电流互感器试验方法

合集下载

电流互感器变比检验的简便方法(三篇)

电流互感器变比检验的简便方法(三篇)

电流互感器变比检验的简便方法电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。

电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。

电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。

例如800MW的发电机组,额定电压为20kV,额定电流为:800/(2031/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价高,若降低被测电流互感器一次电流进行试验,那么其变比误差会很大,试验就毫无意义。

所以电流法测量电流互感器变比的方法,在施工现场越来越受到限制。

笔者在电流法的基础上介绍另一种电流互感器变比的试验方法电压法。

该方法适用于施工现场对电流互感器变比检验。

电压法具有适用范围广,使用设备少,设备简单的优点,是一种简单方便试验方法。

1电压法测量电流互感器变比的原理电压法测量电流互感器变比的方法适合现场试验,其优点是设备少,线路简单,易操作。

试验接线图如图1所示。

电压表V监测被测电流互感器二次电压,毫伏表mV监测被测电流互感器一次侧电压,此方法类似于测量铁芯感应电势的方法。

理想电流互感器的变比:K=N2/N1=E2/E1,而实际测量变比:K实=U2/U1=E2/U1,由上式可见,理想电流互感器变比与实际变比之间的误差,近似地认为U2=E2的结果。

实际上,如图2所示,由于角差很小,可以认为U2与线段OC在长度上是相等的。

电流互感器变比检查试验方法

电流互感器变比检查试验方法

电流互感器变比检查试验方法电流互感器是变压器的一种,主要用于从高压系统中测量电流并将其转换为较小电流,以保护仪表和测量系统。

为确保电流互感器正常工作,需要进行变比检查试验。

以下是电流互感器变比检查试验方法:一、检查工具和设备1.电流互感器2.标准电流互感器或大功率稳压电源3.万用表或示波器4.调整电源5.功率计6.交流电桥7.电压表或数字电压表8.绝缘测试仪二、试验前准备1.检查电流互感器2.设置试验参数3.连接电路4.检查接线5.校准电流互感器三、试验方法1.变比试验连接待测电流互感器和标准电流互感器或大功率稳压电源的交流侧,并设置适当的电压和电流。

利用万用表或示波器测量两个互感器的输出。

通常,变比试验的结果以变比误差表示。

变比误差可以通过下列方程计算:变比误差=(实际输出/标称值)×100%。

2.精度试验连接待测电流互感器和调整电源并设置合适的电压和电流,使用功率计测量输出功率。

然后使用电桥或电压表测量电流和电压,以计算输出功率。

精度试验通常以精度误差表示。

精度误差可以通过下列方程计算:精度误差=(实际输出功率/标称值)×100%。

3.绝缘试验对变压器的低压绕组进行绝缘试验,以确定其绝缘抵抗度是否满足标准。

检查电流互感器的绝缘状态可使用绝缘测试仪。

四、试验后操作1.将测量结果记录在试验记录表上。

2.制定维护计划,以确保电流互感器按标准工作。

3.如果发现问题,需尽快修理或更换电流互感器。

总之,电流互感器的变比检查试验方法需要仔细的操作,检查也应遵循标准规范,并记录和维护记录,以确保试验的可靠性和准确性。

(完整版)电流互感器伏安特性试验

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。

)试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量的回路中的接地线断开或在自耦变后串接隔离变压器;否则,可能造成交流220V短路,损坏试验设备。

电流互感器实验

电流互感器实验

小区项目欧柜使用单绕组电流互感器实验报告
一、目的:
目前公司小区项目欧式柜技术协议要求使用单绕组电流互感器,加装电流表,同时给DTU上传电流信号,为保证满足此要求,作此试验。

