+∞,故要使()f x 的值域为R , 则必有()(12)3f x a x a =-+为增函数,且1230a a -+≥, 所以120a ->,且1a ≥-,解得112a -≤<. 故答案为:112⎡⎫-⎪⎢⎣⎭,本题主要考查了已知分段函数值域求参数范围,属于中档题.17.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取 解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围. 【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0; ∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数; ②a=1时,f (x )=0,不满足在[0,2]上是减函数; ∴a≠1;③0<a <1时,a ﹣1<0; ∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数; ∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数; ∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数; ∴综上得,实数a 的取值范围为012a a <<≤或. 故答案为012a a <<≤或. 【点睛】考查函数定义域的概念,函数单调性的定义及判断.18.③【解析】按照严格下凸函数的定义检测四个函数如①不满足严格下凸函数的定义对于②当同号时相等不满足定义;对于③作差可知对于④因为所以不正确故选③点睛:本题涉及新概念及函数大小的比较属于创新题有一定难度解析:③按照严格下凸函数的定义检测四个函数,如①121222x x x x f ++⎛⎫=⎪⎝⎭,()()121222f x f x x x ++=,不满足严格下凸函数的定义,对于②,121222x x x xf ++⎛⎫= ⎪⎝⎭,()()121222x x f x f x ++=,当1x ,2x 同号时,相等,不满足定义;对于③2121222x x x x f ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,()()22121222f x f x x x ++=,作差可知()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,对于④12122l 22x xx x f og ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,()()122122212l l 1l 222f x f x og x og x og x x og ++===,因为122x x +>不正确,故选③.点睛:本题涉及新概念及函数大小的比较,属于创新题,有一定难度.解决此类问题时,要紧扣新给出的定义、法则、运算,然后去甄别那些符合这些要求,本题在给出严格下凸函数的定以后,要去应用定义,看看那个函数符合这一要求,解题中遇到大小比较时可以作差比较.19.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.20.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a--<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a--<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞. 故答案为()[),32,-∞-⋃+∞. 【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.三、解答题21.(1)()[]400.25100,0,10010xy x x x=+-∈+;(2)y 的最大值为47.5(百万元),分别投资给植绿护绿项目、污染处理项目的资金为30(百万元),70(百万元). 【分析】(1)由题意可得处理污染项目投放资金为(100)x -百万元,得到()0.25(100)N x x =-,进而可得函数的解析式;(2)由(1)可化简的函数的解析式为4001067.5104x y x+⎛⎫=-+ ⎪+⎝⎭,利用基本不等式,即可求解最大值. 【详解】(Ⅰ)由题意可得处理污染项目投放资金为()100x -百万元, 所以()()0.25100N x x =-, ∴()[]400.25100,0,10010xy x x x=+-∈+.(2)由(1)可得,()404000.251006510104x x y x x x ⎛⎫=+-=-+ ⎪++⎝⎭,4001067.567.567.52047.5104x x+⎛⎫=-+≤-=-= ⎪+⎝⎭, 当且仅当40010104x x +=+,即30x =时等号成立, 此时1001003070x -=-=.∴y 的最大值为47.5(百万元),分别投资给植绿护绿项目、污染处理项目的资金为30(百万元),70(百万元). 【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值的应用,其中解答中认真审题,正确求解函数的解析式,合理构造利用基本不等式求解函数的最值是解答的关键,着重考查了分析问题和解答问题的能力.22.(1)证明见解析;(2)23⎫⎪⎣⎭. 【分析】(1)将c a b =--代入方程2320ax bx c ++=的判别式计算即可证明;(2)由题知12122,33b cx x x x a a+=-=,代入12||x x -=21ba -<<-转化为二次函数的最值求解. 【详解】 (1)由0a b c ++=得c a b =--, 对于方程2320ax bx c ++=,0a ≠,所以()2222221412412121241202b ac b a a b a ab b a b b ⎛⎫∆=-=++=++=++> ⎪⎝⎭,所以方程2320ax bx c ++=有两个不等的实根; (2)由题知12122,33b cx x x x a a+=-=,12||x x ∴- 21ba-<<-, 由二次函数()22444431933923f x x x x ⎛⎫=++=++ ⎪⎝⎭在32,2⎛⎫-- ⎪⎝⎭上单调递减,在3,12⎛⎫-- ⎪⎝⎭上单调递增可得12||x x -∈1223x x ⎫-∈⎪∴⎪⎣⎭. 【点睛】本题考查二次不等式的求解,考查二次函数在定区间上的最值,考查学生计算能力,是一道中档题.23.(1)[]0,4a ∈;(2)2k <. 【分析】(1)由()2log f x x =,()()y f g x =的值域为R ,知()g x 值域应为小于等于0的数直至正无穷,分类讨论参数a 的正负,再结合二次函数值域与判别式的关系即可求解; (2)对恒成立问题与存在性问题转化得()22tmin k h x ⋅<+在[]1,1t ∈-有解,求得()min h x ,再结合函数单调性即可求解【详解】(1)0a <时,内函数有最大值,故函数值不可能取到全体正数,不符合题意; 当0a =时,内函数是一次函数,内层函数值可以取遍全体正数,值域是R ,符合题意; 当0a >时,要使内函数的函数值可以取遍全体正数,只需要函数最小值小于等于0, 故只需0≥,解得(]0,4a ∈.综上得[]0,4a ∈;2()由题意可得2222()222t k h x log x log x ⋅<+=-+在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 则()221tmin k h x ⋅<+=在[]1,1t ∈-有解,即1<2t k 在[]1,1t ∈-有解, 122t maxk ⎛⎫∴<= ⎪⎝⎭,综上,实数k 的取值范围2k <.【点睛】关键点睛:本题考查由对数型复合函数的值域求解参数取值范围,由恒成立与存在性问题建立的不等式求解参数取值范围,解题关在在于: (1)()()()log a f x g x =值域为R ,()g x 值域范围的判断; (2)全称命题与存在性命题逻辑关系的理解与正确转化. 24.(1)证明见解析;单调增区间为1,2⎛⎫-∞- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭;(2)98m <-. 【分析】(1)2a =-时,1221()log 21x f x x +=-,求其定义域,计算()()0f x f x 即可.(2)将不等式整理为21211log 214x x m x +⎛⎫-> ⎪-⎝⎭,12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭,只需要min ()g x m >.利用()g x 单调性即可求出min 39()28g x g ⎛⎫==- ⎪⎝⎭,进而可得98m <-.【详解】(1)证明:当2a =-时,1221()log 21x f x x +=-. ()f x 的定义域为11,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.当11,,22x ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭时, 11222121()()log log 2121x x f x f x x x -++-+=+---11222121log log 102121x x x x -++⎛⎫=⋅== ⎪---⎝⎭.∴()()0f x f x +-=, ∴()f x 是奇函数,1221()log 21x f x x +=-是由2121x t x +=-和12log y t=复合而成,12log y t =单调递减,2121221212121x x t x x x +-+===+---在1,2⎛⎫-∞- ⎪⎝⎭ 和1,2⎛⎫+∞ ⎪⎝⎭单调递减,所以1221()log 21x f x x +=-在1,2⎛⎫-∞- ⎪⎝⎭ 和1,2⎛⎫+∞ ⎪⎝⎭单调递增, 所以()f x 的单调增区间为1,2⎛⎫-∞- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭.(2)由1221log (21)log (21)4xx m x ⎛⎫+->-- ⎪⎝⎭,得21211log 214xx m x +⎛⎫-> ⎪-⎝⎭,令12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭,若使题中不等式恒成立,只需要min ()g x m >.由(1)知()f x 在35,22⎡⎤⎢⎥⎣⎦上是增函数,14xy ⎛⎫= ⎪⎝⎭单调递减, 所以12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭在35,22⎡⎤⎢⎥⎣⎦上是增函数,所以min 39()28g x g ⎛⎫==-⎪⎝⎭. 所以m 的取值范围是98m <-. 【点睛】本题主要考查了函数的奇偶性,利用函数的单调性求最值,考查了恒成立问题,属于中档题.25.(1)减函数,证明见解析;(2)1m <-. 【分析】(1)()212f x x x=-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222mx x->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】 (1)当1m =时,()212f x x x =-,函数()f x 是区间()0+∞,上的减函数, 证明如下:设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭. ∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >, ∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++,()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++,∴442,46,b b c c +=⎧⎨+=⎩∴2b =-,2c =-, 又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--. ∵()()g x f x >,∴222m x x->,∴()4220m x x x <-≠, 又∵()2422211x x x -=--,∴1m <-.【点睛】 方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.26.(1){2x x <或}3x ≥;(2)(),2-∞【分析】(1)求出集合B 中不等式的解集确定出集合B ,求出集合A 与集合B 的公共解集即为两集合的交集,根据全集为R ,求出交集的补集即可;(2)求出集合C 中的不等式的解集,确定出集合C ,由B 与C 的并集为集合C ,得到集合B 为集合C 的子集,即集合B 包含于集合C ,从而列出关于a 的不等式,求出不等式的解集即可得到a 的范围.【详解】(1)解不等式242x x -≥-可得:2x ≥, {}2B x x ∴=≥ 又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤<又U =R 从而(){|2U C A B x x ⋂=<或3}x ≥(2)易知集合{}{}0C x x a x x a =->=>由C C =B ∪可得:B C ⊆故有2a <即所求实数a 的取值范围是(),2-∞【点睛】本题主要考查了补集及其运算,集合的包含关系判断及应用,交集及其运算,考查了运算能力,属于中档题.。

【人教版】高中数学必修一期末试题(含答案)

【人教版】高中数学必修一期末试题(含答案)

