桁架练习题

桁架练习题
桁架练习题

桁架网络练习题

一、

求图示桁架中 a 杆的内力Na。

二、

试求图示桁架杆 1 和杆2 的内力。

3m

三、

求图示桁架杆件 1 的内力。

a

a

a

四、

求图示桁架 a 、b 杆的轴力。已知P1 = 30kN , P2 = 10kN 。

五、计算图2-2-48所示桁架中杆件a、b的轴力。(重庆大学2007)

六、计算在图2-2-34a 所示荷载作用下静定桁架中指定杆的轴力Nc Nb Na F F F 和、。

.5m

F P

(a)

F P

P

(c)

七、

求 图 示 结 构 的M 图 。

最新钢结构设计练习题

钢结构设计练习题一、填空题 1、门式刚架轻型房屋屋面坡度宜取(20 8),在雨水较多的地区取其中的较大值。 2、在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系。 3、当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置(刚性)系杆。 4、冷弯薄壁构件设计时,为了节省钢材,允许板件(受压屈曲),并利用其(屈曲后)强度进行设计。 5、当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置(隅撑) 6、螺栓排列应符合构造要求,通常螺栓端距不应小于(2)倍螺栓孔径,两排螺栓之间的最小距离为(3 )倍螺栓直径。 7、垂直于屋面坡度放置的檩条,按(双向受弯)构件设计计算。 8、屋架节点板上,腹杆与弦杆以及腹杆与腹杆之间的间隙应不小于(20mm)。 9、拉条的作用是(防止檩条侧向变形和扭转并且提供x轴方向的中间支点)。 10、实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是(防止檩条端部截面的扭转,以增强其整体稳定性)。

11、屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是(0.9L)。 12、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用(焊透的k形)焊缝。13、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 14、屋盖支撑可以分为(上弦横向支撑)、(下弦横向支撑)、(下弦竖 向支撑)、(垂直支撑)、(系杆)五类。 15、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 16、屋架上弦杆为压杆,其承载能力由(稳定)控制;下弦杆为拉杆,其截面尺寸由(强度)确定。 17、梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度Lox=(0.8 )L,在屋架平面外的计算长度Loy=(1.0)L,其中L 为杆件的几何长度。 18、吊车梁承受桥式吊车产生的三个方向荷载作用,即(吊车的竖向荷载P ),(横向水平荷载T)和(纵向水平荷载Tl)。 19、能承受压力的系杆是(刚性)系杆,只能承受拉力而不能承受压力的系杆是(柔性)系杆。 20、根据吊车梁所受荷载作用,对于吊车额定起重量Q≤30t,跨度l ≤6m,工作级别为Al~A5的吊车梁,可采用(加强上翼缘)的办法,

交错桁架结构的设计

第39卷第3期2007年6月 西安建筑科技大学学报(自然科学版) J1Xi.an Univ.of Arch.&Tech.(N atur al Science Edition) V ol.39N o.3 Jun.2007交错桁架结构的设计 卢林枫1,周绪红2,刘永健1,莫涛3,周期石4 (1.长安大学,陕西西安710064;2.兰州大学,甘肃兰州730000; 3.湖南大学,湖南长沙410082; 4.中南大学,湖南长沙410083) 摘要:采用P KP M系列软件和有限元程序SAP2000,分析了钢框架-剪力墙和交错桁架-剪力墙两种结构方案的抗震、抗风性能,以及在满足设计规范前提下的结构用钢量.对比设计结果显示,交错桁架-剪力墙比钢框架-剪力墙用钢量低,纵向框架结构形式对交错桁架的用钢量有一定影响,设计时宜采用剪力墙或支撑体系增强纵向框架刚度. 关键词:交错桁架;钢结构住宅;钢结构设计;经济评价 中图分类号:T U393.2文献标识码:A文章编号:1006-7930(2007)03-0308-06 交错桁架结构是一种理想的住宅结构体系,既能提供较大的建筑空间又具有较好的抗侧力性能.但目前关于高层交错桁架结构与其他结构体系经济性对比的技术数据还主要来自国外研究成果[1],为重点考察交错桁架结构经济性能,对福州市某城市广场工程15层商住酒店式公寓主楼结构方案作对比分析.该公寓主体建筑1~4层长81.6m,5~15层长71.6m,宽16m;1层层高6.5m,2~4层层高5.0 m,5~14层层高3.15m,15层层高3.9m.原设计在对比了矩形钢管混凝土框架-剪力墙结构和矩形钢管混凝土框架-钢支撑体系两种方案后,用了矩形钢管混凝土框架-剪力墙结构,框架柱均为箱型600@ 600@12内灌C50混凝土.由于矩形钢管混凝土框架-剪力墙结构比钢筋混凝土框架-剪力墙结构成本高,所以该项目的拟施工单位委托我们做以交错桁架为主要受力体系的结构方案,以期降低工程的结构成本.本文提出了两种不同柱距的交错桁架-剪力墙、支撑体系结构方案,并且与原矩形钢管混凝土框架-剪力墙结构方案作了对比分析,着重比较了不同结构方案的技术指标和经济性能. 1交错桁架结构设计方案 1.14m柱距方案 建筑设计方案中公寓楼房间都为4m开间,适合选择4m柱距的交错桁架方案(简称方案一).由于该工程1~4层为商场,建筑要求在这些楼层不能布置桁架,故1~4层仍采用矩形钢管混凝土框架-剪力墙结构,框架按4m设置柱距,5~15层采用钢结构交错桁架-剪力墙结构.由于交错桁架横向刚度较大,为减小层间刚度的突变,在1~4层局部框架间增设了偏心支撑,平面结构布置见图1.采用小柱距可以增强结构的刚度并使结构传力更加平缓,在减小楼板厚度的同时可以不布置次梁,减轻了上部建筑物的荷载,有利于降低地基和基础成本和提高结构抗震性能. 交错桁架体系横向由桁架和剪力墙(支撑体系)承担侧向力结构采用混合式桁架对抗质有利[2],桁架采用5节间桁架形式(见图2),弦杆为250@250@10方管,腹杆为200@200@10方管,空腹节间尺寸由建筑方案的走廊宽度确定,空腹节间可作为结构的耗能机制来改善结构的抗震性能.在纵向,设置H350@120@6@8框架梁,形成4m小柱距框架,而且剪力墙直通向屋面,所以纵向已形成了钢框架-剪力墙结构. *收稿日期:2006-03-24 基金项目:国家自然科学基金资助项目(50078021);教育部科学技术研究重点项目(99089);高等学校博士学科点专项科研基金项目(2000053203) 作者简介:卢林枫(1972-),男,黑龙江龙江人,副教授,博士,主要从事新型钢结构体系分析与设计方法研究.