二、实验内容:
1、准备工作
a、四方后接线DTU一台;
b、电流互感器,LMZK1-10C 600/5 0.5/0.5级2.5VA 两台;
c、电流表99T1-A 600/5 两只;
d、大电流发生器一台;
e、电流端子三个,交流220V电源,二次线2.5mm2若干米,万用表;
2、实验步骤
a、大电流发生器给A相电流互感器加大电流,看电流表和DTU测量值
(2.5mm2二次线长度大于20m);
b、大电流发生器给C相电流互感器加大电流,看电流表和DTU测量值
(2.5mm2二次线长度大于20m);
c、大电流发生器同时给A相和C相电流互感器加大电流,看电流表和DTU
测量值(2.5mm2二次线长度大于20m);
三、实验用表格
四、实验用电路图
五、实验数据分析
根据实际CT的铭牌,我们可以得出CT的理论变比为600/5=120,但根据CT基本信息中实际测量的数据显示,CT1的实际变比为:116.92,CT2的实际变比为:117.01,我们可以得出2个CT都是在合理误差范围内。

六、实验结论
使用单绕组电流互感器,加装电流表,同时给DTU上传电流信号,在2.5mm2二次线长度大于20m时,DTU与电流表串联的情况下,二者读数正常,因此,使用单线圈的电流互感器能满足使用要求。