一、选择题1.已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的函数()y f x k =-有且只有三个不同的零点,则实数k 的取值范围是( ) A .()3,1-B .()0,1C .(]3,0-D .()0,∞+2.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-3.已知函数f (x )=1,01,0x x x⎧⎪⎨>⎪⎩则使方程x +f (x )=m 有解的实数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)4.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .c b a <<D .c a b <<5.已知函数()y f x =与x y e =互为反函数,函数()y g x =的图象与()y f x =的图象关于x 轴对称,若()1g a =,则实数a 的值为 A .e -B .1e-C .eD .1e6.函数2ln 8x y x =-的图象大致为( )A .B .C .D .7.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x x f x ⎡⎤=-⎢⎥+⎣⎦的值域为( )A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.已知函数()y f x =的定义域为[]0,4,则函数0(2)1y x x =--的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 11.设集合{}21xA y y ==-,{}1B x x =≥,则()R A C B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.若函数244y ax a x =+-存在零点,则实数a 的取值范围是______. 14.若方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,则实数k 的取值范围是__________.15.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.16.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________.17.函数222421x x y x ++=+的值域为_________. 18.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________19.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知a R ∈,函数21()log f x a x ⎛⎫=+⎪⎝⎭. (1)当5a =时,解不等式()0f x >;(2)若函数()()22log g x f x x =+只有一个零点,求实数a 的取值范围; 22.已知函数()2()log 41xf x mx =++. (1)若()f x 是偶函数,求实数m 的值;(2)当0m >时,关于x 的方程()242148log 2log 41f x x m ⎡⎤++-=⎢⎥⎣⎦在区间[1,上恰有两个不同的实数解,求m 的范围.23.已知指数函数()f x 的图象经过点()1,3-,()()2()23x g x f a x f =-+在区间[]1,1-上的最小值是()h a . (1)求函数()f x 的解析式;(2)若3a ≥时,求函数()g x 的最小值()h a 的表达式;(3)是否存在m 、n ∈R 同时满足以下条件:①3m n >>;②当()h a 的定义域为[],n m 时,值域为22,n m ⎡⎤⎣⎦;若存在,求出m 、n 的值;若不存在,说明理由.24.已知函数()21log 1xf x x-=+. (1)求函数()f x 的定义域; (2)讨论函数()f x 的奇偶性;(3)证明:函数()f x 在定义域上单调递减.25.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围.26.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】函数()y f x k =-零点的个数,即为函数()y f x =与函数y k =图象交点个数,结合函数图象可得实数k 的取值范围. 【详解】因为关于x 的函数()y f x k =-有且只有三个不同的零点,所以函数()y f x =与函数y k =图象有三个不同的交点,画出图象,如图:由图可知,当01k <<时,函数()y f x =与函数y k =图象有三个不同的交点, 所以实数k 的取值范围是(0,1). 故选:B 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴23123334224(2,0]x ax x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.3.D解析:D 【分析】分别讨论x ≤0和x >0,方程有解时,m 的取值. 【详解】当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即1x m x+=,解得m ≥2, 即实数m 的取值范围是(,1][2,)-∞⋃+∞故选:D 【点睛】本题考查了方程有解求参数的取值问题,考查了计算求解能力和逻辑推理能力,属于一般题目.4.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.5.D解析:D 【分析】根据指数函数与对数函数的关系,以及函数()y g x =的图象与()y f x =的图象关于x 轴对称,求得()ln g x x =-,再由()1g a =,即可求解. 【详解】由题意,函数()y f x =与xy e =互为反函数,所以()ln f x x =,函数()y g x =的图象与()y f x =的图象关于x 轴对称,所以()ln g x x =-, 又由()1g a =,即ln 1a -=,解得 1a e= 故选D. 【点睛】本题主要考查了指数函数与对数函数的关系,其中熟记指数函数与对数函数的关系,以及函数的对称性求得函数()g x 的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.C解析:C 【分析】由函数定义域的定义,结合函数0(2)y x =-有意义,列出相应的不等式组,即可求解. 【详解】由题意,函数()y f x =的定义域为[]0,4,即[]0,4x ∈,则函数0(2)y x =-满足0141020x x x ≤+≤⎧⎪->⎨⎪-≠⎩,解得13x <≤且2x ≠,所以函数0(2)y x =+-的定义域是(1,2)(2,3]⋃. 故选:C. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,根据题设条件和函数的解析式有意义,列出不等式组是解答的关键,着重考查推理与运算能力.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】 因为log ,0(),0a xx x f x a x >⎧=⎨≤⎩, 所以11(1)f a a--==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.11.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】将函数存在零点转化为与图像有交点作出图像观察图像得出实数的取值范围【详解】解:设则函数存在零点等价于与图像有交点如图:函数的图像恒过点当其和函数的图像相切时有解得由图像可知所以所以与的图像有解析:30,3⎡⎤⎢⎥⎣⎦【分析】将函数244y ax a x =+--存在零点转化为()()4f x a x =+与2()4g x x =-图像有交点,作出图像,观察图像得出实数a 的取值范围. 【详解】解:设()()4f x a x =+,2()4g x x =-,则函数244y ax a x =+--存在零点等价于()()4f x a x =+与2()4g x x =-图像有交点, 如图:函数()()4f x a x =+的图像恒过点(4,0)-,当其和函数2()4g x x =-2421aa =+,解得3a =±,由图像可知,0a >,所以33a =,所以()()4f x a x =+与2()4g x x =-303a ≤≤. 故答案为:3⎡⎢⎣⎦. 【点睛】本题考查函数零点问题的研究,关键是将零点问题转化为函数图像的交点问题,考查数形结合的思想,是中档题.14.【分析】将方程的根转化为函数零点问题再利用零点存在性定理求解【详解】由题知方程的两根为且故设则有故答案为:【点睛】本题考查二次函数根的分布问题需要学生熟悉二次函数的图像性质解决此类问题时常结合零点存解析:3(,1)4【分析】将方程的根转化为函数零点问题,再利用零点存在性定理求解. 【详解】由题知方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x , 且110x -<<,201x <<,故设()f x =22(1)1kx k x k +-+-,(0)k >则有(1)2210103(0)10114(1)221034f k k k f k k k f k k k k ⎧⎪-=-++->>⎧⎪⎪=-<⇒<⇒<<⎨⎨⎪⎪=+-+->⎩⎪>⎩, 故答案为:3(,1)4. 【点睛】本题考查二次函数根的分布问题,需要学生熟悉二次函数的图像性质,解决此类问题时常结合零点存在性定理解决.15.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210x x a ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010xxxg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.16.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2x f x b =+,得121b +=,所以1b =-, 所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.17.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .18.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩ 【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩. 故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩.【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.19.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣解析:12(,]23【分析】由f (x )=x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出. 【详解】f (x )=x 2﹣(a +2)x +2﹣a <0, 即x 2﹣2x +1<a (x +1)﹣1, 分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知过定点(﹣1,﹣1), 分别画出函数的图象,如图所示:∵集合A ={x ∈Z|f (x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得1 2<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要解析:[]16,17【分析】先求得不等式34x b-<的解集4433b bx-++<<,根据不等式34x b-<的解集中的整数有且仅有5,6,得出不等式组44534673bb-+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案.【详解】由题意,不等式34x b-<,即434x b-<-<,解得4433b bx-++<<,要使得不等式34x b-<的解集中的整数有且仅有5,6,则满足44534673bb-+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b≤≤,即实数b的取值范围是[]16,17.故答案为[]16,17.本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)1(,)(0,)4-∞-+∞;(2)1{}[0,)4-+∞.【分析】(1)当5a =时,得到21()log (5)f x x =+,根据()0f x >,得出不等式151x+>,即可求解;(2)化简()221log ()g x a x x=+⋅(其中0x >),根据函数()g x 只有一个零点,得到方程210ax x +-=在(0,)+∞上只有一个解,结合二次函数的性质,即可求解.【详解】(1)当5a =时,21()log (5)f x x=+, 由()0f x >,即21log (5)0x +>,可得151x+>,解得14x <-或0x >,即不等式()0f x >的解集为1(,)(0,)4-∞-+∞. (2)由()()22222112log log ()2log log ()g x f x x a x a x xx=+=++=+⋅(其中0x >),因为函数()()22log g x f x x =+只有一个零点,即()0g x =只有一个根, 即21()1a x x+⋅=在(0,)+∞上只有一个解, 即210ax x +-=在(0,)+∞上只有一个解,①当0a =时,方程10x -=,解得1x =,复合题意; ②当0a ≠时,设函数21y ax x =+-当0a >时,此时函数21y ax x =+-与x 轴的正半轴,只有一个交点,复合题意;当0a <时,要使得函数21y ax x =+-与x 轴的正半轴只有一个交点,则满足102140a a ⎧->⎪⎨⎪∆=+=⎩,解得14a =- ,综上可得,实数a 的取值范围是1{}[0,)4-+∞.根据函数的零点求参数的范围的求解策略:转化:把已知函数的零点的存在情况转化为方程的解或两函数图象的交点的情况; 列式:根据函数零点的存在性定理或结合函数的图象、性质列出方程(组)或不等式(组);结论:求出参数的取值范围或根据图象得出参数的取值范围; 22.(1)1m =-;(2)8,19m ⎛⎤∈ ⎥⎝⎦. 【分析】(1)根据偶函数的定义()()f x f x -=,求得实数m 的值;(2)首先观察函数的单调性和()01f =,可得()242148log 2log 40x x m++-=,再根据换元设2log x t =,30,2t ⎡⎤∈⎢⎥⎣⎦,利用参变分离的方法转化为24224t t m -++=,根据函数2224y t t =-++的图象,求m 的取值范围.【详解】(1)()2()log 41xf x mx =++,()2()log 41x f x mx --=+-,()()f x f x =-即()()22log 41log 41xxmx mx -++=+-,化简得到22x mx =-,∴1m =-(2)0m >,函数()2()log 41xf x mx =++单调递增,且(0)1f =,()242148log 2log 41(0)f x f x m ⎡⎤++-==⎢⎥⎣⎦,故()242148log 2log 40x x m++-= 设2log x t =,30,2t ⎡⎤∈⎢⎥⎣⎦,即24224t t m -++=,画出2224y t t =-++的图像,如图所示:根据图像知4942m ≤<,解得819m <≤,即8,19m ⎛⎤∈ ⎥⎝⎦.【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.23.(1)1()3xf x ⎛⎫= ⎪⎝⎭;(2)()126h a a =-;(3)不存在,理由见解析. 【分析】(1)设()xf x c =(0c >且1c ≠),由题意可得()13f -=,可求得c 的值,进而可求得函数()f x 的解析式;(2)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,设()223k t t at =-+,分析当3a ≥时,函数()k t 的单调性,进而可得出()()min h a k t =,即可得解;(3)分析出函数()h a 在区间[],n m 上单调递减,可得出22126126n m m n ⎧-=⎨-=⎩,将两个等式作差可得出6m n +=,结合3m n >>判断可得出结论. 【详解】(1)设()xf x c =(0c >且1c ≠),因为指数函数()f x 的图象经过点()1,3-,()113f c-∴-==,即13c =,因此,()13xf x ⎛⎫= ⎪⎝⎭;(2)令()13xt f x ⎛⎫== ⎪⎝⎭,[]1,1x ∈-,1,33t ⎡⎤∴∈⎢⎥⎣⎦, 所以,设()223k t t at =-+,对称轴为t a =.3a ≥,可知()k t 在1,33⎡⎤⎢⎥⎣⎦上单调递减,当3t =时,()k t 取最小值,即()g x 取最小值()()3126h a k a ==-; (3)由(2)知3m n >>时,()126h a a =-在[],n m 上单调递减,若此时()h a 的值域为22,n m ⎡⎤⎣⎦,则22126126n m m n ⎧-=⎨-=⎩,即()()()6m n m n m n -=-+,m n ≠,则0m n -≠,6m n ∴+=,又3m n >>,则6m n +>,故不存在满足条件的m 、n 的值. 【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴动区间定,不论哪种类型,解决的关键就是考查对称轴于区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论;(2)二次函数的单调性主要依据二次函数图象的对称轴进行分析讨论求解. 24.(1) (1,1)- (2) 函数()f x 为奇函数 (3)证明见解析. 【分析】(1)由()f x 的定义域满足101xx->+可得答案. (2)直接判断()f x 与()f x -的关系可得答案. (3) 设1211x x -<<<,先作差判断出212111011--<<++x x x x ,再由对数函数2log y x =在(0,)+∞上单调递增有,21222111log log 11x x x x --<++,即可得出结论. 【详解】解:(1)令101xx->+,可得()()110x x -+>,即()()110x x -+<,解得11x -<< 函数()f x 的定义域为(1,1)-(2)由(1)知函数()f x 的定义域关于原点对称 由2211()log log ()11x xf x f x x x+--==-=--+,可得函数()f x 为奇函数 (3)设1211x x -<<<设()()()()()()()()()122112212112121111211111111+--+-----==++++++x x x x x x x x x x x x x x∵1211x x -<<<∴121210,10,0x x x x +>+>-< ∴212111011--<<++x x x x 利用对数函数2log y x =在(0,)+∞上单调递增有,21222111log log 11x x x x --<++ 即()()21f x f x <故函数()f x 在(1,1)-上单调递减. 【点睛】关键点睛:本题考查函数的定义域、奇偶性的判断和用定义法证明单调性,解答本题的关键是先得出2211x x -+与1111x x -+的大小关系,再由函数2log y x =在(0,)+∞上单调递增得到21222111log log 11x x x x --<++,即()()21f x f x <,属于中档题. 25.(1)(0)1f =-;()12f =;(2)4k <. 【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ; (2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解. 【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-; 令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<,所以()()2211f kx x f +-<,因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭,所以当2t =即12x =时,222t t -取最小值4, 所以4k <.【点睛】关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解.26.(1){}|25x x <<;(2)()1,+∞. 【解析】试题分析:(1)根据题意和并集的运算求出A B ,再由补集的运算求出()U C A B ;(2)由(1)得集合D ,由C D C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围. 试题(1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D , ①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a aa a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅.综上,a 的取值范围为(1,+∞).。

最新高中数学必修1综合测试卷(三套+含答案)教学教材

最新高中数学必修1综合测试卷(三套+含答案)教学教材
一、选择题:
1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则

,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)

【人教版】高中数学必修一期末试卷(附答案)

【人教版】高中数学必修一期末试卷(附答案)

一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.计算log 916·log 881的值为( ) A .18B .118C .83D .387.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14,8.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( )A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1C .-3或2D .-1或211.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃12.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .1二、填空题13.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________. 14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.17.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数.23.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间.25.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.26.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <.故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误.由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.7.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.11.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a ≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭.故选:A.【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集. 12.C解析:C【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++, ,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素.故选:C【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.二、填空题13.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos ,1()21,1x x f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个故答案为:5【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =, 故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.17.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =,令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2)【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域.【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-.【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣ 解析:12(,]23由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)2160500,080281001680,80x x xyx xx⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】 (1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.24.(1)32x x⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可; (2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可.【详解】 解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221x x -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x ⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞, 设245u x x =--,35log y u =, 因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间, 因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增,所以函数()f x 的单调减区间为()5,+∞【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k =-与区间()0,4端点的大小关系得出实数k 的取值范围;(3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n =⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a b b a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+ (2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k =- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k <-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭ (3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132 132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =- 4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围.26.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.。