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

结构力学习题集9-结构动力计算

第九章 结构的动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2(a)(b) 6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? &&&&()

二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps in my EI =-77683θ t &&/; B .()()my EI y l Ps in &&/+=19273θ t ; C .()()my EI y l Ps in &&/+=38473θ t ; D .()()()y l Ps in my EI =-7963θ t &&/ 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A . () 76873EI ml k m //+; B .()76873EI ml k m //-; C . ()76873 EI ml k m //-; D .()76873 EI ml k m //+ 。

c语言计算平面桁架内力计算程序

#include #include #include #define M 5 int n,nc,nn,m,e,f;//节点总数,固定节点数,自由度数,杆件数int io,jo;//单根杆对号指示数 int ihl[M],ihr[M];//杆件左右节点号 double a[M];//各杆截面积 double mm[M];//杆件质量 double ea[M];//杆件EA的值 double x[M],y[M];//节点坐标 double dp[M];//总体系下的节点载荷 double t[2];//0,1分别为坐标转换矩阵的cos(),sin() double c[2][2];//总体系下的单刚 double clxy[3];//0,1,2分别为杆长,正弦,余弦 double h[M];//杆件轴力 double r[M][M];//总刚度阵 double rd;//桁架轴力杆局部系单刚 double u[M];//桁架节点位移 double v[2];//存放节点位移差 double d[M];//LDLT分解时的D矩阵的对角线元素 double l[M][M];////LDLT分解时的D矩阵的对角线元素double fdp[M];//总体系下支座反力 void iojo(int k)//计算对号指示数io,jo { int i,j; i=ihl[k-1];//k号杆左节点号进入i j=ihr[k-1];//k号杆节点右号进入i io=2*(i-nc-1);//uxi前未知位移的个数 jo=2*(j-nc-1);//uyi前未知位移的个数 } void ch(int k)//计算杆长与方向余弦函数 { int i,j; i=ihl[k-1];//k号杆左节点进入i j=ihr[k-1];//k号杆右节点进入j clxy[1]=x[j-1]-x[i-1];//k号杆x坐标差 clxy[2]=y[j-1]-y[i-1];//k号杆y坐标差 clxy[0]=sqrt(clxy[1]*clxy[1]+clxy[2]*clxy[2]);//k号杆长 clxy[1]=clxy[1]/clxy[0];//k号杆件x轴余弦 clxy[2]=clxy[2]/clxy[0];//k号杆件y轴余弦

钢桁架桥计算书-毕业设计之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01)1.设计资料1 1.1基本资料1 1.2构件截面尺寸1 1.3单元编号4 1.4荷载5 2.内力计算7 2.1荷载组合7 2.2内力9 3.主桁杆件设计11 3.1验算内容11 3.2截面几何特征计算11 3.3刚度验算15 3.4强度验算16 3.5疲劳强度验算16 3.6总体稳定验算17 3.7局部稳定验算18 4.挠度及预拱度验算19 4.1挠度验算19