电压电流互感器的试验方法

电压电流互感器的试验方法

电压电流互感器的常规试验方法一、电压、的概述典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号;电力系统常用的,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等;1.的原理的原理与变压器相似,如图所示;一次绕组高压绕组和二次绕组低压绕组绕在同一个铁芯上,铁芯中的磁通为Ф;根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为:图电压互感器原理2.的原理在原理上也与变压器相似,如图所示;与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小注意不是指对地电压,相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势FF=IW大小相等,方向相反;即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比;图电流互感器的原理3.互感器绕组的端子和极性电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右;常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端;当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的;标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果;在互感器中正确的标号规定为减极性;4.电压互感器和电流互感器在结构上的主要差别1电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯;2电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关;3电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路;5.电压互感器型号意义第一个字母:J—电压互感器;第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱;第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q -气体绝缘第四个字母:W—五铁芯柱;B—带补偿角差绕组; 连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用;6.电流互感器的型号意义电流互感器的型号由字母符号及数字组成,通常表示电流互感器绕组类型、绝缘种类、使用场所及电压等级等;字母符号含义如下:第一位字母:L——电流互感器;第二位字母:M——母线式穿心式;Q——线圈式;Y——低压式;D——单匝式;F——多匝式;A——穿墙式;R——装入式;C——瓷箱式;Z ——支柱式;V ——倒装式;第三位字母:K——塑料外壳式;Z——浇注式;W——户外式;G——改进型;C——瓷绝缘;P——中频;Q ——气体绝缘;第四位字母:B——过流保护;D——差动保护;J——接地保护或加大容量;S——速饱和;Q——加强型;字母后面的数字一般表示使用电压等级;例如:LMK-型,表示使用于额定电压500V及以下电路,塑料外壳的穿心式S级电流互感器;LA-10型,表示使用于额定电压10kV电路的穿墙式电流互感器;二、电压、电流互感器试验步骤电压互感器和电流互感器共有的试验项目1.绝缘电阻测量1试品温度应在10-40℃之间;2用2500V兆欧表测量,测量前对被试绕组进行充分放电;3试验接线:电磁式电压互感器需拆开一次绕组的高压端子和接地端子,拆开二次绕组,;测量电容式电压互感器中间变压器的绝缘电阻时,须将中间变压器一次线圈的末端通常为X 端及C2的低压端通常为δ打开,将二次绕组端子上的外接线全部拆开,按图接好试验线路;电流互感器按图接好试验线路;图电磁式电压互感器绝缘电阻测量接线图电流互感器绝缘电阻测量接线4驱动兆欧表达额定转速,或接通兆欧表电源开始测量,待指针稳定后或60s,读取绝缘电阻值;读取绝缘电阻后,先断开接至被试绕组的连接线,然后再将绝缘电阻表停止运转;5断开绝缘电阻表后应对被试品放电接地;关键点:a.采用2500V兆欧表测量b.测量前被试绕组应充分放电c.拆开端子连接线时,拆前必须做好记录,恢复接线后必须认真检查核对d.当电容式电压互感器一次绕组的末端在内部连接而无法打开时可不测量e.