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题第一章至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(N)等于( )UA. B.C. D.(A∪B)【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)3.下列图形中,不是函数图象的是( )【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x35.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)6.函数f(x)=若f(x)=2,则x的值是( )A. B.± C.0或1 D.0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )7.已知a=log2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+10010.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( ) A.3- B.3+C.2-D.2+11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.14.= .15.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.16.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【补偿训练】已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小). (注:总费用=途中费用+装卸费用+损耗费用)22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.高中数学必修一(第一至第三章) (参考答案)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(UN)等于( )A. B.C. D.【解析】选B.因为U N=,M=,所以M∩(UN)=.【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U(A∪B)= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以U(A∪B)={2,4}.2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小.【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选 C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3). 【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x).【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,,,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).【解析】原式=÷×=××=×a×=a2.18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩=或,因为RB=,所以(RB)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).(ax+b)的图象经过点A(2,1),B(5,2). 【补偿训练】已知函数f(x)=log3(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.f(x)+x2-6的值域.(3)当x∈(-3,4]时,求函数g(x)=log2【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].。

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

模块一复习测试题二一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是46.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=7.已知cos()3παα+=为锐角),则sin (α= )A B C D8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为()A .43π B .2π C .83π D .73π 二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+-三.填空题(共4小题)13.化简32a b-= (其中0a >,0)b >.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 . 15.若1lgx lgy +=,则25x y+的最小值为 . 16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 .四.参考解答题(共8小题) 17.已知0x >,0y >,且440x y +=. (Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x=>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围; (Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围. 19.解方程 (1)231981xx-=(2)444log (3)log (21)log (3)x x x -=+++20.设函数33()sin cos 2323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示.(Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.22.已知函数2()3sin 2cos 12xf x x =-+. (Ⅰ)若()23()6f παα=+,求tan α的值;(Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围.模块一复习测试题二参考正确答案与试题详细解析一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉【详细分析】利用元素与集合的关系直接求解.【参考解答】解:集合{|15}{0A x N x =∈=,1,2,3},a =a A ∴∉.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【详细分析】根据充分必要条件的定义以及基本不等式的性质判断即可. 【参考解答】解:1a >,1b >, 2log 0a ∴>,2log 0b >,2a b ab +,4a b +,故4ab ,222222222log log log ()log 4log log ()[]()1222a b ab a b +⋅==,反之,取16a =,152b =,则1522224log log log 16log 215a b ⋅=⋅=<, 但4a b +>,故4a b +是22log log 1a b ⋅的充分不必要条件, 故选:A .【点评】本题考查了充分必要条件,考查基本不等式的性质,是一道基础题.3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞【详细分析】直接利用命题的否定和一元二次方程的解的应用求出结果.【参考解答】解:命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则命题“[0x ∃∈,3],使得220x x m --= “成立是真命题, 故222(1)1m x x x =-=--. 由于[0x ∈,3],所以[1m ∈-,3]. 故选:C .【点评】本题考查的知识要点:命题的否定的应用,一元二次方程的根的存在性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]【详细分析】判断出在区间[3,5)上单调递增,(3)0(5)0f f ⎧⎨>⎩得出即1090m m -⎧⎨->⎩即可.【参考解答】解:函数2()44f x x x m =--+,对称轴2x =,在区间[3,5)上单调递增 在区间[3,5)上有零点,∴(3)0(5)0f f ⎧⎨>⎩即1090m m -⎧⎨->⎩ 解得:19m <, 故选:C .【点评】本题考查了二次函数的单调性,零点的求解方法,属于中档题. 5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是4【详细分析】直接利用不等式的基本性质和关系式的恒等变换的应用求出结果. 【参考解答】解:已知2x >,所以20x ->,故11222(2)2422y x x x x x =+=-++-=--(当3x =时,等号成立). 故选:B .【点评】本题考查的知识要点:不等式的基本性质,关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=【详细分析】设(,)P x y 为()y f x =的反函数图象上的任意一点,则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,(,)P y x '关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,代入详细解析式变形可得.【参考解答】解:设(,)P x y 为()y f x =的反函数图象上的任意一点, 则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,又函数()y f x =的图象与函数12x y +=的图象关于直线0x y +=对称,(,)P y x ∴'关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,∴必有12x y -+-=,即12x y -+=-,()y f x ∴=的反函数为:12x y -+=-;故选:C .【点评】本题考查反函数的性质和对称性,属中档题7.已知cos()3παα+=为锐角),则sin (α= )A B C D 【详细分析】由11sin sin[()]33ααππ=+-,结合已知及两角差的正弦公式即可求解.【参考解答】解:cos()3παα+=为锐角),∴1sin()3απ+=,则11111sin sin[()]sin())33233ααππαπαπ=+-=++,1(2=-,=故选:C .【点评】本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为( )A .43π B .2π C .83π D .73π 【详细分析】把已知函数详细解析式利用辅助角公式化积,求得函数值域,再由a 的范围可知方程()f x a =有两根1x ,2x ,然后利用对称性得正确答案.【参考解答】解:1()sin 2(sin )2sin()23f x x x x x x π=+=+=+,[0x ∈,2]π,()[2f x ∴∈-,2],又01a <<,∴方程()f x a =有两根1x ,2x ,由对称性得12()()33322x x πππ+++=,解得1273x x π+=.故选:D .【点评】本题考查两角和与差的三角函数,考查函数零点的判定及应用,正确理解题意是关键,是基础题.二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆【详细分析】利用子集、并集、交集的定义直接求解. 【参考解答】解:集合M N ⊆,∴在A 中,M N M =,故A 错误;在B 中,M N N =,故B 正确;在C 中,()M M N ⊆,故C 错误;在D 中,M N N N =⊆,故D 正确.故选:BD .【点评】本题考查了子集、并集、交集定义等基础知识,考查运算求解能力,属于基础题. 10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 【详细分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【参考解答】解:不等式2a b ab +恒成立的条件是0a ,0b ,故A 不正确;当a 为负数时,不等式12a a+成立.故B 正确; 由基本不等式可知C 正确;对于212144()(2)4428y x y x x y x y x y x y x y+=++=+++=, 当且仅当4y x x y =,即12x =,14y =时取等号,故D 正确. 故选:BCD .【点评】本题考查基本不等式的应用,要注意应用条件的检验.11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根【详细分析】根据函数的奇偶性判断A ,根据函数的单调性判断B ,结合图象判断C ,D 即可.【参考解答】解:对于||:()()1x A f x f x x --=≠--+,()f x 不是奇函数,故A 错误; 对于:0B x 时,1()111x f x x x ==-++在[0,)+∞递增,故B 正确; 对于C ,D ,画出函数()f x 和21y x =-的图象,如图示:,显然函数()f x 的值域是(,1)[0-∞-,)+∞,故C 正确,()f x 和21y x =-的图象有3个交点,故D 错误;故选:BC .【点评】本题考查了函数的单调性,奇偶性问题,考查数形结合思想,转化思想,是一道中档题.12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+- 【详细分析】求出11sin()6π-的值.利用二倍角的余弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的正弦求值判断C ;利用两角和的正切求值判断D .【参考解答】解:111sin()sin(2)sin 6662ππππ-=-+==. 对于A ,22cos 1531cos30o -=︒=对于B ,1cos18cos42sin18sin 42cos(1842)cos602︒︒-︒︒=︒+︒=︒=; 对于C ,12sin15sin 752sin15cos15sin302︒︒=︒︒=︒=; 对于D ,tan30tan15tan(3015)tan 4511tan30tan15o oo o+=︒+︒=︒=-.∴与11sin()6π-的值相等的是BC . 故选:BC .【点评】本题考查三角函数的化简求值,考查诱导公式、倍角公式及两角和的三角函数,是基础题.三.填空题(共4小题)13.化简32a b -= a (其中0a >,0)b >.【详细分析】根据指数幂的运算法则即可求出.【参考解答】解1311132322()b b bb ⨯=== 原式2111()3322a b a ---==,故正确答案为:a .【点评】本题考查了指数幂的运算,属于基础题.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 {1-,0,1} .【详细分析】先利用分离常数法将函数化为92()51x f x e =-+,进而求出()f x 的值域,再根据[]x 的定义可以求出[()]f x 的所有可能的值,进而得到函数的值域.【参考解答】解:212(1)212192()215151551x x x x x x e e f x e e e e+-=-=-=--=-++++, 0x e >,11x e ∴+>,∴2021x e <<+,∴19295515x e -<-<+, 即19()55f x -<<,①当1()05f x -<<时,[()]1f x =-, ②当0()1f x <时,[()]0f x =,③当91()5f x <<时,[()]1f x =, ∴函数[()]y f x =的值域是:{1-,0,1},故正确答案为:{1-,0,1}.【点评】本题主要考查了新定义运算的求解,关键是能通过分离常数的方式求得已知函数的值域,是中档题.15.若1lgx lgy +=,则25x y+的最小值为 2 . 【详细分析】根据对数的基本运算,结合不等式的解法即可得到结论.【参考解答】解:1lgx lgy +=,1lgxy ∴=,且0x >,0y >,即10xy =, ∴25251022210x y x y +=, 当且仅当25x y =,即2x =,5y =时取等号, 故正确答案为:2【点评】本题主要考查不等式的应用,利用对数的基本运算求出10xy =是解决本题的关键,比较基础.16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 16- .【详细分析】直接利用三角函数的性质和关系式的恒等变换的应用及二次函数的性质的应用求出结果.【参考解答】解:若42x ππ<<,则tan (1,)x ∈+∞, 另22tan tan 21tan x x x=-, 设tan x t =,(1)t >, 则422222244416111111()()24t y t t t t ===-----,当且仅当t =时,等号成立.故正确答案为:16-.【点评】本题考查的知识要点:三角函数关系式的变换,关系式的变换和二次函数的性质,主要考查学生的运算能力和转换能力及思维能力,属于中档题.四.参考解答题(共8小题)17.已知0x >,0y >,且440x y +=.(Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 【详细分析】(1)由已知得,40424x y xy =+=解不等式可求,(2)由题意得,11111()(4)40x y x y x y +=++,展开后结合基本不等式可求. 【参考解答】解:(1)0x >,0y >,40424x y xy ∴=+=当且仅当4x y =且440x y +=即20x =,5y =时取等号,解得,100xy ,故xy 的最大值100.(2)因为0x >,0y >,且440x y +=.所以111111419()(4)(5)(540404040y x x y x y x y x y +=++=+++=, 当且仅当2x y =且440x y +=即403x =,203y =时取等号, 所以11x y +的最小值940. 【点评】本题考查了基本不等式在求最值中的应用,属于中档题18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x =>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围;(Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围.【详细分析】(Ⅰ)对式子变形后,利用基本不等式即可求得结果;(Ⅱ)先由题设把问题转化为:2210x ax --对于任意的[0x ∈,2]恒成立,构造函数2()21g x x ax =--,[0x ∈,2],利用其最大值求得a 的取值范围;(Ⅲ)由题设把问题转化为:方程21a x =-在[0a ∈,2]有解,解出x 的范围.【参考解答】解:(Ⅰ)当2a =时,2()41111()22212222f x x x y x x x x -+===+-⨯-=-(当且仅当1x =时取“= “),1min y ∴=-;(Ⅱ)由题意知:221x ax a a --+对于任意的[0x ∈,2]恒成立,即2210x ax --对于任意的[0x ∈,2]恒成立,令2()21g x x ax =--,[0x ∈,2],则(0)10(2)340g g a =-⎧⎨=-⎩,解得:34a , a ∴的取值范围为3[4,)+∞; (Ⅲ)由()2f x ax =-可得:210x a -+=,即21a x =-, [0a ∈,2],2012x ∴-,解得:11x -,即x 的取值范围为[1-,1].【点评】本题主要考查基本不等式的应用、函数的性质及不等式的解法,属于中档题.19.解方程 (1)231981x x -= (2)444log (3)log (21)log (3)x x x -=+++【详细分析】(1)直接利用有理指数幂的运算法则求解方程的解即可.(2)利用对数运算法则,化简求解方程的解即可.【参考解答】解:(1)231981x x -=,可得232x x -=-,(2分) 解得2x =或1x =;(4分)(2)444log (3)log (21)log (3)x x x -=+++,可得44log (3)log (21)(3)x x x -=++,3(21)(3)x x x ∴-=++,(2分)得4x =-或0x =,经检验0x =为所求.(4分)【点评】本题考查函数的零点与方程根的关系,对数方程的解法,考查计算能力.20.设函数3()cos 323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值. 【详细分析】(1)利用辅助角公式化积,再由周期公式求周期;(2)由对称性求得()g x 的详细解析式,再由x 的范围求得函数最值.【参考解答】解:(1)3()cos sin()32333x x f x x ππππ=-=-. ()f x ∴的最小正周期为263T ππ==;(2)函数()y g x =与()y f x =的图象关于x 轴对称,()()3sin()33x g x f x ππ∴=-=-. [0x ∈,3]2,∴[333x πππ-∈-,]6π, sin()[33xππ∴-∈,1]2,()[g x ∈,3]2. ∴当[0x ∈,3]2时,()y g x =的最大值为32. 【点评】本题考查sin()y A x ωϕ=+型函数的图象和性质,考查三角函数最值的求法,是中档题.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示. (Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.【详细分析】(Ⅰ)由函数的图象的顶点坐标求出A ,B ,由周期求出ω,由特殊点的坐标求出ϕ的值,可得函数的详细解析式,再根据余弦函数的图象的对称性,得出结论. (Ⅱ)由题意利用函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,得出结论.【参考解答】解:(Ⅰ)由函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象知: 1(3)22A --==,1(3)12B +-==-,72212T πππωω-==⇒=, ()2cos(2)1f x x ϕ∴=+-,把点(,1)12π代入得:cos()16πϕ+=, 即26k πϕπ+=,k Z ∈. 又||2πϕ<,∴6πϕ=-,∴()2cos(2)16f x x π=--. 由图可知(,1)3π-是其中一个对称中心, 故所求对称中心坐标为:(,1)32k ππ+-,k Z ∈. (Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,可得1cos(2)62y x π=--的图象,再向右平移6π个单位,可得11cos(2)sin 2222y x x π=--=- 的图象, 最后将图象向上平移1个单位后得到1()sin 22g x x =+的图象. 由22222k x k ππππ-++,k Z ∈,可得增区间是[4k ππ-,]4k ππ+,当3[,]124x ππ∈时,函数的增区间为[,]124ππ. 则32[,]62x ππ∈,当22x π=即,4x π=时,()g x 有最大值为32, 当322x π=,即34x π=时,()g x 有最小值为11122-+=-. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求详细解析式,由函数的图象的顶点坐标求出A 、B ,由周期求出ω,由特殊点的坐标求出ϕ的值,余弦函数的图象的对称性.函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,属于中档题.22.已知函数2()2cos 12x f x x =-+.(Ⅰ)若()()6f παα=+,求tan α的值; (Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围. 【详细分析】(Ⅰ)利用三角恒等变换,化简()f x 的详细解析式,根据条件,求得tan α的值. (Ⅱ)根据函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的详细解析式,再利用正弦函数的定义域和值域,求得()g x 的范围,可得m 的范围.【参考解答】解:(Ⅰ)2()2cos 1cos 2sin()26x f x x x x x π-+-=-,()()6f παα=+,∴sin()6παα-=,∴1cos 2ααα-=,即cos αα-=,∴tan α=(Ⅱ)把()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象, 所以函数()g x 的详细解析式为()(2)2sin(2)6g x f x x π==-, 关于x 的方程()0g x m -=在[0,]2π上有解, 等价于求()g x 在[0,]2π上的值域, 因为02x π,所以52666x πππ--, 所以1()2g x -,故m 的取值范围为[1-,2].【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.。