4.2预拱度19 5.节点应力验算20 5.1节点板撕破强度检算20 5.2节点板中心竖直截面的法向应力验算21 5.3腹杆与弦杆间节点板水平截面的剪应力检算22 6.课程设计心得23

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 编号名称类型 截面 形状 H B1 (B) tw tf1(tf ) B2tf2C 1下弦杆E0E2用户H型0.460.460.010.0120.4 6 0.012 2下弦杆E2E4用户H型0.460.460.0120.020.4 6 0.02 3上弦杆A1A3用户H型0.460.460.0120.020.4 6 0.02 4上弦杆A3A3用户H型0.460.460.020.0240.4 6 0.024 5斜杆E0A1用户H型0.460.60.0120.020.60.02 6斜杆A1E2用户H型0.460.440.010.0120.4 4 0.012 7斜杆E2A3用户H型0.460.460.010.0160.4 6 0.016 8斜杆A3E4用户H型0.460.440.010.0120.4 4 0.012 9竖杆用户H型0.460.260.010.0120.2 6 0.012 10横梁用户H型 1.290.240.0120.0240.2 4 0.024 11纵梁用户H型 1.290.240.010.0160.2 4 0.016 12下平联用户T型0.160.180.010.01 13桥门架上下横撑和短 斜撑 用户双角0.080.1250.010.01 0.0 1 14桥门架长斜撑用户双角0.10.160.010.010.0

钢结构设计练习题

钢结构设计练习题 一、填空题 1、门式刚架轻型房屋屋面坡度宜取(1/20—1/8),在雨水较多的地区取其中的较大值。 2、在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系。 3、当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置(刚性)系杆。 4、冷弯薄壁构件设计时,为了节省钢材,允许板件(受压屈曲),并利用其(屈曲后强度)强度进行设计。 5、当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置(隅撑) 6、螺栓排列应符合构造要求,通常螺栓端距不应小于(2)倍螺栓孔径,两排螺栓之间的最小距离为(3)倍螺栓直径。 7、垂直于屋面坡度放置的檩条,按(双向受弯)构件设计计算。 8、屋架节点板上,腹杆与弦杆以及腹杆与腹杆之间的间隙应不小于(20mm)。 9、拉条的作用是(防止檩条侧向变形和扭转并且提供x轴方向的中间支点)。 10、实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是(为了阻止檩条端部截面的扭转,以增强其整体稳定性)。 11、屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是(0.9L)。 12、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用(焊透的K形)焊缝。 13、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 14、屋盖支撑可以分为(上弦横向水平支撑)、(下弦横向水平支撑)、(下弦纵向水平支撑)、(垂直支撑)、(系杆)五类。 15、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置()。

16、屋架上弦杆为压杆,其承载能力由()控制;下弦杆为拉杆,其截面尺寸由()确定。 17、梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度Lox=()L,在屋架平面外的计算长度Loy=()L,其中L为杆件的几何长度。 18、吊车梁承受桥式吊车产生的三个方向荷载作用,即(),()和()。 19、能承受压力的系杆是()系杆,只能承受拉力而不能承受压力的系杆是()系杆。 20、根据吊车梁所受荷载作用,对于吊车额定起重量Q≤30t,跨度l≤6m,工作级别为Al~A5的吊车梁,可采用()的办法,用来承受吊车的横向水平力。当吊车额定起重量和吊车梁跨度再大时,常在吊车梁的上翼缘平面内设置()或(),用以承受横向水平荷载。 21、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用()焊缝。 22、屋架上弦横向水平支撑之间的距离不宜大于()。 23、桁架弦杆在桁架平面外的计算长度应取()之间的距离。 24、普通钢屋架的受压杆件中,两个侧向固定点之间的垫板数不宜少于 ()个。 参考答案: 1、1/20—1/8 2、屋盖横向支撑 3、刚性 4、受压屈曲,屈曲后强度 5、隅撑 6、2, 3 7、双向受弯 8、20mm 9、防止檩条侧向变形和扭转并且提供x轴方向的中间支点 10、为了阻止檩条端部截面的扭转,以增强其整体稳定性