如果怀疑瓷套脏污影响绝缘电阻,可用软铜线在瓷套上绕一圈,并与兆欧表的屏蔽端连接;试验要求:a.与历次试验结果和同类设备的试验结果相比无显着差别;b.一次绕组对二次绕组及地应大于1000MΩ,二次绕组之间及对地应大于10MΩ;c.不应低于出厂值或初始值的70%;d.电容型电流互感器末屏绝缘电阻不宜小于1000MΩ;否则应测量其tanδ;2.绕组直流电阻测量1对电压互感器一次绕组,宜采用单臂电桥进行测量;2对电压互感器的二次绕组以及电流互感器的一次或二次绕组,宜采用双臂电桥进行测量,如果二次绕组直流电阻超过10Ω,应采用单臂电桥测量;3也可采用直流电阻测试仪进行测量,但应注意测试电流不宜超过线圈额定电流的50%,以免线圈发热直流电阻增加,影响测量的准确度;4试验接线:将被试绕组首尾端分别接入电桥,非被试绕组悬空,采用双臂电桥或数字式直流电阻测试仪时,电流端子应在电压端子的外侧,见图;5换接线时应断开电桥的电源,并对被试绕组短路充分放电后才能拆开测量端子,如果放电不充分而强行断开测量端子,容易造成过电压而损坏线圈的主绝缘,一般数字式直流电阻测试仪都有自动放电和警示功能;6测量电容式电压互感器中间变压器一、二次绕组直流电阻时,应拆开一次绕组与分压电容器的连接和二次绕组的外部连接线,当中间变压器一次绕组与分压电容器在内部连接而无法分开时,可不测量一次绕组的直流电阻;图直流电阻测量接线关键点:a.测量电流不宜大于按绕组额定负载计算所得的输出电流的20%b.当线圈匝数较多而电感较大时,应待仪器显示的数据稳定后方可读取数据,测量结束后应待仪器充分放电后方可断开测量回路;c.记录试验时环境温度和空气相对湿度;d.直流电阻测量值应换算到同一温度下进行比较;结果判断:与历次试验结果和同类设备的试验结果相比无显着差别;电压互感器特有的试验项目1.电压变比测量包括电容式电压互感器的中间变压器方法1:电压表法待检互感器一次及所有二次绕组均开路,将调压器输出接至一次绕组端子,缓慢升压,同时用交流电压表测量所加一次绕组的电压U1和待检二次绕组的感应电压U2,计算U1/U2的值,判断是否与铭牌上该绕组的额定电压比U1n/U2n相符,见图;图电压表法试验接线图方法2:变比电桥法,参照仪器使用说明书进行;试验要求:与铭牌和标志相符;2.电磁式电压互感器介质损耗因数及电容量测量1 正接法图示的接线以HSXJS-II型介质损耗测试仪为例,实际接线应按所使用的仪器说明书进行接线;图正接法接线图正接线的特点:a.测量结果主要反映一次绕组和二次绕组之间和端子板绝缘的电容量和介质损耗因数;b.测量结果不包括铁芯支架绝缘的电容量和介质损耗因数如果PT底座垫绝缘就可以;c.测量结果不受端子板的影响;d.试验电压不应超过3kV建议为2kV;2 反接法图反接法接线图反接法的特点a.测量结果主要反映一次绕组和二次绕组之间、铁芯支架、端子板绝缘的电容量和介质损耗因数;b.测量结果受端子板的影响;c.试验电压不应超过3kV建议为2kV;3 末端屏蔽法图末端屏蔽法接线图末端屏蔽法的特点:a.对于串激式电压互感器,测量结果主要反映铁芯下部和二次线圈端部的绝缘,当互感器进水时该部位绝缘最容易受潮,所以末端屏蔽法对反映互感器受潮较为灵敏;b.对于串激式电压互感器,被测量部位的电容量很小,容易受到外部干扰;C.试验电压可以是10kV;d.严禁将二次绕组短接;4 末端加压法末端加压法的特点:a.不用断开互感器的高压端子,试验中将高压端接地;b.测量结果主要是反映一、二次线圈间的电容量和介质损耗因数,不包括铁芯支架的电容量和介质损耗因数;c.由于高压端接地,外部感应电压被屏蔽掉,所以这种方法有较强的抗干扰能力;d.测量结果受二次端子板绝缘的影响;e.试验电压不宜超过3kV;f.严禁将二次绕组短接;图末端加压法接线图图测量支架的介质损耗因数5串激式电压互感器支架介质损耗因数的测量测量接线见图,互感器放置于绝缘垫上;由于支架的电容量很小,通常只有几十PF,所以要求介损测量仪应有相应的测量范围;试验要求及结果判断:a.采用末端屏蔽法和末端加压法时,严禁将二次绕组短接;b.串级式电压互感器建议采用末端屏蔽法,其他试验方法与要求自行规定;c.前后对比宜采用同一试验方法;d.交接时,35kV以上电压互感器,在试验电压为10kV时,按制造厂试验方法测得的介损不应大于出厂试验值的130%;e.支架介损一般不大于6%;f.与历次试验结果相比,应无明显变化;g.绕组tgδ不应大于规程规定值;电流互感器特有的试验项目1.