2020秋新人教版高中数学必修一综合测试卷期末考试卷

2020秋新人教版高中数学必修一综合测试卷期末考试卷

综合质量评估(时间:120分钟分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若集合A={x|-1<x<2},B={x|x>1},则A∪B= ()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)解析:A∪B={x|-1<x<2}∪{x|x>1}={x|x>-1},故选C.答案:C2.若幂函数f(x)=x m在区间(0,+∞)上单调递减,则实数m的值可能为()A.1B.12C.-1D.2解析:因为幂函数f(x)=x m在区间(0,+∞)上单调递减,所以m<0,由选项可知实数m的值可能为-1.故选C.答案:C3.若x=20.2,y=lg 25,z=(25)75,则下列结论正确的是()A.x<y<zB.y<z<xC.z<y<xD.z<x<y解析:因为x=20.2>20=1,y=lg 25<lg 1=0,0<z=(25)75<(25)=1,所以y<z<x.故选B.答案:B4.若函数f(x)=4sin(ωx+φ)(ω>0)在同一周期内,当x=π6时取最大值,当x=-π3时取最小值,则φ的值可能为()A.π12B.π6C.π3D.7π6解析:f (x )=4sin(ωx +φ)(ω>0), 由题意可知T 2=π6+π3=π2,即T =π.所以T =2πω=π,解得ω=2.则f (π6)=4sin(2×π6+φ)=4,所以φ=π6+2k π(k ∈Z).当k =0时,φ=π6,此时,f (-π3)=-4满足题意,由此可知φ的一个可能值为π6,故选B .答案:B5.(浙江高考)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解析:因为a >0,b >0,a +b ≤4,所以ab ≤(a+b 2)2≤(42)2=4;反之,若ab ≤4,不妨设a =8,b =12,则a +b =8+12>4,故由“ab ≤4”不能推出“a +b ≤4”,故选A .答案:A6.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是 ( )A B C D解析:在汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变,故图象的中间部分为线段;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的后边部分为凸升的形状.分析四个选项中的图象,只有A 选项满足要求,故选A .答案:A7.(全国卷Ⅰ)tan 255°= ( ) A .-2-√3B .-2+√3C.2-√3D.2+√3解析:tan 255°=tan(180°+75°) =tan 75°=tan(45°+30°) =tan45°+tan30°1-tan45°tan30°=1+√331-1×√33=2+√3.答案:D8.若函数f (x )=|x |·1-2x2x +1,x ∈[-2 020,2 020]的值域是[m ,n ],则f (m +n )= ( )A.22 020 B .2 0202-12 020C.2D.0 解析:f (-x )=|-x |·1-2-x2-x +1=|x |·2x -11+2x=-|x |·1-2x2x +1=-f (x ),即函数f (x )是奇函数,其图象关于原点对称.因为函数f (x )在区间[-2 020,2 020]上的值域是[m ,n ],且区间[-2 020,2 020]关于原点对称,所以m +n =0,则f (m +n )=f (0)=0,故选D .答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,在区间(0,+∞)上单调递增的是 ()A.y=xB.y=x2C.y=1x D.y=(12)x解析:根据题意,依次分析选项:对于选项A,y=x,是正比例函数,在区间(0,+∞)上单调递增,符合题意; 对于选项B,y=x2,是二次函数,在区间(0,+∞)上单调递增,符合题意;对于选项C,y=1x,是反比例函数,在区间(0,+∞)上单调递减,不符合题意;对于选项D,y=(12)x,是指数函数,在区间(0,+∞)上单调递减,不符合题意.故选AB.答案:AB10.已知a,b,c,d是实数,则下列一定正确的有 ()A.a2+b2≥(a+b)22 B.a+1a≥2C.若1a >1b,则a<bD.若a<b<0,c<d<0,则ac>bd解析:由于2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,所以a2+b2≥12(a+b)2,故A选项正确;B选项中,当a=-1时,显然不成立,故B项错误;C选项中,当a=1,b=-1时,显然有1a >1b ,但a>b,故C项错误;D选项中,若a<b<0,c<d<0,则-a>-b>0,-c>-d>0,则根据不等式的性质可知ac>bd>0,故D项正确.故选AD.答案:AD11.(2020年新高考全国Ⅰ卷)已知a>0,b>0,且a+b=1, 则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.√a+√b≤√2答案:ABD12.若函数f(x)是偶函数,且f(5-x)=f(5+x),若g(x)=f(x)sin πx,h(x)=f(x)cos πx,则下列说法正确的是()A.函数y=h(x)的最小正周期是10B.对任意的x∈R,都有g(x+5)=g(x-5)C.函数y=h(x)的图象关于直线x=5对称D.函数y=g(x)的图象关于点(5,0)中心对称解析:由于f(x)是偶函数,且f(5-x)=f(5+x),所以函数f(x)是周期为10的周期函数,不妨设f(x)=cos π5x.对于A选项,由于h(x+5)=cos(π5x+π)cos(πx+5π)=cos π5x cos πx=h(x),所以函数h(x)的最小正周期为5,故A选项说法错误;对于B选项,函数g(x)=cos π5x sin πx,由于10是cosπ5x,sin πx的周期,故10是g(x)的周期,故g(x+5)=g(x-5),故B选项说法正确;对于C选项,由于h(5-x)=cos(π-π5x)cos(5π-πx)=cos π5x cos πx=h(x),结合前面分析可知h(5+x)=h(5-x),故C选项说法正确; 对于D选项,g(5+x)=cos(π5x+π)sin(πx+5π)=cos π5x sin πx,g(5-x)=cos(π-π5x)sin(5π-πx)=-cos π5x sin πx=-g(5+x),故函数g (x )关于(5,0)对称,D 选项说法正确. 答案:BCD三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(本题第一空2分,第二空3分)若二次函数f (x )=x 2+mx -3的两个零点为1和n ,则n =-3;若f (a )≤f (3),则a 的取值范围是[-5,3].解析:依题意可知f (1)=0,即1+m -3=0,所以m =2,所以f (x )=x 2+2x -3=(x -1)(x +3),所以f (x )的另一个零点为-3,即n =-3.由f (a )≤f (3),得a 2+2a -3≤12,即a 2+2a -15=(a +5)·(a -3)≤0,解得-5≤a ≤3.14.(全国卷Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3. 解析:因为ln 2>0,所以f (ln 2)=-f (-ln 2)= e -a ln 2=(e ln 2)-a =2-a =8,所以a =-3.15.(全国卷Ⅰ)函数f (x )=sin(2x +3π2)-3cos x 的最小值为-4.解析:f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1=-2(cos x +34)2+178,因为-1≤cos x ≤1,所以-4≤f (x )≤178,即最小值为-4.16.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a 满足f (2|a -1|)>f (-√2),则a 的取值范围是(12,32).解析:因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (x )在区间[0,+∞)上单调递减,则由f (2|a -1|)>f (-√2),得f (2|a -1|)>f (√2),即2|a -1|<√2,则|a -1|<12,即12<a <32.四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算过程)17.(10分)在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |√a ≤x ≤√a +3}这三个条件中任选一个,补充在下面的问题中.若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A = ,B ={x |x 2-4x +3≤0}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意,知A 不为空集,B ={x |x 2-4x +3≤0}={x |1≤x ≤3}.因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A ⫋B.当选条件①时,{a -1≥1,a <3或{a -1>1,a ≤3,解得2≤a ≤3.所以实数a 的取值范围是[2,3]. 当选条件②时,{a ≥1,a +2<3或{a >1,a +2≤3,不等式组无解,所以不存在a 的值满足题意. 当选条件③时,{√a ≥1,√a +3<3或{√a >1,√a +3≤3,不等式组无解,所以不存在a 的值满足题意.18.(12分)已知a ∈R,若关于x 的不等式(1-a )x 2-4x +6>0的解集是(-3,1). (1)解不等式2x 2+(2-a )x -a >0;(2)若ax 2+bx +3≥0的解集为R,求实数b 的取值范围. 解:(1)由题意,知1-a <0,且-3和1是关于x 的方程 (1-a )x 2-4x +6=0的两个根,则{1-a <0,41-a =-2,61-a =-3,解得a =3,则2x 2+(2-a )x -a >0即2x 2-x -3>0, 解得x <-1或x >32.故不等式2x 2+(2-a )x -a >0的解集为(-∞,-1)∪(32,+∞).(2)ax2+bx+3≥0即为3x2+bx+3≥0,若此不等式的解集为R,则b2-4×3×3≤0,解得-6≤b≤6.故实数b的取值范围为[-6,6].19.(12分)已知函数f(x)=A sin(ωx+φ)[ω>0,A>0,φ∈(0,π2)]的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知α∈(π2,π),且sin α=513,求f(α2).解:(1)由图象,知函数的最大值为2,则A=2.由题图可得周期T=4[π12-(-π6)]=π,由2πω=π,得ω=2.又由题意,知2×π12+φ=2kπ+π2,k∈Z,及φ∈(0,π2),所以φ=π3.所以f(x)=2sin(2x+π3).(2)由α∈(π2,π),且sin α=513,得cos α=-√1-sin2α=-1213,所以f(α2)=2sin(2·α2+π3)=2(sin αcos π3+cos αsin π3)=5-12√313.20.(12分)已知函数f(x)=(x+1)(x-t)x2为偶函数.(1)求实数t的值.(2)是否存在实数b >a >0,使得当x ∈[a ,b ]时,函数f (x )的值域为[2-2a,2-2b]?若存在,请求出实数a ,b 的值;若不存在,请说明理由.解:(1)因为函数f (x )=(x+1)(x -t )x 2为偶函数,所以f (-x )=f (x ), 所以(-x+1)(-x -t )x 2=(x+1)(x -t )x 2,所以t =1. (2)由(1)知f (x )=(x+1)(x -1)x 2=1-1x 2,所以f (x )在区间[a ,b ]上是增函数. 若x ∈[a ,b ]时,f (x )的值域为[2-2a,2-2b ],则{f (a )=1-1a 2=2-2a,f (b )=1-1b2=2-2b,解得a =b =1.又因为b >a ,所以不存在满足要求的实数a ,b. 21.(12分)(浙江高考)设函数f (x )=sin x ,x ∈R . (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值; (2)求函数y =[f (x +π12)]2+[f (x +π4)]2的值域.解:(1)因为f (x +θ)=sin(x +θ)是偶函数,所以对任意实数x 都有sin(x +θ)=sin(-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又因为θ∈[0,2π),所以θ=π2或3π2.(2)y =[f (x +π12)]2+[f (x +π4)]2=sin 2(x +π12)+sin 2(x +π4)=1-cos(2x+π6)2+1-cos(2x+π2)2=1-12(√32cos 2x -32sin 2x )=1-√32cos(2x +π3).因此,函数的值域是[1-√32,1+√32].22.(12分)生态文明建设关系人民福祉,关乎民族未来.某市通宵营业的大型商场为响应节能减排的号召,在气温超过28 ℃时才开启中央空调降温,否则关闭中央空调.该市夏季一天的气温y (单位:℃)随时间t (0≤t ≤24,单位:h)的大致变化曲线如图所示,若该曲线近似满足函数y =A sin(ωt +φ)+b (A >0,ω>0,|φ|<π).(1)求函数y =f (t )的解析式.(2)请根据(1)中的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?解:(1)由题图,知T =2×(14-2)=24, 所以2πω=24,得ω=π12.由题图,知b =16+322=24,A =32-162=8,所以f (t )=8sin(π12t +φ)+24.将点(2,16)代入函数解析式,得 8sin(π12×2+φ)+24=16,得π6+φ=2k π-π2(k ∈Z),即φ=2k π-23π(k ∈Z).又因为|φ|<π,所以φ=-23π.所以f (t )=8sin(π12t -23π)+24(0≤t ≤24).(2)依题意,令8sin(π12t -23π)+24>28,得sin(π12t-23π)>12,所以2kπ+π6<π12t-23π<2kπ+56π(k∈Z).解得24k+10<t<24k+18(k∈Z),令k=0,得10<t<18,故中央空调应在本天10时开启,18时关闭.。