钢结构常用规范及规程

钢结构设计常用规范 基础规范:确定结构的安全等级(γ0)、结构的使用寿命(γL)、抗震设防类别(确定结构抗震等级及地震作用效应调整、抗震构造措施的依据),是所有钢结构设计都必须使用的规范。 1、《工程结构可靠性设计统一标准》 GB50153-2008 各类工程结构:建筑、铁路、公路、港口、水利水电等,设计基本原则、基本要求和基本方法。 2、《建筑结构可靠度设计统一标准》GB50068-2001 各类材料的建筑结构可靠度设计的基本原则和方法 3、《建筑工程抗震设防分类标准》 特殊设防类(甲类)、重点设防类(乙类)、标准设防类(丙类)及适度设防类(丁类)...........................................................矚慫润厲钐瘗睞枥庑赖。 4、《建筑结构荷载规范》GB 50009-2012 5、《建筑抗震设计规范》GB 50011-2010(2016年版) 6、《钢结构设计规范》GB 50017-2003 7、《钢结构钢材选用与检验技术规程》CECS 300:2011 ......................................................聞創沟燴鐺險爱氇谴净。 结构体系 8、《装配式钢结构建筑技术标准》GB/T 51232-2016 9、《门式刚架轻型房屋钢结构技术规范》GB51022-2015

10、《空间网格结构设计规程》JGJ 7-2010 11、《高层民用建筑钢结构技术规程》JGJ 99-2015 12、《钢管混凝土结构技术规范》(GB 50936-2014) 13、《组合结构设计规范》JGJ 138-2016(型钢混凝土) 14、《交错桁架钢结构设计规程》JGJ/T 329-2015 15、《拱形钢结构技术规程》JGJ/T 249-2011 16、《低层冷弯薄壁型钢房屋建筑技术规程》JGJ 227-2011 17、《轻钢轻混凝土结构技术规程》JGJ 383-2016 18、《钢结构住宅设计规范》CECS 261:2009 19、《轻型钢结构住宅技术规程》JGJ 209-2010 20、《高耸结构设计规范》GB50135-2006 21、《钢结构单管通信塔技术规程》CECS 236:2008 22、.《预应力钢结构技术规程》CECS 212:2006 .......................................................残骛楼諍锩瀨濟溆塹籟。 构件 23、《冷弯薄壁型钢结构技术规范》GB50009-2012 24、《波纹腹板钢结构技术规程》CECS 291:2011 25、《波浪腹板钢结构应用技术规程》CECS 290:2011 ........................................................酽锕极額閉镇桧猪訣锥。 钢结构材料 26、《碳素结构钢》GB/T 700-2006

第九章矩阵位移法习题集

第九章 矩阵位移法 【练习题】 9-1 是非题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 9-2 选择题: 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。

@建筑钢结构设计复习题及答案

1 《建筑钢结构设计》复习提纲《钢结构设计原理》 第九章单层厂房钢结构 1、重、中型工业厂房支撑系统有哪些(P305、317) 各有什么作用 答⑴柱间支撑分为上柱层支撑和下柱层支撑★吊车梁和辅助桁架作为撑杆是柱间支撑的组成 部分承担并传递单层厂房钢结构纵向水平力。 柱间支撑作用①组成坚强的纵向构架保证单层厂房钢结构的纵向刚度 ②承受单层厂房钢结构端部山墙的风荷载、吊车纵向水平荷载及温度应力等在地震区尚应承受纵向 地震作用并将这些力和作用传至基础 ③可作为框架柱在框架平面外的支点减少柱在框架平面外的计算长度 ⑵屋盖支撑由上弦横向水平支撑、下弦横向水平支撑、下弦纵向水平支撑、垂直支撑、系杆组成 屋盖支撑作用①保证屋盖形成空间几何不变结构体系增大其空间刚度 ②承受屋盖各种纵向、横向水平荷载如风荷载、吊车制动力、地震力等并将其传至屋架支座 ③为上、下弦杆提供侧向支撑点减小弦杆在屋架平面外的计算长度提高其侧向刚度和稳定性 ④保证屋盖结构安装时的便利和稳定 2、屋盖支撑系统应如何布置可能考作图题 答参考书P313-315 及图9.4.3 3、檩条有哪些结构型式是什么受力构件需要验算哪些项目P317319 答结构形式实腹式和桁架式檩条通常是双向弯曲构件需要验算强度、整体稳定、刚度。