变比试验方法1:电流法由调压器及升流器等构成升流回路,待检TA一次绕组串入升流回路;同时用测量用TA0和交流电流表测量加在一次绕组的电流I1、用另一块交流电流表测量待检二次绕组的电流I2,计算I1/I2的值,判断是否与铭牌上该绕组的额定电流比I1n/I2n相符;见图图电流互感器变比测量接线图图电压法方法2:电压法待检CT一次绕组及非被试二次绕组均开路,将调压器输出接至待检二次绕组端子,缓慢升压,同时用交流电压表测量所加二次绕组的电压U2、用交流毫伏表测量一次绕组的开路感应电压U1,计算U2/U1的值,判断是否与铭牌上该绕组的额定电流比I1n/I2n相符;方法3:电流互感器变比测试仪互感器测试仪,按说明书操作;注意事项:方法1:测量某个二次绕组时,其余所有二次绕组均应短路、不得开路,根据待检CT的额定电流和升流器的升流能力选择量程合适的测量用CT和电流表;方法2:二次绕组所施加的电压不宜过高,防止CT铁心饱和方法3:测量某个二次绕组时,其余所有二次绕组均应短路、不得开路,根据待检CT的额定电流和升流器的升流能力选择合适的测量电流;结果判断:与铭牌和标志相符;2.正立式电容型电流互感器介质损耗因数及电容量测量测量接线见图;图正立式电流互感器介质损耗测量接线3.倒立式电流互感器介质损耗因数及电容量测量1SF6绝缘电流互感器不要求测量介质损耗因数;2当二次绕组的金属罩和二次引线金属管内部接地而零屏外引接地时只能采用反接法进行测量;3当二次绕组的金属罩和二次引线金属管与零屏同时外引接地时优先采用正接法进行测量;判断二次引线金属罩是否在内部接地的方法:如果用正接法测出的电容量比反接法测出的电容量小很多,就说明二次引线金属管已在内部接地;注意事项及结果判断:a.本试验应在天气良好,试品及环境温度不低于+5℃的条件下进行;b.测试前,应先测量绕组的绝缘电阻;c.测量时应记录空气相对湿度、环境温度;d.与历次试验结果和同类设备的试验结果相比无显着差别;e.绕组tanδ不应大于规程规定值;f.当测量电容型电流互感器末屏tanδ时,其值不应大于2%;4.一次绕组交流耐压试验将二绕组短接并与外壳连接后接地,在一次侧加压;采用调压器及串联谐振装置的试验接线见图;图电流互感器一次绕组交流耐压试验注意事项:a.耐压试验前确认试品绝缘电阻合格;b.充油和充气互感器必须静置规定的时间通常安装后应静止24小时以上;c.绝缘油试验合格;d.气体试验合格,耐压在额定气压下进行e.耐压试验前后,应检查有否绝缘损伤;f.外施交流耐压试验电压的频率应为45-65HZ;g.交流耐压试验时加至试验标准电压后的持续时间,凡无特殊说明者,均为1min;h.外施耐压试验的电压值应在高压侧进行测量,并应测量电压峰值试验电压为峰值/ ;i.测量时应记录空气相对湿度、环境温度;j.拆开试验设备高压引线,测试被试绕组对其他绕组及地绝缘电阻,并与耐压前测试值比较,耐压后绝缘电阻不应降低;k.试验结束后应对被试品放电接地;试验要求:a.试验过程不应发生闪络、击穿现象;b.外施耐压试验前后,绝缘电阻不应有明显变化;5.励磁特性曲线1待检CT一次及所有二次绕组均开路;2将调压器或试验变压器的电压输出高压端接至待检二次绕组的一端,待检二次绕组另一端通过电流表或毫安表,视量程需要接地、试验变压器的高压尾端接地,见图;3接好测量用PT、电压表;4缓慢升压,同时读出并记录各测量点的电压、电流值;5依次测量其他二次绕组的励磁特性曲线;图励磁特性测量注意事项:a.试验时应先去磁可加交流电压平缓升降几次,然后将电压逐渐升至励磁特性曲线的饱和点即可停止;b.如果该绕组励磁特性的饱和电压高于2kV,则现场试验时所施加的电压一般应在2kV截止,避免二次绕组绝缘承受过高电压;c.试验时记录点的选择应便于计算饱和点、便于与出厂数据及历史数据进行比较,一般不应少于5个记录点;试验结果判断:与历次试验结果或与同类设备的试验结果相比无显着差别;图电流互感器的励磁特性曲线试验数据的判断对试验数据的判断方法1与出厂试验数据或安装交接试验数据比较应无明显的变化;2与同类产品比较应无明显的差异;3与历年试验数据比较应无显着的差别;4试验结果应符合相关规程的规定;数据异常的可能原因1绝缘电阻下降a.受潮;b.外套脏污;c.绝缘老化变质;d.局部绝缘破损或击穿;2介质损耗因数增大a.受潮或外套脏污;b.外电场干扰;c.试验引线或接地线接触不良造成的附加损耗;d.电容屏半击穿状态形成的附加电阻;e.内部绝缘存在局部放电缺陷;f.绝缘老化、变质造成介质损耗增加;g.介质损耗随试验电压的下降而增加,说明电容屏绝缘材料有杂质;3电容量增加a.个别电容元件击穿或电容屏层间绝缘存在击穿问题;b.电容元件或电容屏受潮;c.采用反接线测量时高压引线太长引线对地电容大;4电容量减小a.电容元件之间的连接线或电容屏引线断线或接触不良;b.油浸式电容器或互感器内部缺油;5直流电阻异常a.线圈存在匝间短路;b.线圈存在焊接或接触不良、断线等问题;6励磁特性异常a.励磁电流增加:绕组存在匝间短路,此时变比也会发生变化;b.励磁电流变小:绕组存在断线或虚焊问题;。