最新人教版高中数学必修一综合测试题及答案

最新人教版高中数学必修一综合测试题及答案

人教版高中数学必修一测试题一一、选择题(本大题共10小题,每小题5分,共60分)1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 ( )A.{x |x ∈R }B.{y |y ≥0}C.{(0,0),(1,1)}D.∅2. 函数2x y -=的单调递增区间为 ( )A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在(0,+∞)上为增函数的是 ( )A.f (x )=3-xB.f (x )=x 2-3xC.f (x )=-11+xD.f (x )=-|x |4.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是 ( )A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 ( ).A B C D 6. 函数y =1-x +1(x ≥1)的反函数是 ( )A.y =x 2-2x +2(x <1)B.y =x 2-2x +2(x ≥1)C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)7. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 ( )A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =(ab )x的图象只可能是 ( )D10. 已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于 ( )A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序( ) A 、a<b<c<d B 、a<b<d<cC 、b<a<d<cD 、b<a<c<d12.已知0<a<1,b<-1,函数f(x)=a x +b 的图象不经过: ( )A.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题(本大题共4小题,每小题5分,共20分) 13.已知f (x )=x 2-1(x <0),则f -1(3)=_______.14. 函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______.三、解答题。

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题一、选择题(每小题5分,共60分)1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x=2-x 的根所在区间是( ). A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ). A .f (x )=x1 B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .1二、填空题(每小题4分 , 共16分)13.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 14.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 15.函数y =2-log 2x 的定义域是 . 16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知全集R U =, A =}52{<≤x x ,集合B 是函数lg(9)y x =-的定义域.(1)求集合B ;(2)求)(B C A U .(8分)18.(12分) 已知函数f (x )=lg(3+x )+lg(3-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由.19.(12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值;(2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围.(12分)20.(12分)探究函数),0(,4)(+∞∈+=x xx x f 的图像时,.列表如下:⑴ 函数)0(4)(>+=x xx x f 的递减区间是 ,递增区间是 ; ⑵ 若对任意的[]1,3,()1x f x m ∈≥+恒成立,试求实数m 的取值范围.21. (12分)求函数212log (43)y x x =-+的单调增区间.22.(14分) 已知0,1a a >≠且, ()211x x a f x a a a ⎛⎫=- ⎪-⎝⎭.(1)判断()f x 的奇偶性并加以证明; (2)判断()f x 的单调性并用定义加以证明;(3)当()f x 的定义域为(1,1)-时,解关于m 的不等式2(1)(1)0f m f m -+-<.参考答案一、选择题 1.B解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项.10.C解析:∵ 4x>0,∴0≤16- 4x<16,∴x 416-∈[0,4).11.A解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确. 12.A 13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B . 二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

高中数学新教材必修第一册综合测试数学试题(含参考答案)

高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。

人教A版(2019)必修第一册2020-2021学年第一学期高一数学期末考试复习试题及答案解析

人教A版(2019)必修第一册2020-2021学年第一学期高一数学期末考试复习试题及答案解析

新人教A 版2020~2021学年度第一学期期末复习高一数学一、单项选择题1.设集合A={x |x 2−2x−3≤0},B ={x |y =ln(2−x) } ,则A∩B =( ) A. [−3,2) B. (2,3] C. (−1,2) D. [−1,2) 2.已知0.20.3a =,0.23b =,3log 0.3c =,则A. a c b >>B. c a b >>C. b a c >>D. c b a >> 3.“”是“21cos =α”的( ) A .充分而不必要条件 B 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知角α的终边上一点P (5)-,则sin tan αα+= (A )2253--(B )253-(C )5(D )55. ︒︒-+︒︒15sin )105cos(15cos 75sin 等于(A )0(B )12(C 3 (D )16.函数()23xf x x =+的零点所在的一个区间是( )(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2) 7.函数⎩⎨⎧≤>=ππx x x x x f ,cos ,sin )(,则=︒)240(f(A )23-(B )23 (C )21- (D )21 8.已知函数()⎩⎨⎧>≤=1,log 1,22x x x x f x ,若函数()a x x f y ++=2有两个零点,则实数a 的取值范围是A .(]1,2B .[)2,1--C .[)4,2--D .[]2,49. 已知函数()x f y =是R 上的偶函数,且()x f 在),0[+∞上是减函数,若()()2-≥f a f ,则a 的取值范围是(A )2≤a (B )2≥a (C )22≥-≤a a 或 (D )22≤≤-a二、多项选择题10、设,0<<b a 则下列不等式中成立的是A .b a 11> B . ab a 11>- C . b a -> D . b a ->- 11、下列函数为奇函数的是A.tan y x = B .sin y x x =- C .cos y x x =- D .e e xxy -=- 12.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是( ). A 、图象C 关于直线11π12x =对称 B 、图象C 关于点2π03⎛⎫⎪⎝⎭,对称 C 、()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,是增函数 D 、由3sin 2y x =图象向右平移π3个单位长度可得图象C .三、填空题13.命题p :“2,10∃∈+<x R x ”的否定是 14.若x 、y ∈R +,20=+y x ,则xy 的最大值为 .15.化简:sin(90)cos()cos(180)ααα︒-⋅-︒-= .(填最简形式)16.已知2)4πtan(-=+α,则=-αα2cos 2sin 117.已知132a =,则()2log 2a = .18.若“满足x :20x p +<”是“满足x :022>--x x ”的充分条件,求实数p 的取值范围. . 四、解答题19.已知,αβ都是锐角,35cos ,cos(),513ααβ=+=- (1)求sin α和αtan 的值;(2)求)sin(βα+ 和cos β的值.20、已知函数()4sin()cos 16f x x x π=-+.(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间[,44ππ-]上的最大值和最小值.21.某大型专卖店经营一种耐用消费品.已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月平均工资为1200元,该店应交付的其它费用为每月13200元.若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数。

人教版高中数学必修一综合测试题及答案

人教版高中数学必修一综合测试题及答案

A.0< m < 4B.0 < m W 1C.m > 4D.0 W m W 4人教版高中数学必修一测试题一、选择题(本大题共10小题,每小题5分,共60分) 1•已知 A={x|y=x,x € R},B={yy=x 2,x € R},贝U A n B 等于 ()A.{x|x € R} C.{(0,0),(1,1)}D.2•函数y x 2的单调递增区间为 ()A . (,0] B . [0, ) C . (0,) 3. 下列四个函数中,在(0,+ g )上为增函数的是() A. f(x)=3-x B.f(x)=x 2-3x 1 C.f(x)=- D.f(x)=-|x|x 14.函数f(x)=x 2+2(a — 1)x+2在区间(-g ,4]上递减,则a 的取值范围是()A. [-3,+ g]B.(-g ,-3)C.(-g ,5]D. [3,+g )ABCD6.函数y= 、x 1 +1(x > 1)的反函数是 ( )A. y=x 2-2x+2(x < 1)B.y=x 2-2x+2(x > 1)C.y=x 2-2x(x < 1)D.y=x 2-2x(x > 1)7.已知函数f(x)= ■ mx 2 mx 1的定义域是一切实数,则m 的取值范围是()B.{y|y > 0}8•某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1) 如果不超过200元,则不给予优惠;(2) 如果超过200元但不超过500元,则按标价给予 9折优惠;⑶如果超过500元,其500元内的按第 ⑵条给予优惠,超过 500元的部分给予7折 优惠• 某人两次去购物,分别付款 168元和423元,假设他一次性购买上述两次同样的商品, 则应付款是 ()A.413.7 元B.513.7 元C.546.6 兀A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1, y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图,贝U a,b,c,d 的大小顺序() A 、a<b<c<d B 、a<b<d<c C 、 b<a<d<c D 、 b<a<c<d10.已知函数f(n)=n 3(n f[f(n10),5)](n10),其中水N ,则f(8)等于 D.548.7 元9.二次函数。