4、设置檩条拉条有何作用如何设置檩条拉条 答作用为了减小檩条沿屋面方向的弯曲变形减小My以及增加抗扭刚度设置檩条拉条以减小该方 向的檩条跨度课件 如何设置当檩条的跨度4~6 m时宜设置一道拉条当檩条的跨度为6m以上时应布置两道拉条。屋 架两坡面的脊檩须在拉条连接处相互联系或设斜拉条和撑杆。Z形薄壁型钢檩条还须在檐口处设斜拉条 和撑杆。当檐口处有圈梁或承重天沟时可只设直拉条并与其连接。 5、压型钢板根据波高的不同有哪些型式分别可应用于哪些方面(P323) 答高波板波高>75mm适用于作屋面板 中波板波高50~75mm适用于作楼面板及中小跨度的屋面板 低波板波高<50mm适用于作墙面板 6、普通钢桁架按其外形可分为哪些形式(P326),梯形屋架有哪些腹杆体系(P327) 答普通桁架按其外形可分为三角形、梯形及平行弦三种。 梯形桁架的腹杆体系有人字式、再分式。 7、在进行梯形屋架设计时为什么要考虑半跨荷载作用 答梯形屋架中部某些斜杆可能在全跨荷载时受拉而半跨荷载时受压由拉杆变为压杆为不利受力情况 之一。 8、屋架中汇交于节点的拉杆数越多拉杆的线刚度和所受的拉力越大时则产生的约束作用越大压 杆在节点处的嵌固程度越大压杆的计算长度越小根据这个原则桁架杆件计算长度如何确 定?(P331-332) 此题答案仅供参考 答⑴桁架平面内弦杆、支座斜杆、支座竖杆---杆端所连拉杆少本身刚度大则0xl l

钢结构设计

1.结构的整体失稳破坏:是指结构在外荷载作用下尚未达到其强度破坏承载力之前,在某一微小的荷载或几何干扰下,结构偏离了原来的平衡位置,而且即使去掉这些干扰,结构也不能恢复到其原先的平衡位置,甚或继续变形直至倒塌破坏的现象。 2.脉动风常会引起周期较长的高柔结构和悬索结构的较大风振反应,由于风振问题的复杂性,目前只有顺风向的风振计算问题得到一定程度的解决,一般采用随机振动理论进行分析。 3.地震引起的结构动力反应,除和结构自身的动力特性有关之外,还与地震时建筑场地的地面运动特性有关,即与地震动的强度(如地面的加速度、速度、位移等的幅值大小)、频谱特性和持时有关。目前结构的地震分析方法主要有反应谱理论与时程分析法二类。 4.组合梁施工阶段验算:第一阶段,在混凝土硬结前的材料重量和施工荷载由钢梁单独承受,此时按一般钢梁计算其强度、挠度、稳定性。第二阶段,施工完成后的试用阶段,组合梁承受续加荷载产生的变形与施工阶段的变形相叠加。如果施工阶段梁下设有临时支撑,则应按实际支承情况验算钢梁的强度、挠度、稳定性。 5.材料强度取值和钢梁受压区的板件宽厚比限制:钢材按《规范》中的钢材强度设计值f取值,当组成板件的厚度不同时,可统一按较厚板件取强度设计值。组合梁中钢梁受压区的板件宽厚比应满足塑性设计的要求,以确保组合梁达极限抗弯承载力时,钢梁能充分发展塑性,形成塑性铰。 6.组合梁强度设计:①完全抗剪连接组合梁的抗弯承载力:完全抗剪连接组合梁的设计,可按简单塑性理论形成塑性铰的假定来计算组合梁的抗弯承载力。即假定位于塑性中和轴一侧的受拉混凝土因为开裂而不参加工作,而处于负弯矩区的纵向钢筋受拉,且达到强度设计值;混凝土受压区假定为均匀受压,并达到轴心抗压强度设计值,且受压区中的板托部分不予以考虑;根据塑性中和轴的位置,钢梁可能全部受拉或部分受拉部分受压,但假定为均匀受力,并达到钢材的抗拉或抗压强度设计值。其次,假定梁的剪力全部由钢梁承受,并按钢梁腹板的塑性抗剪承载力验算,且不考虑剪力对组合梁抗弯承载力的影响。计算时,忽略钢筋混凝土翼板受压区中钢筋的作用,且不考虑施工过程中有无支承及混凝土的徐变。收缩、温度作用的影响。②部分抗剪连接组合梁的抗弯承载力:由于部分抗剪连接组合梁的连接件配置受构造等原因影响不能按完全抗剪连接所需的个数配置,因而不足以承受最大弯矩点至邻近零点弯矩点之间的剪跨区段内总的纵向水平剪力时,应采用部分抗剪连接设计法。试验研究证明,采用栓钉等柔性抗剪连接件的组合梁,随着连接件数量的减少,钢梁与混凝土翼板间的协同工作能力下降,导致二者交界面发生相对滑移,使极限抗弯承载力降低。计算时可取该剪跨区段内抗剪连接件的抗剪承载力设计值总和作为混凝土翼板中的剪力,由平衡条件求得混凝土受压区的高度后,可求得部分抗剪连接组合梁的抗剪承载力。 7.抗剪连接件的类型及其抗剪承载力设计值:抗剪连接件主要用于传递混凝土翼板与钢梁之间的纵向水平剪力,还可以抵抗翼板与钢梁之间的掀起作用.抗剪连接件宜采用栓钉、槽钢、弯筋或有可靠依据的其他连接件。设计值是在国内大量实验研究的统计分析基础上,并借鉴了国外有关规范确定的。 8.挠度计算的基本规定:组合梁的挠度,应分别按荷载的标准组合和准永久组合按弹性方法进行计算,按永久和可变荷载标准值产生的挠度以及仅由可变荷载标准值产生的挠度应分别符合规范对受弯构件的挠度容许只的要求。组合梁的挠度按弹性方法计算时,对于荷载的标准组合,可不考虑混凝土的徐变和收缩对组合梁挠度的影响,将混凝土翼板的有效宽度除以钢材与混凝土的弹性模量比αe=E/Ec。对于荷载准永久 α2,换算为钢翼缘截面宽度,的组合,考虑混凝土的徐变和收缩,对组合梁长期变形的不利影响,则除以E 于是就将原组合梁截面按承载力和刚度等效原则折算成全钢的换算截面。当按换算截面计算组合梁的挠度时,应考虑混凝土翼板与钢梁之间的滑移效应对组合梁的抗弯刚度进行折减。 9钢——混凝土组合梁设计构造要求:1.主要尺寸和钢筋:①组合梁截面高度不宜超过钢梁截面高度的2.5倍;混凝土板托的高度不宜超过翼板厚度的1.5倍;板托的顶面宽度不宜小于钢梁上翼缘宽度与1.52c h之和。②组合梁边梁混凝土翼板有板托时伸出长度不宜小于2c h,无板托时应同时满足伸出钢梁中心线不小雨150mm,伸出钢梁翼缘边不小于50mm的要求。③连续组合梁在中间支座负弯矩区的上部纵向钢筋及分布钢筋应按现行国家标准《混凝土结构设计规范》的规定设置。2连接件设置统一要求:①栓钉连接件钉

