智能推荐系统的发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能推荐系统的发展趋势随着科学技术的进步,移动互联网快速发展,手机越来越便宜,拥有智能手机不再是一件遥不可及的事情,互联网用户规模已接近增长的顶点。摄像头和信息处理软件(各种滤镜、剪辑等工具)技术的进步让每一个人都可以轻松地生产高质量的内容,信息的产生以指数级增长,我们的生活中充斥着海量的信息。
在上述背景下,怎么高效快速地获取对自己有价值的信息对每个互联网公民来说是愈发重要的事情,推荐系统的出现可以轻松地应对这一棘手的难题。推荐系统作为一种高效的信息过滤工具,可以很好地部分解决用户精准高效获取信息的问题(搜索、导航等也是解决用户获取信息的手段),并且也是非常重要甚至是不可或缺的一种手段(在人们需求不明确时,借助推荐系统获取信息是非常必要的,而每一个人都有不明确的需求)。
推荐系统作为一项技术在国内的发展时间不长,从2012 年头条成立之初将推荐系统作为核心产品功能到现在差不多有8 年时间,在这8 年中推荐系统的商业价值在国内逐步得到认可和肯定,大家都认可推荐系统在内容分发、用户体验、商业变现等方面的重大价值。推荐系统目前已经成为toC 互联网产品的标配技术,任何一个toC 产品要想很好地为用户提供一种被动高效获取信息的工具,推荐系统是绕不过去的。在特定情况下人类需求的不确定性、信息的爆炸式增长这两个条件让推荐系统成为一项长久而实用的技术,推荐系统不会昙花一现,它会伴随着人类的发展而不断发展进化。
在前面的一系列文章中,我们对推荐系统的算法、工程、评估、展示、交互、业务等方方面面都进行了深入的介绍。虽然推荐系统在国内的出现只有短短8 年,但是在各个方面都取得了极大的进步,发展越来越快,各种新的方法、应用场景、产品形态层出不穷。未来推荐技术会朝哪些方向发展?推荐行业又有哪些变化?推荐系统的应用场景和价值体现又有什么新的特点呢?这些问题都值得我们深入思考。
针对上述问题,作者结合自己对推荐系统的理解和行业判断,在这篇文章中讲讲推荐系统的未来发展与变化。具体我会从政策及技术发展对推荐系统的影响、推荐系统的就业变化、推荐系统的应用场景及交互方式、推荐算法与工程架构、人与推荐系统的有效协同、推荐系统多维度价值体现等6 个方面来讲解推荐系统的未来发展和变化。本文为读者提供多角度来观察推荐系统的未来
发展与变化,期望读者读完可以更好地把握推荐系统未来发展的脉络,对推荐系统的未来变化有更深入的了解。
一、政策及技术发展对推荐系统的影响推荐系统的发展是与整个大环境和技术发展趋势密不可分的,一定会受到国家政策层面和技术发展的影响。不过对推荐系统来说,我认为政策和技术的影响是都正向的。下面我们就从政策和技术两个维度来分析。
1. 政策层面随着智能化、数据化等概念的兴起,大数据与人工智能在科技发展中起着越来越重要的作用,大数据与人工智能得到了国家层面的重视。要想发展好大数据与人工智能,首先必须有相关人才。国内从2016 年开始逐渐有一些高校开始开设大数据和人工智能专业甚至创办大数据、人工智能学院,这类高校呈上涨趋势,目前全国开设了大数据相关专业的高校超过282 个(见参考文献1)。在2019年全国已经有35 所高校获得人工智能建设资格(见参考文献2)。除了国家政策层面的支持,这也间接说明这类专业受到市场的青睐,就业前景较好,高校才愿意不遗余力地推进大数据与人工智能专业的建设。教育层面对大数据与人工智能的支持,为依赖这些技术的业务和产品提供了源源不断的人才储备。
推荐系统本身就是人工智能中非常重要并且有极大业务价值的子领域,同时构建推荐算法模型也依赖于对大规模用户行为数据的处理,大数据技术也是推荐系统必备的技术。因此,推荐系统直接受益于国家在教育层面对大数据与人工智能的支持,未来有充足的人才来源。上面提到的只是国家在教育层面的布局,其实国家将大数据与人工智能提到了战略的高度,希望通过大数据与人工智能来革新各个产业。政策层面的大力支持,媒体的大势宣导,今日头条的样板示范作用,让个性化推荐相关产品和业务得到更多投资人、公司管理层的重视,这也有利于推荐系统在更多产品和业务中落地。