最新高中数学必修一期末试题含答案

最新高中数学必修一期末试题含答案

一、选择题1.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭2.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .33.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( ) A .25B .35C .42D .504.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)5.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3 6.实数,a b 满足2510a b ==,则下列关系正确的是( )A .212a b+= B .111a b+= C .122a b+= D .1212a b += 7.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关D .与a 无关,且与b 无关10.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个11.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .312.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个二、填空题13.已知()()()23f x m x m x m =-++,()22xg x =-,若满足x R ∀∈,()0f x <和()0g x <至少有一个成立,则m 的取值范围是______.14.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为________15.已知函数()1122,121,1x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则关于x 的不等式()()10f x f x -+≤的解集为___________________.16.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x=--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.17.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.18.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________.19.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.20.已知集合{}1,2,3,4,5P =,若,A B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数为____.三、解答题21.某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用,约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为20km 时,折旧费为0.1元.现设一次载客的路程为x km. (1)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(2)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每千米的收益y 取得最大值?(每千米收益计算公式为)F Cy x-=22.已知函数()()22()1,20f x ax x g x x bx x =-+=+->,()()()5101x h x f x x x -=-<-. (1)()()1,3,0x f x ∀∈>恒成立,求实数a 的取值范围;(2)当1a =时,若函数()g x 的图象上存在,A B 两个不同的点与()h x 图象上的'',A B 两点关于y 轴对称,求实数b 的取值范围.23.已知函数()()()ln 1ln 1f x x k x =++-,0k ≠. (1)当()f x 分别为奇函数和偶函数时,求k 的值;(2)若()f x 为奇函数,证明:对任意的m 、()1,1n ∈-,()()1m n f m f n f mn +⎛⎫+=⎪+⎝⎭.24.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 25.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >.(1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数;若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A.【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.2.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.3.C解析:C 【分析】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点. 【详解】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.解得10.41442%x =≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C . 【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.4.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.5.A解析:A先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.6.B解析:B 【分析】根据指数式与对数的互化公式,求得11lg2,lg5a b==,再结合对数的运算公式,即可求解. 【详解】因为2510a b ==,可得25log 10,log 10a b ==,所以11lg2,lg5a b==, 则11lg 2lg5lg101a b +=+==. 故选:B. 【点睛】本题主要考查指数式与对数的互化,以及对数的运算公式的化简、求值,其中解答中熟记指数式与对数的互化公式,以及对数的运算公式,准确运算是解答的关键,着重考查运算与求解能力.7.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a ⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --, 上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a-,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.10.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.11.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.12.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.二、填空题13.【分析】先判断函数的取值范围然后根据和至少有一个成立则可求得的取值范围【详解】解:当时又或在时恒成立即在时恒成立则二次函数图象开口只能向下且与轴交点都在的左侧即解得实数的取值范围是:故答案为:【点睛 解析:()4,0-【分析】先判断函数()g x 的取值范围,然后根据()0f x <和()0<g x 至少有一个成立.则可求得m 的取值范围.【详解】 解:()22x g x =-,当1x 时,()0g x ,又x R ∀∈,()0f x <或()0<g x ,()(2)(3)0f x m x m x m ∴=-++<在1x 时恒成立,即(2)(3)0m x m x m -++<在1x 时恒成立,则二次函数(2)(3)y m x m x m =-++图象开口只能向下,且与x 轴交点都在(1,0)的左侧,∴03121m m m <⎧⎪--<⎨⎪<⎩,即0412m m m ⎧⎪<⎪>-⎨⎪⎪<⎩,解得40m -<<, ∴实数m 的取值范围是:(4,0)-.故答案为:(4,0)-. 【点睛】利用指数函数和二次函数的图象和性质,根据条件确定()(2)(3)0f x m x m x m =-++<在1x 时恒成立是解决本题的关键,综合性较强,难度较大.14.3【分析】根据题意求得的周期;画出的图象数形结合根据函数图象交点个数即可求得零点个数【详解】当时则此时有∵∴∴函数是周期为2的周期函数令则由题意得函数的零点个数即为函数的图象与函数的图象交点的个数在解析:3 【分析】根据题意,求得()f x 的周期;画出(),ln y f x y x ==的图象,数形结合,根据函数图象交点个数即可求得零点个数. 【详解】当10x -<时,则011x +<, 此时有()(1)1f x f x x =-+=--, ∵()()1f x f x +=-,∴()()21[()]()f x f x f x f x +=-+=--=,∴函数()y f x =是周期为2的周期函数. 令()()ln 0g x f x x =-=,则()ln f x x =, 由题意得函数()()ln g x f x x =-的零点个数即为函数()y f x =的图象与函数y ln x =的图象交点的个数.在同一坐标系内画出函数()y f x =和函数y ln x =的图象(如图所示),结合图象可得两函数的图象有三个交点, ∴函数()()ln g x f x x =-的零点个数为3. 故答案为:3. 【点睛】本题考查数形结合判断函数零点个数的问题,涉及函数周期性的求解,属综合中档题.15.【分析】对自变量分情况讨论即然后对各种情况分别解不等式最后取并集;【详解】当时所以由此时不等式恒成立;当时则由则此时不等式恒成立;当时符合题意;当时解得∴综上可得不等式的解集为故答案为:【点睛】关键解析:7,2⎛⎤-∞ ⎥⎝⎦【分析】对自变量分情况讨论,即1x ≤,12x <≤,23x <<,3x ≥,然后对各种情况分别解不等式,最后取并集; 【详解】当1x ≤时,10x -≤,121x -≤,121x -≥,所以()11220x x f x --=-≤由2122x -≤,222x -≥,()221220x xf x ---=-<, 此时不等式()()10f x f x +-≤恒成立;当12x <≤时,()212110f x x x x =--=--=-<,011x <-≤,则()22122x xf x ---=-,由221x -≤,221x -≥,则()10f x -≤此时不等式()()10f x f x +-≤恒成立;当23x <<时,()()12131f x f x x x +-=--+--213110x x =--+--=-<, 符合题意;当3x ≥时,()()12131270f x f x x x x +-=--+--=-≤,解得72x ≤, ∴732x ≤<. 综上可得,不等式()()10f x f x +-<的解集为7,2⎛⎤-∞ ⎥⎝⎦.故答案为:7,2⎛⎤-∞ ⎥⎝⎦【点睛】关键点睛:本题考查分别函数解不等式的问题,涉及分类讨论思想的应用,解答本题的关键是对自变量x 的范围进行分类,即1x ≤,12x <≤,23x <<,3x ≥,从而得出()f x 和()1f x -的表达式,从而求解不等式,属于中档题.16.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力解析:21(0,][log (2),)a a a ++∞ 【分析】利用分段函数列出不等式求解即可. 【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log xa g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a<≤, 故答案为:21(0,][log (2),)a a a++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.17.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减,所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .18.【分析】根据新定义可得在区间上有解利用分离变量法即可求出答案【详解】解:设∴在区间上有解即在区间上有解∵令单调递减时单调递增所以所以实数的取值范围是故答案为:【点睛】关键点点睛:此题考查了函数的新定 解析:[)0,+∞【分析】根据新定义可得2x mx m +=在区间()1,1-上有解,利用分离变量法即可求出答案. 【详解】解:设11x -<<,()()()()1111f f f x m --==--,∴2x mx m +=在区间()1,1-上有解,即21x m x=-在区间()1,1-上有解,∵()()()()22212112211121111x x x x x y x x x x x-+----+====-+-----, 令()10,2x t -=∈,12y t t∴=+-,(]0,1t ∈单调递减,[)1,2t ∈时单调递增,所以120y t t=+-≥,所以实数m 的取值范围是[)0,+∞. 故答案为:[)0,+∞. 【点睛】关键点点睛:此题考查了函数的新定义题目,解题的关键是将问题转化为2x mx m +=在区间()1,1-上有解,分离参数求解,意在考查了分析能力、数学运算.19.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.20.49【分析】分中的最大数为中的最大数为中的最大数为中的最大数为四种情况根据题意列举出满足条件的集合即可得出结果【详解】当中的最大数为即时;所以满足题意的集合对的个数为个;当中的最大数为即时;即满足题解析:49 【分析】分A 中的最大数为1,A 中的最大数为2,A 中的最大数为3,A 中的最大数为4,四种情况,根据题意列举出满足条件的集合,A B ,即可得出结果. 【详解】当A 中的最大数为1,即{1}A =时,{2}B =,{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5};所以满足题意的集合对(,)A B 的个数为15个;当A 中的最大数为2,即{2},{1,2}A =时,{3}=B ,{4},{5},{3,4},{3,5},{4,5},{3,4,5};即满足题意的集合对(,)A B 的个数为2714⨯=个;当A 中的最大数为3,即{3},{1,3},{2,3},{1,2,3}A =时,{4},{5},{4,5}B =,即满足题意的集合对(,)A B 的个数4312⨯=个;当A 中的最大数为4,即{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}A =时,{5}B =,即满足题意的集合对(,)A B 的个数为8个; 所以总共个数为49个. 【点睛】本题主要考查集合的应用,灵活运用子集的概念,用列举法表示集合即可,属于常考题型.三、解答题21.(1)7,032.40.2,3x F x x <≤⎧=⎨->⎩,212.3 1.6(0)4000C x x x =++>;(2)100km. 【分析】(1)根据在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费求得F ,设折旧费2z kx =,由路程为20km 时,折旧费为0.1元.代入求得k ,再根据运输成本包含固定费用,二是燃油费和折旧费求得C . (2)根据F Cy x-=,结合(1)求得y ,再根据分段函数的最值的求法求解. 【详解】(1)由题意得:7,037 2.4(3),3x F x x <≤⎧=⎨+->⎩,.即7,032.40.2,3x F x x <≤⎧=⎨->⎩.设折旧费2z kx =,将(20,0.1)代入, 得0.1400k =,解得14000k =. 所以212.3 1.6(0)4000C x x x =++>. (2)因为F Cy x-=, 所以 4.7 1.6,2340002.50.8,34000x x x y x x x ⎧--≤≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩,当3x >时,由基本不等式,得0.80.75y ≤-=, 当且仅当100x =时取等号.当23x ≤≤时,由y 在[2,3]上单调递减, 当2x =时,得max 10.750.752000y =-<. 综上所述,该市出租汽车一次载客路程为100km 时,每千米的收益y 取得最大值. 【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值. 22.(1)14a >;(2)51b <<. 【分析】(1)讨论0a =、0a >、0a <满足恒成立情况下a 的取值范围,取并集; (2)由题意知()g x 关于y 轴对称的函数为()k x 必与()h x 在0x <上有两个不同的交点,利用二次函数的性质求b 的取值范围. 【详解】(1)当0a =时,()1f x x =-,在()1,3x ∈上有()(2,0)f x ∈-,故不符题意; 若0a ≠有()f x 对称轴为12x a=,14a ∆=-,要使()()1,3,0x f x ∀∈>恒成立, 当0a >时,102a >且(1)0f a => ,即∆<0或112a ≤或132(3)0a f ⎧≥⎪⎨⎪≥⎩,解得14a >;当0a <时,102a <,即仅需(3)0f ≥即可,无解; 综上,有14a >; (2)0x <时,()g x 关于y 轴对称的函数为2()2k x x bx =--,由题意知()h x 与()k x 有两个不同的交点.由1a =时,()25111x h x x x x -=-+--,令()()k x h x =,整理得2(1)(1)20b x b x --+-=,∴令2()(1)(1)2t x b x b x =--+-,即()t x 在0x <上有两个不同的零点,而(0)20t =-<,∴()()()2101{0211810b b x b b b -<+=<-∆=++->,解得51b <<,【点睛】思路点睛:()g x 存在两点关于y 轴对称点在()h x 上,将其转化为函数交点问题. 确定()g x 关于y 轴对称的函数解析式()k x . 有()h x 、()k x 有两个不同交点. 结合二次函数的性质求参数的范围.23.(1)()f x 为奇函数时,1k =-,()f x 为偶函数时,1k =;(2)证明见解析. 【分析】(1)求出函数的定义域,利用函数的奇偶性的定义列等式即可求得k 的值; (2)根据函数解析式分别求得()()+f m f n ,1m n f mn +⎛⎫⎪+⎝⎭,即可证明结论. 【详解】 (1)由1010x x +>⎧⎨->⎩,解得11x -<<,得函数()f x 的定义域为()1,1-,当()f x 为奇函数时,()()0f x f x +-=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++-+-++=, 整理可得()()()1ln 1ln 10k x x +-++=⎡⎤⎣⎦, 因为上式恒成立,所以10k +=,所以1k =-; 当()f x 为偶函数时,()()0f x f x --=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++----+=, 整理得()()()1ln 1ln 10k x x -+--=⎡⎤⎣⎦, 因为上式恒成立,所以10k -=,所以1k =.综上,当()f x 为奇函数时,1k =-,当()f x 为偶函数时,1k =; (2)由(1)知,1k =-,()()()1ln 1ln 1ln1xf x x x x+=+--=-, ()()()()()()1111lnln ln 1111m n m nf m f n m n m n +++++=+=----, ()()()()11111ln ln ln 111111m nm n m n mn m n mn f m n mn mn m n m n mn++++++++⎛⎫+=== ⎪+++----⎝⎭-+, 所以()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭. 【点睛】方法点睛:已知函数的奇偶性求参数值一般思路是:(1)利用函数的奇偶性的定义转化为()()f x f x -=(偶函数)或()()f x f x -=-(奇函数),从而建立方程,使问题获得解决;(2)取一对互为相反数的自变量的函数值,建立等式求出参数的值,但同时要对此时函数的奇偶性进行验证. 24.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值. 【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 25.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=,又由1x >时,()0f x >, 因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出AB 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围. 【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=-(2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-, 则当C =∅时,21a a >+,即1a >,当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >.【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。

a>b>cB。

a>c>bC。

c>a>bD。

c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。

0B。

1C。

2D。

-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。

存在实数x,使得x^2+x≤0B。

对于任意实数x,x^2+x≤0C。

存在实数x,使得x^2+x<0D。

对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。

-1/3B。

-2/3C。

1/3D。

2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。

(0,π/12]B。

(0,π/6]C。

(0,π/4]D。

(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。

向右平移π个单位B。

向左平移π个单位C。

向右平移π/2个单位D。

向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。

y=1/xB。

y=x^2C。

y=√xD。

y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。

-8/9B。

-7/9C。

7/9D。

8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。

充分必要条件B。

必要不充分条件C。

充分不必要条件D。

既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。

(-1,2]B。

[0,2]C。

(0,∞)D。

(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。

高中数学人教A版必修第一册期末综合练习题(含答案)