18米普通钢桁架设计计算书

钢屋架设计 姓名: 班级: 学号: 指导教师:

1.原始资料: 某工业厂房为单跨,无天窗,纵向长度为60m,跨度为18m,采用梯形钢屋架,无檩方案,屋面采用1.5×6m预应力钢筋混凝土屋面板,100mm厚泡沫混凝土保温层,二毡三油改性沥青防水卷材屋面,屋面为上人屋面,坡度为i=1/15。屋架铰支于钢筋砼柱上,柱截面400mm×400mm,砼标号为C25,车间无吊车。屋架采用的钢材为Q345钢,手工焊。 2.屋架形式和几何尺寸确定 屋架计算跨度(每端支座中线缩进150mm): l o=18-2×0.15=17.7m 跨中及端部高度 桁架的中间高度:h=2250mm 在17.7m的两端高度:h=1650mm 桁架跨中起拱50mm 图1 桁架形式及几何尺寸 桁架支撑布置图如图2所示:

图2

4.荷载和内力计算 4.1荷载计算: 4.11屋面永久荷载标准值: ①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为单位,q为屋架及支撑自 重,以kN/m2为单位; ②屋面活荷载:施工活荷载标准值为2.0kN/m2,雪荷载的基本雪压标准值为S0=0.35kN/m2,施工 活荷载与雪荷载不同时考虑,而是取两者的较大值。 积灰荷载标准值:0.5kN/m2。 ③屋面各构造层的荷载标准值: 二毡三油改性沥青防水层 0.40kN/m2 水泥砂浆找平层 0.40kN/m2 保温层 0.60kN/m2 预应力混凝土屋面板 1.50kN/m2 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。沿屋 α=换算为沿水平投影面分布的荷载。桁架沿水面斜面分布的永久荷载应乘以1/cos 1.005 P=+?支撑) 平投影面积分布的自重(包括支撑)按经验公式(0.120.011 W 计算,跨度单位m。 永久荷载标准值: 二毡三油改性沥青防水层 1.002×0.4kN/m2=0.4008kN/m2水泥砂浆找平层 1.002×0.4 kN/m2=0.4008kN/m2保温层 1.002×0.6 kN/m2=0.6012kN/m2 预应力混凝土屋面板 1.002×1.5 kN/m2=1.503 kN/m2桁架和支撑自重 0.12 KN/m2+0.011×18 kN/m2=0.318kN/m2 总计:3.2kN/m2可变荷载标准值:

桁架承重架设计计算书

桁架承重架设计计算书 桁架承重架示意图(类型一) 二、计算公式 荷载计算:1.静荷载包括模板自重、钢筋混凝土自重、桁架自重(×1.2); 2.活荷载包括倾倒混凝土荷载标准值和施工均布荷载(×1.4)。 弯矩计算: 按简支梁受均布荷载情况计算 剪力计算: 挠度计算: 轴心受力杆件强度验算: 轴心受压构件整体稳定性计算: 三、桁架梁的计算 桁架简支梁的强度和挠度计算 1.桁架荷载值的计算. 静荷载的计算值为 q1 = 62.18kN/m. 活荷载的计算值为 q2 = 16.80kN/m. 桁架节点等效荷载 Fn = -39.49kN/m.