互感器试验原理及试验方法

互感器试验原理及试验方法

互感器试验原理及试验方法互感器试验原理及试验方法主要涉及到电流互感器和电压互感器的试验。

电流互感器的试验原理是基于电磁感应定律进行工作的,与变压器相似。

在正常工作状态下,一、二次绕组上的压降很小,相当于一个短路状态的变压器,所以铁芯中的磁通也很小。

这时,一、二次绕组的磁势大小相等,方向相反,因此电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

当端子的感应电势方向一致时,称为同名端。

如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。

对于电流互感器的试验方法,主要有电流测量法和电压测量法。

电流测量法是在电流互感器一次侧输入一个电流,二次侧通过感应一次电流产生的磁通而产生二次电流。

而电压测量法是在电流互感器的二次侧输入一个电压,一次侧通过测量一次的感应电压得到变比。

电压互感器的试验原理与变压器相似,一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。

电压互感器进行励磁特性与励磁曲线试验时,一次绕组、二次绕组及辅助绕组均开路,非加压绕组尾端接地,特别是分级绝缘电压互感器一次绕组尾端更应注意接地,铁芯及外壳接地,二次绕组加压。

至于具体的试验方法,包括试验接线和试验步骤。

在试验前,应对电压互感器进行放电,并将高压侧尾端接地,拆除电压互感器一次、二次所有接线。

加压的开路,非加压绕组尾端、铁芯及外壳接地。

试验前应根据电压互感器最大容量计算出最大允许电流。

在试验过程中,应检查加压的二次绕组尾端不应接地,检查接线无误后提醒监护人注意监护。

合上电源开关,调节调压器缓慢升压,可按相关标准的要求施加试验电压,并读取点试验电压的电流。

读取电流后立即降压,电压降至零后切断电源,将被试品放电接地。

注意在任何试验电压下电流均不能超过最大允许电流。

电流互感器交接试验方案

电流互感器交接试验方案

电流互感器交接试验方案一、试验前准备工作:1.确定试验设备:需要准备电流互感器、电流变比测试装置、电流源、电压源、示波器、万用表等试验设备。

2.确定试验环境:试验环境应保持干燥、无腐蚀性气体和电磁干扰,确保测试结果的准确性。

3.根据电流互感器的技术要求和使用要求编制试验方案。

二、试验内容和步骤:1.静特性试验:将电流互感器的一次和二次侧分别接入电流变比测试装置和示波器,通过改变一次侧的电流值,记录二次侧的电流值,从而验证电流互感器的变比准确性。

2.动特性试验:分别检验电流互感器的过负荷工作能力和快速过流保护能力。

-过负荷工作能力试验:将电流互感器的一次侧接入电流源,通过改变电流源的输出电流,记录电流互感器二次侧的电流值,并与电流互感器的额定工作电流进行比较,判断电流互感器的过负荷工作能力是否符合要求。

-快速过流保护试验:将电流互感器的二次侧接入电流源,并通过调节电流源的输出电流,在电流互感器二次侧产生超过额定电流的瞬态过流,观察电流互感器的动作时间和动作准确度,判断电流互感器的快速过流保护能力是否符合要求。

3.绝缘电阻试验:将电流互感器的一次和二次侧分别与地线连接,使用万用表测量电流互感器的一次侧和二次侧与地的绝缘电阻,判断电流互感器的绝缘性能是否符合要求。

4.启动电流试验:将电流互感器的一次侧和二次侧分别与电压源和示波器连接,通过改变电压源的输出电压,记录电压源输出电压和电流互感器二次侧的电流值,观察电流互感器的启动电流和额定工作电流之间的关系,判断电流互感器的启动性能是否符合要求。

5.温升试验:在电流互感器工作时,用示波器测量电流互感器的温升情况,通过与电流互感器的温升限值进行比较,判断电流互感器的散热性能是否符合要求。

6.试验数据记录和分析:将试验过程中的所有数据和观测结果进行记录,并进行比较和分析,判断电流互感器是否符合技术要求和标准规定。

三、试验结果评价和处理:根据试验数据和观测结果,对电流互感器的质量和性能进行评价和处理。

电压电流互感器的试验方法(完整资料).doc

电压电流互感器的试验方法(完整资料).doc

【最新整理,下载后即可编辑】电压电流互感器的常规试验方法一、电压、电流互感器的概述典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。

电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。

1.电压互感器的原理电压互感器的原理与变压器相似,如图1.1所示。

一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。

根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为:图1.1 电压互感器原理2.电流互感器的原理在原理上也与变压器相似,如图1.2所示。

与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2 电流互感器的原理3.互感器绕组的端子和极性电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。