高中数学人教A版必修第一册期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)一、单选题1.若定义域为R 的函数()f x 不是奇函数,则下列命题中一定为真命题的是( ). A .x R ∀∈,()()f x f x -≠- B .x R ∀∈,()()f x f x -= C .0x R ∃∈,()()00f x f x -=D .0x R ∃∈,()()00f x f x -≠-2.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A .略有盈利 B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况3.已知集合{}{}1,0,0,1A B =-=,则A B = ( )A .∅B .{}0C .{}1,1-D .{}1,0,1-4.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( )A .1-B .0C .1D .25.已知24(0,0)x y x y +=>>,则xy 的最大值是( ) A .5B .4C .3D .26.已知向量(sin a θ=,()1,cos b θ=,3πθ≤,则a b -的最大值为( )A .2B C .3D .57.下列函数既是奇函数又是增函数的是( ) A .21y x =-+B .11xy x-=+ C .1y x=-D .y x x =8.q 是p 的充要条件的是( ) A .:325p x +>;:235q x -->-B .:2p a >,2b >;:q a b >C .:p 四边形的两条对角线互相垂直平分;:q 四边形是正方形D .:0p a ≠;:q 关于x 的方程1ax =有唯一解9.“a=3”是“直线ax -2y -1=0”与“直线6x -4y+c=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.在①160°;②480°;③–960°;④1530°这四个角中,属于第二象限角的是( ) A .①B .①②C .①②③D .①②③④11.下列结论成立的是( ) A .若,a b c d >>,则a c b d ->- B .若,a b c d >>,则a d b c ->- C .若a b >,则22ac bc >D .若a b >,则22a b >12.已知函数f (x )=log a |x|在(0,+∞)上单调递增,则( ) A .f (3)<f (﹣2)<f (1) B .f (1)<f (﹣2)<f (3) C .f (﹣2)<f (1)<f (3) D .f (3)<f (1)<f (﹣2)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知集合{}0,1A =,{}2,2B a a =,其中a R ∈,我们把集合{}1212,,x x x x x A xB =+∈∈记作A B *,若集合A B *中的最大元素是21a +,则a 的取值范围是________.14.若函数()1f x =+()g x =-,则()()f x g x +=________.15.幂函数()f x 的图像过点(,则()8f =___________. 16.“15a =”是“直线()2120ax a y +-+=与直线()1330a x ay +++=垂直”的_________条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选取一个填入).三、解答题17.已知()()2log 43a f x ax x a =-+.(1)当3a =时,求()tan y f x =的定义域; (2)若()f x 在1,2⎛⎫-∞ ⎪⎝⎭上为减函数,求实数a 的取值范围.18.已知函数223,0()3,0x x x f x x x ⎧+-≤=⎨-->⎩(1)求f(-4)、f(5)的值;(2)画出函数f(x)的图象,并指出它的单调区间(不需证明); (3)当[2,0]x ∈-时,求函数的值域. 19.设()2501xf x x =+,求()f x 在()0,∞+上的最大值.20.已知函数()()()()sin 0,0,0,2f x A x A ωϕωϕπ=+>>∈的部分图像如图所示,求函数()f x 的解析式.21.已知指数函数()y g x =满足(3)8g =;定义域为R 的函数()()2()n g x f x m g x -=+是奇函数.(1)确定(),()y g x y f x ==的解析式;(2)若对任意[1,4]t ∈,不等式(23)()0f t f t k -+->恒成立,求实数k 的取值范围.22.已知x ∈R ,设(2cos ,sin cos )m x x x =+,(3sin ,sin cos )n x x x =-,记函数()f x m n =⋅.(1)求函数()f x 取最小值时x 的取值范围;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若()2f C =,c =,求△ABC的面积S 的最大值.23.公元2222年,有一种高危传染病在全球范围内蔓延,被感染者的潜伏期可以长达10年,期间会有约0.05%的概率传染给他人,一旦发病三天内即死亡,某城市总人口约200万人,专家分析其中约有1000名传染者,为了防止疾病继续扩散,疾病预防控制中心现决定对全市人口进行血液检测以筛选出被感染者,由于检测试剂十分昂贵且数量有限,需要将血样混合后一起检测以节约试剂,已知感染者的检测结果为阳性,末被感染者为阴性,另外检测结果为阳性的血样与检测结果为阴性的血样混合后检测结果为阳性,同一检测结果的血样混合后结果不发生改变.(1)若对全市人口进行平均分组,同一分组的血样将被混合到一起检测,若发现结果为阳性, 则再在该分组内逐个检测排査,设每个组x 个人,那么最坏情况下,需要进行多少次检测可以找到所有的被感染者?在当前方案下,若要使检测的次数尽可能少,每个分组的最优人数?(2)在(1)的检测方案中,对于检测结果为阳性的组来取逐一检测排査的方法并不是很好, 或可将这些组的血样再进行一次分组混合血样检测,然后再进行逐一排査,仍然考虑最坏的情况,请问两次要如何分组,使检测总次数尽可能少?(3)在(2)的检测方案中,进行了两次分组混合血样检测,仍然考虑最坏情况,若再进行若干次分组混合血样检测,是否会使检测次数更少?请给出最优的检测方案.24.已知()()2sin sin x x x f x =. (1)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若曲线()y f x =的对称轴只有一条落在区间[]0,m 上,求m 的取值范围.25.已知曲线()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的一个最高点为,212P π⎛⎫⎪⎝⎭,与点P 相邻一个最低点为Q ,直线PQ 与x 轴的交点为,03π⎛⎫⎪⎝⎭. (1)求函数()f x 的解析式; (2)求函数()f x 的单调增区间;(3)若,46x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21g x f x n =+-恰有一个零点,求实数n 的取值范围.参考答案1.D2.B3.D4.C5.D6.B7.D8.D9.B10.C11.B12.B 13.()0,214.1+01x ≤≤15.16.充分不必要17.(1),,,2632k k k k k Z ππππππππ⎛⎫⎛⎫-+⋃++∈ ⎪ ⎪⎝⎭⎝⎭;(2)⎣. 18.(1)-8 (2) [-4,-3] 19.2520.()2sin 44f x x ππ⎛⎫=+⎪⎝⎭21.(1)112()22xx f x +-=+;(2)9k >22.(1)|,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)423.(1)62101000x x⨯+ 次,45人;(2)第一次每组159人,第二次每组13人;(3)见解析24.(1)()min 0f x =; ()max 3f x =.(2)5,36m ππ⎡⎫∈⎪⎢⎣⎭25.(1)()2cos 26x f x π⎛⎫=-⎪⎝⎭;(2)5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3){}|1153n n n n -<<+==-或。