桁架结构及其杆件编号示意图如下: q 桁架横梁计算简图 2.桁架杆件轴力的计算. 经过桁架内力计算得各杆件轴力大小如下: 桁架杆件轴力图 桁架杆件轴力最大拉力为 Fa = 105.31kN. 桁架杆件轴力最大压力为 Fb = -139.62kN. 3.桁架受弯杆件弯矩的计算. 桁架横梁受弯杆件弯矩图桁架受弯杆件最大弯矩为M = 2.468kN.m 桁架受弯构件计算强度验算= 18.095N/mm 钢架横梁的计算强度小于215N/mm2,满足要求!

4.挠度的计算. 最大挠度考虑为简支梁均布荷载作用下的挠度 桁架横梁位移图 简支梁均布荷载作用下的最大挠度为 V = 0.425mm. 钢架横梁的最大挠度不大于10mm ,而且不大于L/400 = 1.25mm ,满足要求! 5.轴心受力杆件强度的计算. 式中 N —— 轴心拉力或轴心压力大小; A —— 轴心受力杆件的净截面面积。 桁架杆件最大轴向力为139.622kN, 截面面积为14.126cm 2 . 轴心受力杆件计算强度 = 98.841N/mm 2. 计算强度小于强度设计值215N/mm 2,满足要求! 6.轴心受力杆件稳定性的验算. 式中 N —— 杆件轴心压力大小; A —— 杆件的净截面面积; —— 受压杆件的稳定性系数。

钢结构毕业设计论文解析

毕业设计 建筑设计 1.前言 如今,钢结构建筑在人们的生活中被广泛应用;钢结构的高层建筑、大型厂房、大跨度桥梁、造型复杂的新式建筑物等如雨后春笋般的出现在世界各地,这足以表明钢结构的发展趋势和美好的未来。 钢结构建筑相比于混凝土结构在环保、节能、高效等方面具有明显优势,且具有材料强度高、重量轻、材质均匀、塑性韧性好、结构可靠性高、制作安装机械化程度高、抗震性能良好、工期短、工业化程度高、外形多样美观等优点,并符合可持续发展的要求。目前,国内大约每年有上千万平米的钢结构建筑竣工,国外也有大量钢结构制造商进入中国,市场竞争日趋激烈,为此通过该项设计,达到能够理论联系实际地将学到的专业理论做一次全面的应用目的。 毕业设计是这大学四年来对所学土木工程知识的一次系统的、全面的考察和总结,是大学重要的总结性教育。通过做毕业设计,使我对钢结构的学习和研究更为的深入,深化了我对土木工程专业知识的认知和理解。在做毕设的过程中通过查阅各种文献资料、规范案例,不仅拓展了我的知识面,也培养了我独立思考、查阅资料的能力。 2.设计概况 本工程为青岛市华原纺织厂职工宿舍楼,采用钢结构框架支撑体系,共5层,各层层高均为3.5m,采用造型时尚的四坡屋顶,建筑结构总高度为19.7(加屋顶),每层建筑面积约为619.92㎡,总建筑面积3099.6㎡,维护结构采用ALC板(150mm);本建筑设计采用横向8跨,9根柱;纵向2跨,3根柱的柱网布置;室内外高差为0.45m,建筑主要功能为集体居住。 总平面图见图2-1。 图2-1 总平面布置图 3.设计条件

3.1 工程地质条件 (1)拟建场地地型平坦,自然地表标高36.0m 。 (2)地基基础方案分析:宜采用天然地基,全风化角砾岩、强风化角 砾岩或中风化角砾岩为地基持力层,建议采用-1.0m ~-3.0m 柱下独立基 础;其中全风化角砾岩,土层平均厚度 2.1m ,地基承载力特征值 kPa ak f 220 ,可 作为天然地基持力层。 (3)抗震设防烈度为6度,拟建场地土类型为中硬场地土,场地类别为 Ⅱ类。 3.2 气象条件 (1)降水。平均年降雨量777.4mm ,年最大降雨量1225.2mm ;雨量集中期: 7月中旬至8月中旬,月最大降雨量140.4mm ;基本雪压:0.6kN/㎡。 (2)主导风向:夏季为东南风,冬季为西北风;基本风压:0.6kN/㎡。 3.3 楼面基本荷载 荷载一组。恒载:5.0kN/㎡,活载:2.0kN/㎡。 荷载二组。恒载:5.5kN/㎡,活载:2.0kN/㎡。 3.4 其他技术条件 建筑等级:耐久等级、耐火等级均为Ⅱ级,采光等级为Ⅲ级。 4 设计方案 4.1.1柱网布置 本方案采用横向3排柱形式,共两跨且不对称;纵向9排柱,柱距分 两种,即3.6m 和7.2m ,纵向柱网对称布置。该方案主要采用大柱距且3 排两跨的柱网,充分节约钢材以及发挥钢结构宜于应用到大跨度的优点; 并且结构形式简单,计算简图简单,受力分析简便,合理可行。(柱网布置 见图4-1-1)。 图4-1-1 结构柱网布置图 4.1.2 建筑结构形式分析选定 多层钢结构房屋的体系有纯框架体系、框架支撑—-支撑体系、框架剪力墙体系、