常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。

当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。

电流互感器检测项目及试验

电流互感器检测项目及试验

电流互感器检测项目及试验电流互感器是电力系统中常见的重要电气设备,用于变电设备中的保护及测量。

为了确保电气设备正常运行和电力系统的安全稳定,需要定期对电流互感器进行检测和试验。

本文将介绍电流互感器检测的相关项目及试验方法。

检测项目1. 外观检查外观检查主要关注电流互感器的铭牌、接线端子、外壳及连接线束等,确保其符合设计要求并防止因机械损伤造成故障。

2. 绝缘电阻测量绝缘电阻测量主要是为了确定电流互感器的绝缘状况是否良好。

在测量过程中,应使用标准电压来激励,并及时处理测量数据以便参考和分析。

3. 磁通量比测量磁通量比测量的主要目标是确定电流互感器的变比误差。

该测量方法常用的是交流比率法和恒流法。

在测量过程中,需注意测试设备的精度和实验室环境的干扰。

4. 相位角误差测量相位角误差测量是衡量电流互感器相位准确性的重要指标,在保护装置中具有重要意义。

该测量方法主要为相量测量法和变压器比法,需要精密的测试设备和周到的实验设计。

5. 线性误差测量线性误差测量是确定电流互感器线性误差的方法,可以有效判断电流互感器工作的可靠性和准确性。

线性误差测量主要为短路法和开路法,需注意实验环境和实验参数的设置。

试验方法在进行电流互感器检测之前,需要对相关试验方法进行评估和选择,以确保试验的准确性和合理性。

下面介绍一些常用的试验方法:1. 标准试验法标准试验法为常规试验方法,在检测合格后,应按规定周期进行检测,主要目的是确保电流互感器的正常工作。

2. 多项试验法多项试验法较全面地检查电流互感器的各项性能指标。

除了常规试验项目,还包括特殊项目的测量和分析,在实验方法和测试设备等方面都有较高的要求。

3. 野外试验法野外试验法主要指在现场对电流互感器进行测试和分析,可以获得更接近于实际应用的检测结果,但需要注意操作安全和实验精度。

电流互感器检测是电力系统中重要的工作,需要严格按照标准和规范来进行。

在根据实际情况选择试验方法时,应充分考虑实验的准确性、合理性和安全性。

低压电流互感器的校验方法 互感器常见问题解决方法

低压电流互感器的校验方法 互感器常见问题解决方法

低压电流互感器的校验方法互感器常见问题解决方法在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。

1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。

1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端,则这种标志叫减极性。

一次电流从P1进,二次电流从S1出。

极性检查很简单,除了可以在互感器校验仪上进行检查外,还可以使用直流检查法。

2、电流互感器退磁检查电流互感器在电流蓦地下降的情况下,互感器铁芯可能产生剩磁。

如电流互感器在大电流情况下蓦地切断、二次绕组蓦地开路等。

互感器铁芯有剩磁,使铁芯磁导率下降,影响互感器性能。

长期使用后的互感器都应当退磁。

互感器检验前也要退磁。

退磁就是通过一次或二次绕组以交变的励磁电流,给铁芯以交变的磁场。

从0开始渐渐加大交变的磁场(励磁电流)使铁芯达到饱和状态,然后再渐渐减小励磁电流到零,以除去剩磁。

对于电流互感器退磁,一次绕组开路,二次绕组通以工频电流,从零开始渐渐加添到确定的电流值(该电流值与互感器的设计测量上限有关,一般为额定电流的20—50%左右。

可以这样判定,假如电流蓦地急剧变大,此时表示铁芯以进入磁饱和阶段)。

然后再将电流缓慢降为零,如此重复2—3次。

在断开电源前,应将一次绕组短接,才断开电源。

铁芯退磁完成。

此方法称开路退磁法。

对于有些电流互感器,由于二次绕组的匝数都比较多。

若接受开路退磁法,开路的绕组可能产生高电压。

因此可以在二次绕组接上较大的电阻(额定阻抗的10—20倍)。

一次绕组通以电流,从零渐变到互感器一次绕组的允许的最大电流,再渐变到零,如此重复2—3次。

由于接有负载铁芯可能不能完全退磁。

由于一次绕组的最大电流有限制,过大的话可能烧坏一次绕组。

假如接有负载的二次绕组产生电压不是过高的话,可以加大二次绕组的负载电阻。

电流互感器绝缘试验

电流互感器绝缘试验
作业指导书
电流互感器绝缘试验
单击此处添加副标题
202X
n1
n2
铁芯
i1
i2
一次导电杆
电流互感器原理 主绝缘
铁心罩壳
二次导线
铁芯
I2 =
n1 x I1 n2
CT按绝缘结构分类:
油纸电容型、胶纸电容型 :500kV及以下 干式(固体绝缘):一般35kV及以下
干式电容型:目前一般为110kV,干式套 管结构,U型
励磁特性曲线
返回
励磁特性曲线
结果判别: 与同类型CT励磁特性曲线、制造厂的特性曲线以及自 身的历史数据比较,应无明显差异。 注意事项 : 试验时CT 一次及所有二次绕组均开路;试验前先去 磁,然后将电压逐渐升至励磁特性曲线的饱和点即可停止, 如果该绕组励磁特性的饱和电压高于2kV,则现场试验时所 施加的电压一般应在2kV截止。试验时记录点一般不应少于5 个记录点。
本次试验所需进行的试验项目和程序。
电流互感器绝缘试验推荐程序
安全措施