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1

人教A版(2019)数学必修(第一册):期末测试卷(含答案)1 -CAL-FENGHAI.-(YICAI)-Company One1期末测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12,3,4,5U =,,集合{}1,2A =,则UA =( )A.{}12,B.{}3,4,5C.{}1,2,3,4,5D.∅2.已知角α的终边上有一点)5M -,则sin α等于( )A.57-B.56-C.58-D.3.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 4.函数223y x x =-+,12x -≤≤的值域是( ) A .R B .[]36,C .[]26,D .[)2+∞,5.已知tan 32α=,则cos α的值为( )A .45B .45-C .415D .35-6.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]01,上的增函数”是“()f x 为[]34,上的减函数”的( ) A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件D .充要条件7.函数()y f x =的图象如图所示,则()y f x =的解析式为( )A .sin 22y x =-B .2cos31y x =-C .πsin 215y x ⎛⎫=-- ⎪⎝⎭D .π1sin 25y x ⎛⎫=-- ⎪⎝⎭8.下列函数中,既是偶函数又在区间()0+∞,上单调递减的是( ) A .1y x= B .x y e -= C .21y x =-+D .lg y x =9.已知集合1|282x A x ⎧⎫=∈⎨⎬⎩⎭R <<,{}|11B x x m =∈-+R <<,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( ) A .2m ≥ B .2m ≤C .2m >D .22m -<<10.若函数()()()101x x f x k a a a a -=-->,≠在R 上既是奇函数,又是减函数,则()()log a g x x k =+的图象是( )ABCD11.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则这三个数的大小关系是( ) A .m n p << B .m p n << C .p m n <<D .p n m <<12.具有性质()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211xy x -=+;③010111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,,,,> 其中满足“倒负”变换的函数是( ) A .①② B .①③C .②③D .①二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知幂函数()f x 的图象过点182⎛⎫⎪⎝⎭,,则()27f =________.14.若关于x 的不等式()21230a x x -+->有解,则实数a 的取值范围是________. 15.给出下列命题:①()72cos π22f x x ⎛⎫=-- ⎪⎝⎭是奇函数;②若α,β都是第一象限角,且αβ>,则tan tan αβ>; ③直线3π8x =-是函数33sin 2π4y x ⎛⎫=- ⎪⎝⎭的图象的一条对称轴;④已知函数()2π3sin 12f x x =+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2. 其中正确命题的序号是________.16.已知函数()f x 是R 上的奇函数,且()()2f x f x +=-,当()02x ∈,时,()212f x x =,则()7f =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角α终边上一点()43P -,,求()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)已知函数()22sin cos 2cos f x x x x =+.(1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移π4个单位长度后,得到函数()y g x =的图象,求方程()1g x =在[]0πx ∈,上的解集.19.(本小题满分12分)设a 是实数,()2221x xa a f x ⋅+-=+. (1)证明:()f x 是增函数.(2)试确定a 的值,使()f x 为奇函数.20.(本小题满分12分)已知函数()2π4sin 14f x x x ⎛⎫=+-- ⎪⎝⎭,且给定条件p :“ππ42x ≤≤”.(1)求()f x 的最大值及最小值;(2)若条件q :“()2f x m -<”,且p 是q 的充分条件,求实数m 的取值范围.21.(本小题满分12分)自2018年10月1日起,《中华人民共和国个人所得税》新规定,公民月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)如果小李10月份全月的工资、薪金为7 000元,那么他应该纳税多少元?(2)如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?(3)写出工资、薪金收入()<≤(元/月)与应缴纳税金y(元)的函数关系式.014000x x22.(本小题满分12分)已知函数()22=-+的两个零点为1f x x mxx=和x n=.(1)求m,n的值;(2)若函数()()22g x x ax a =-+∈R 在(]1-∞,上单调递减,解关于x 的不等式()log 20a nx m +-<.期末测试 答案解析一、 1.【答案】B【解析】因为{}12,3,4,5U =,,集合{}12A =,,所以{}3,4,5U A =. 2.【答案】B 【解析】6OM =,5sin 6α∴=-.3.【答案】B【解析】量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B . 4.【答案】C【解析】函数()222312y x x x =-+=-+,对称轴为直线1x =.由12x -≤≤可得,当1x =时,函数取得最小值为2,当1x =-时,函数取得最大值为6,故函数的值域为[]26,,故选C . 5.【答案】B【解析】2222222222cos sin 1tan 134222cos cossin22135cos sin 1tan 222ααααααααα---=-====-+++. 6.【答案】D【解析】由已知()f x 在[]10-,上为减函数,∴当34x ≤≤时,140x --≤≤,∴函数()f x 在[]34,上是减函数,反之也成立,故选D . 7.【答案】D【解析】由函数()f x 的图象得,函数()f x 的最大值为2,最小值为0,周期7ππ4π2010T ⎛⎫=⨯-= ⎪⎝⎭,得2ω=.又函数()f x 过点π110⎛⎫ ⎪⎝⎭,和7π020⎛⎫⎪⎝⎭,,所以只有选项D 符合题意,故选D . 8.【答案】C【解析】由于1y x=为奇函数,故排除A ;由于()x y f x e -==,不满足()()f x f x -=-,也不满足()()f x f x -=,故它是非奇非偶函数,故排除B ;由于21y x =-+是偶函数,且在区间()0+∞,上单调递减,故C 满足条件;由于lg y x =是偶函数,但在区间()0+∞,上单调递增,故排除D ,故选C . 9.【答案】C【解析】{}1|28|132x A x x x ⎧⎫=∈=-⎨⎬⎩⎭R <<<<.x B ∈成立的一个充分不必要条件是x A ∈,AB ∴,13m ∴+>,即2m >.10.【答案】A【解析】函数()()(1x x f x k a a a -=-->0,)0a ≠在R 上是奇函数,()00f ∴=,2k ∴=,又()x x f x a a -=-为减函数,所以01a <<,所以()()log 2a g x x =+,定义域为()2-+∞,,且单调递减,故选A . 11.【答案】C【解析】设函数()0.9x f x =,() 5.1x g x =,()0.9log h x x =,则()f x 单调递减,()g x 单调递增,()h x 单调递减,()5.100.901f ∴=<<,即01m <<;()0.95.101g =>,即1n >;()0.90.95.1log 5.1log 10h ==<,即0p <,p m n ∴<<.故选C .12.【答案】C【解析】对于①,()1111ln ln111x x f f x x x x--⎛⎫==- ⎪+⎝⎭+≠,不满足“倒负”变换的函数; 对于②,()222222111111111x x x f f x x x x x ⎛⎫- ⎪--⎛⎫⎝⎭===-=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭,满足“倒负”变换的函数; 对于③,当01x <<时,11x >,()f x x =,()1f x f x x ⎛⎫=-=- ⎪⎝⎭;当1x >时,101x <<,()1f x x =-,()11f f x x x⎛⎫==- ⎪⎝⎭;当1x =时,11x =,()0f x =,()()110f f f x x ⎛⎫===- ⎪⎝⎭,满足“倒负”变换的函数.综上,②③是符合要求的函数.故选C . 二、13.【答案】13【解析】设幂函数()af x x =,由图象经过点182⎛⎫ ⎪⎝⎭,,得182a=,13a ∴=-,()13f x x -∴=,()13127273f -∴==. 14.【答案】23⎛⎫+∞ ⎪⎝⎭,【解析】当10a -=时,不等式化为230x ->,显然有解;当10a ->时,二次函数()()2123f x a x x =-+-开口向上,显然()0f x >有解; 当10a -<时,要使不等式有解,应为()41210a ∆=+->,23a ∴>,213a ∴<<. 综上,实数a 的取值范围是23a >. 15.【答案】①③④ 【解析】①()7π2cos 22sin 22f x x x ⎛⎫=--=⎪⎝⎭是奇函数,故①正确.②当°30α=,°300β=-时,αβ>,但tan tan αβ<,故②错误.③将3π8x =-代入3π3sin 24y x ⎛⎫=- ⎪⎝⎭后,y 取最大值3,故③正确.④()1cos π5331cos π222x f x x -=⨯+=-.()f x 的最小正周期是2,而()()f x c f x +=对任意x ∈R 都成立,则说明正整数c 是()f x 的周期,则c 的最小值是2,故④正确. 16.【答案】12-【解析】函数()f x 是R 上的奇函数,即()()f x f x -=-,()()2f x f x +=-,()()()222f x f x f x ∴++=-+=即()()4f x f x +=,可得函数周期4T =.那么()()()731f f f ==-,()()f x f x -=-,()()11f f ∴-=-.当()02x ∈,时,()212f x x =,则()112f =.()172f ∴=-. 三、17.【答案】角α的终边过点()43P -,,3tan 4y x α∴==-,(4分)()πcos sin πsin sin 32tan 11π9πsin cos 4cos sin 22ααααααααα⎛⎫+-- ⎪-⋅⎝⎭∴===--⋅⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.(10分) 18.【答案】(1)()π214f x x ⎛⎫++ ⎪⎝⎭,由()πππ2π22π242k x k k -++∈Z ≤≤,得()3ππππ88k x k k -+∈Z ≤≤,()f x ∴的单调递增区间是()3ππππ88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.(6分) (2)由已知,得()π214g x x ⎛⎫=-+ ⎪⎝⎭,由()1g x =π204x ⎛⎫-= ⎪⎝⎭,()ππ28k x k ∴=+∈Z .(9分)[]0πx ∈,,π8x ∴=或5π8x =,∴方程()1g x =的解集为π5π85⎧⎫⎨⎬⎩⎭,.(12分)19.【答案】(1)证明:()2221x x a a f x ⋅+-=+.设12x x <,则()()()()()1212121212222222221212121x x x x x x x x a a a a f x f x ⨯-⋅+-⋅+--=-=++++,又由12x x <理,得()()120f x f x -<,则()f x 在R 内为增函数.(5分)(2)根据题意,()2222121x x x a a f x a ⋅+-==-++,则()221x f x a --=-+,()221x f x a -=-++,(8分)若()f x 为奇函数,则()()f x f x -=-,即222121x x a a --=-+++,变形可得()()1210x a -+=恒成立,故1a =.(12分)20.【答案】(1)()ππ21cos 2212sin 2214sin 2123f x x x x x x ⎡⎤⎛⎫⎛⎫=-+--=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又ππ42x ≤≤, ππ2π2633x ∴-≤≤.(4分) π34sin 2153x ⎛⎫∴-+ ⎪⎝⎭≤≤, ()max 5f x ∴=,()min 3f x =.(6分)(2)由(1)得,()35f x ≤≤.()2f x m -<,()22m f x m ∴-+<<.又p 是q 的充分条件,2325m m -⎧∴⎨+⎩<,>, 解得35m <<.∴实数m 的取值范围为{}|35m m <<.(12分)21.【答案】(1)700050002000-=(元), 应交税为15003%50010%95⨯+⨯=(元).(3分)(2)小张10月份交纳税金425元,由分段累进可得15003%45⨯=;()4500150010%300-⨯=; 4254530080--=,8020%400÷=,则他10月份的工资、薪金是5000150030004009900+++=(元).(7分)(3)当014000x <≤时,可得()()()00500050000.03500065004565000.1650095004530000.195000.2950014000x x x y x x x x ⎧⎪-⨯⎪=⎨+-⨯⎪⎪+⨯+-⨯⎩,<≤,,<≤,,<≤,,<≤,即为0050000.03150500065000.1605650095000.21555950014000.x x x x x x x ⎧⎪-⎪⎨-⎪⎪-⎩,<≤,,<≤,,<≤,,<≤(12分) 22.【答案】(1)根据题意,知1x =和x n =是方程220x mx -+=的两个根, 由根和系数的关系可知112n m n +=⎧⎨⋅=⎩,, 3m ∴=,2n =.(4分) (2)函数()g x 的对称轴为直线2a x =, ()g x 在()1-∞,上单调递减,12a ∴≥,2a ∴≥.(8分) ∴由(1)知,()()log 2log 210a a nx m x +-=+<,0211x ∴+<<,102x ∴-<<,∴原不等式的解集为102⎛⎫- ⎪⎝⎭,.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新版人教版高中数学必修一期末综合测试题含答案
一、单选题
1.与函数y x =为同一函数的是( ) A .log x y x x = B .y C .log (0,1)a x y a a a =>≠
D .log (0,1)x
a y a a a =>≠
2.2017年12月15日,成都七中举行了第39届教育研讨会.在听课环节中,设第一节课进入学报二厅听课的人数为a ,第二节课进入学报二厅听课的人数比第一节增加了10%,而第三节课进入学报二厅听课的人数又比第二节减少了10%,设第三节课进入学报二厅听课的人数为b ,则( ) A .a b =
B .a b <
C .a b >
D .a ,b 无法比较大小
3.已知函数()f x 是奇函数,()g x 为偶函数,若()()x
f x
g x e +=,则()1f 等于( ) A .1e e
+
B .1e e
-
C .
122e e
- D .
122e e
+ 4.设函数()f x 的定义域为D ,若满足条件:存在[,]a b D ⊆,使()f x 在[
,]a b 上的值域为[,]22
a b
,则称()
f x 为“倍缩函数”.若函数()1f x nx t =+为“倍缩函数”,则实数
t 的取值范围是 A .(﹣∞,l n 2﹣1)
B .(﹣∞,l n 2﹣1]
C .(1﹣l n 2,+∞)
D .[1﹣l n 2,+∞)
5.命题“1x ∀>,210x +≥”的否定为( ) A .1x ∃≤,210x +< B .1x ∀≤,210x +< C .1x ∀>,210x +<
D .1x ∃>,210x +<
6.给出四个命题:①映射就是一个函数;②()lg(3)f x x =-+
③函数(=)y f x 的图象与y 轴
最多有一个交点;④()f x =与()g x =.其中正确的有( ) A .1个
B .2个
C .3个
D .4个
7.已知函数f(x)=log 2x ,且f(a)=2,则a =( ) A .4
B .2
C .1
2
D .1
4
8.设A={x|2≤x≤4},B={x|2a≤x≤a+3},若B 真包含于A
,则实数a 的取值范围是( )
A .[]1,3
B .(){}3,1∞+⋃
C .{}1
D .()3,∞+
9.函数()()()()sin cos 0f x A x x ωθωθω=+++>⎡⎤⎣⎦部分图象如图所示,当[],2x ππ∈-时,()f x 最小值为( )
A .1-
B .2-
C .
D .10.已知偶函数()y f x =在区间(,0]-∞上是增函数,下列不等式一定成立的是 A .(3)(2)f f >- B .()(3)f f π-> C .(1)f f > D .2
2(2)(1)f a f a +>+
二、多选题
11.已知函数()cos 2cos sin 2sin 0
2f x x x πϕϕϕ⎛

=- ⎪⎝

<<的图象的一个对称中心为,06π⎛⎫
⎪⎝⎭
,则下列说法正确的是( ) A .直线5
12
x π=
是函数()f x 的图象的一条对称轴 B .函数()
f x 在0,
6π⎡⎤
⎢⎥⎣

上单调递减
C .函数(
)f x 的图象向右平移6
π
个单位可得到cos 2y x =的图象 D .函数()f x 在0,
2π⎡⎤
⎢⎥⎣

上的最小值为1-
12.下列不等式的证明过程正确的是( ) A .若,,a b R ∈则
2b a a b +≥= B .若0,a <则44a a +
≤-- C .若(),1,,∈+∞a b 2
2
+-a b D .若,a R ∈则22a a -+≥=2
13.函数2
()68f x x x =-+在下列区间( )上单调递减. A .(,2)-∞
B .(,3)-∞
C .[]3,4
D .()2,3
14.已知函数()sin()(0)f x x ωϕω=+>满足()()001
12
f x f x =+=-,且()f x 在()00,1x x +上有最小值,
无最大值.则( ) A .0112f x ⎛⎫
+
=- ⎪⎝

B .若00x =,则()sin 26f x x ππ⎛⎫
=-
⎪⎝

C .()f
x 的最小正周期为3 D .()f x 在(0,2019)上的零点个数最少为1346个
15.狄利克雷函数()f x 满足:当x 取有理数时,()1f x =;当x 取无理数时,()0f x =.则下列选项成立的是( ) A .()0f x ≥
B .()1f x ≤
C .3()0-=f x x 有1个实数根
D .3()0-=f x x 有2个实数根
三、填空题
16.已知函数2()f x x kx =-+在[2,4]上是单调函数,求实数k 的取值范围为________
17.若方程280x px -+=的解集为M ,方程20x qx p -+=的解集为N ,且{}1M N ⋂=,则p q +的值为____________. 18.函数1
1
y x =-的定义域是__________.(结果写成集合或区间) 19.比较下列各组数的大小:()3
22a +______
32
a ;()
22
3
5a
-
+______
23
5-
;0.50.4______0.4
0.5.
20.已知函数()f x 是定义在R 上的周期为2的奇函数,当0
1x <<时, 1
()f x x
=
,则5
()(0)_______2
f f -+=.
四、解答题
21.在ABC 中,三内角、、A B C 所对的边分别为a b c 、、,且()2
23b c a bc +=+. (1)求角A 的大小;
(2)求sin sin B C +的取值范围.
22.设全集{
}{
}
2
2
,|120,|50U R A x x
px B x x x q ==++==-+=,若
()()C {2},{4}U U A B A C B ⋂=⋂=,求A
B .
23.作出函数2sin |sin |=+y x x 在[0,2]π内的图像. 24.已知函数()21cos cos 2222
x x x f x =+-. (1)求()f x 在区间02π⎡⎤⎢⎥⎣⎦
,上的最值,并求出相应的x 的取值;
(2)已知ABC 的内角分别为A B C ,,,
所对应的边分别为a b c ,,,且()12f A a ==,,求ABC 的周长的取值范围. 25.计算:2
1
0.5
23
2
3
34135(0.008)
89505--
-⎛⎫
⎛⎫⎛⎫
+÷⨯
⎪ ⎪ ⎪⎝⎭
⎝⎝⎭
-⎭
.
答案第1页,总1页
参考答案
1.D 2.C 3.C 4.C 5.D 6.A 7.A 8.C 9.D 10.C 11.ABD 12.BCD 13.AC 14.AC 15.ABC
16.4k ≤或8k ≥ 17.19
18.{
5x x ≤且}1x ≠ 19.> ≤ < 20.-2.
21.(1)3π
;(2
)2⎛ ⎝. 22.{}2,3,4 23.图像见解析
24.(1)0x =时,()min 12f x =;3
x π
=时,()max 1f x =;(2)(]46,
. 25.7
9。

相关文档
最新文档