桁架承重架设计计算书

桁架承重架设计计算书 桁架承重架示意图(类型一) 二、计算公式 荷载计算:1.静荷载包括模板自重、钢筋混凝土自重、桁架自重(X 1.2); 2. 活荷 载包括倾倒混凝土荷载标准值和施工均布荷载(X 1.4)。 弯矩计算:按简支梁受均布荷载情况计算 剪力计算: 挠度计算: 轴心受力杆件强度验算: 轴心受压构件整体稳定性计算: 三、桁架梁的计算 桁架简支梁的强度和挠度计算 1. 桁架荷载值的计算. 静荷载的计算值为 q1 = 62.18kN/m. 活荷载的计算值为q2 = 16.80kN/m. 桁架节点等效荷载 Fn二-39.49kN/m. 桁架结构及其杆件编号示意图如下: 桁架横梁计算简图 2. 桁架杆件轴力的计算. 经过桁架内力计算得各杆件轴力大小如下:桁架杆件轴力图 桁架杆件轴力最大拉力为 Fa = 105.31kN. 桁架杆件轴力最大压力为 Fb = -139.62kN. 3. 桁架受弯杆件弯矩的计算. 桁架横梁受弯杆件弯矩图 桁架受弯杆件最大弯矩为M二2.468kN.m 桁架受弯构件计算强度验算=18.095N/mm 钢架横梁的计算强度小于215N/mrf,满足要求! 4. 挠度的计算. 最大挠度考虑为简支梁均布荷载作用下的挠度桁架横梁位移图 简支梁均布荷载作用下的最大挠度为 V二0.425mm. 钢架横梁的最大挠度不大于10mn,而且不大于L/400 = 1.25mm,满足要求! 5. 轴心受力杆件强度的计算.

式中N ——轴心拉力或轴心压力大小; A ——轴心受力杆件的净截面面积。 桁架杆件最大轴向力为139.622kN,截面面积为14.126cm2. 轴心受力杆件 计算强度■>= 98.841N/mm2. 计算强度小于强度设计值215N/mrf,满足要求! 6. 轴心受力杆件稳定性的验算. 式中N——杆件轴心压力大小; A ——杆件的净截面面积;「一一受压杆件的稳定性系数。 轴心受力杆件稳定性验算结果列表 杆件单元长细比稳定系数轴向压力kN 计算强度N/mm2 1 37.948 0.914 0.000 2 37.948 0.914 105.310 3 37.948 0.91 4 -52.655 40.770 4 40.046 0.907 -139.622 109.010 5 37.948 0.914 0.000 6 40.046 0.90 7 83.774 7 37.948 0.914 -26.327 20.385 8 37.948 0.914 -26.327 20.385 9 37.948 0.914 -39.491 30.577 10 37.948 0.914 -52.65 5 40.770 11 37.948 0.914 -52.65

计算结构力学自编平面桁架

平面桁架 程序: #include "stdio.h" #include "math.h" #define unitmax 30 #define pointmax 30 #define matermax 10 #define Pmaxnum 20 #define bindmax 20 main() { int unit[unitmax][4],bind[bindmax][3],number[5]; float point[pointmax][2],material[matermax][2],P[Pmaxnum][3]; float allarray[pointmax*2][pointmax*2]; void readdata(int unit[unitmax][4],float point[pointmax][2],int number[5], int bind[bindmax][3],float material[matermax][2],float P[Pmaxnum][3]); void all(float point[pointmax][2],int unit[unitmax][4],float material[matermax][2], int number[5],float allarray[][pointmax*2]); void equa(float allarray[][pointmax*2],float P[Pmaxnum][3],int bind[][3], int number[]); void result(int unit[unitmax][4],float point[pointmax][2],int number[5], float material[matermax][2],float allarray[][pointmax*2]); readdata(unit,point,number,bind,material,P); all(point,unit,material,number,allarray); equa(allarray,P,bind,number); result(unit,point,number,material,allarray); } /******************************************************************/ void readdata(int unit[unitmax][4],float point[pointmax][2],int number[5], int bind[bindmax][3],float material[matermax][2],float P[Pmaxnum][3])

相关文档
最新文档