2. 科技层面云计算技术是最近几年非常火的技术,云计算行业已经发展得越来越成熟,大公司早已布局,并已成为盈利源泉,是业务的第三增长极,国外的有亚马逊的AWS、微软的Azure,国内有阿里云和腾讯云。经过近十年的发展,云计算基础设施已经相对健全,未来会在SAAS服务和toB 行业应用中大力发展,这其中就包括推荐SAAS服务。创业公司只需要利用云平台提供的各种SAAS服务就可以轻松搭建推荐系统各个模块,大大降低了推荐系统的准入门槛。除了云计算公司提供这类服务,toB 的创业公司也在这方面有所布局,也提供PAAS或者SAAS的推荐服务。
构建一套完善、稳定、高效、低成本、灵活的推荐系统是一件非常困难的事情,涉及到数据、算法、工程、产品交互、业务指标等方方面面,只有对这些知识点有深入全面的了解,再结合公司的业务才能构建出具备商业价值的推荐系统。在这一背景下,创业公司一般可以选择利用云服务来构建推荐业务,这种方式投入低,无固定成本,是非常好的选择。只有中、大规模公司或者将推荐作为核心竞争力的公司才会自建一套推荐算法业务
体系。
2020年突如其来的新冠病毒疫情,给每个人的生活带来了极大的影响,限制了每个人的线下活动,用户将更多时间用在了线上。有很多研究认为这些变化是持久的,不会随着疫情的消失而消失。这也间接提升了推荐系统等互联网服务面对的用户规模,为推荐系统的发展创造了新的机遇与挑战。上面这些变化,对推荐行业产生了深远的影响,对推荐系统各方面都会带来极大的改变。最直接受到影响的是推荐系统就业的变化,这就是我们下一节主要讲述的内容。
二、推荐系统的就业我们在《推荐算法工程师的成长之道》这篇文章中讲到推荐系统是一个非常好的职业选择,主要表现在就业范围广(推荐、搜索、广告技术一脉相承,技术体系极为类似)、薪资高、有业务价值(读者可以参考这篇文章第一节“为什么说推荐算法是好的职业选择” )。本节我们就来讲解在大环境和科技层面不断发展变化的情况下推荐系统就业的变化。我们在第一节讲到各类高校开设大数据与人工智能课程、成立相关院系,未来推荐相关的人才供给会更加充裕。大数据和人工智能是当下的热点,而推荐系统是人工智能中非常重要并且有极大应用前景和商业价值的方向,人的从众本性会导致对热点盲目追随崇拜,趋之若鹜,因此一定会有很多从其他方向转岗到推荐算法领域的人才。虽然将来会有更多的企业提供推荐产品和服务,但我个人判断推荐方向的人才肯定会供过于求,相关职位竞争压力极大。构建一套完善的推荐系统是一个非常复杂的系统工程,因此才有这么多云计算公式和toB 创业公司将推荐系统打造为高效易用的SAAS或者PAAS服务了,在不久的将来,很多公司不会自己去从零开始搭建推荐算法团队了,而是直接购买云平台或者toB 公司的推荐服务。因此,推荐方向的工作形式和工作重点可能会有如下几类变化。
1. 推荐算法商业策略师是新的职业方向随着推荐系统相关的云产品越来越成熟,创业公司会更倾向于直接购买推荐云服务,快速搭建自己的推荐算法产品,而不是从零开始自己摸索。利用云产品的好处是轻量、快速,让公司将更多的精力放到核心业务上,轻装上阵,快速发展业务。关于这一块的介绍,读者可以参考《从零开始构建企业级推荐系统》这篇文章第二节3 中的介绍。为了更好地将云推荐产品落地到企业中,对需要的人才技能及要求会有变化,这时不需要特别懂具体的算法实施和工程,更多的是希望了解各类算法的优缺点和应用场景,能将推荐算法跟本公司的业务结合起来,让推荐算法更贴合本公司的业务情况,最终让推荐算法产生业务价值。
这类人员需要了解推荐系统全流程,知道构建推荐系统可能遇到的困难,有全局把