二次绕组的直流电阻测量
返回
返回
绕组及末屏的绝缘电阻测量
返回
极性检查
方法一:测量电流比
变比检查
方法二:测量电压比
变比检查
2、交流耐压
老炼之后进行;出厂耐压值的90%
3、局部放电测试
SF6绝缘CT的现场交接试验必做项目返回
按照《预防110kV-500kV互感器事故反措》规定的现场试验 项目及程序:
1、老炼
安装,检漏合格后充气至额定压力,静置1h后测微水和老
炼。
老炼程序:1.1 Un(10min)→ 0 → 1.0 Un(5min)→ 1.73 Un(3min)→ 0 【 Un指额定相对地电压】

电流互感器二次回路三相通流试验的方法

电流互感器二次回路三相通流试验的方法

电流互感器二次回路三相通流试验的方法电流互感器是用于测量电力系统中的电流的一种设备,常见的有一次侧和二次侧。

在电流互感器二次回路三相通流试验中,我们需要将电流互感器的二次侧进行接线,并通过通电的方法使电流在三相回路中流动,从而测试电流互感器的性能和准确度。

以下是电流互感器二次回路三相通流试验的基本步骤和方法:1.准备工作a.确保测试设备安全并处于正常工作状态。

b.检查电流互感器的二次侧接线端子,确保没有松动或脱落。

c.打开电流互感器二次回路中的断路器,并确保三相回路之间没有短路或故障。

2.接线方法a.首先,将电流互感器的二次侧末端的接线端子与测试设备的接线端子连接。

确保连接紧固,并正确接线相应的相位。

b.将测试设备的接线端子与三相回路的相应互感器接线端子相连。

同样,确保连接紧固,并正确接线相应的相位。

c.确保所有的接线都牢固地连接,并避免存在任何松动或接触不良的情况。

3.调整设备参数a.对测试设备进行电流校准,并将电流范围设置在所需的测试范围内。

b.根据需要,调整测试设备的采样频率、采样周期和波形采样方式。

4.开始通流试验a.确保测试设备和回路都处于安全状态,并保证工作人员没有接触带电的部分。

b.先观察电流互感器二次回路中的电流波形,确保其稳定和准确。

c.依次给三相回路施加电流,并观察测试设备上的电流显示值。

d.检测并记录每个相位的电流值,以及电流波形的功率因数和畸变程度。

e.对每个相位的测试结果进行比对和分析,确保测试数据的准确性和可靠性。

5.结束试验a.在完成测试后,关闭电流互感器二次回路中的断路器。

b.拆除所有的接线,并确保测试设备和回路恢复到安全状态。

c.将测试设备还原到初始设置,并进行必要的精确度校准和维护。

总结:电流互感器二次回路三相通流试验是一种对电流互感器的性能和准确度进行验证的重要方法。

通过正确的接线和调整设备参数,可以实施有效的试验。

在试验过程中,需要关注电流波形的稳定性和准确度,并记录和分析测试数据。

电流互感器现场试验报告

电流互感器现场试验报告

电流互感器现场试验报告一、试验目的:1.验证电流互感器的额定参数是否符合要求;2.检测电流互感器的负荷性能;3.检查电流互感器的工作状态。

二、试验设备:1.电流互感器;2.多用表;3.电流发生器;4.试验电源。

三、试验内容:1.验证电流互感器的额定参数:a.额定一次电流:根据电流互感器的额定电流,将电流发生器的输出电流设置为额定电流,并接入电流互感器。

使用多用表测量互感器的一次侧输出电流,验证是否与额定电流相符合。

b.额定二次电流:根据电流互感器的额定变比,将电流发生器的输出电流乘以变比系数,并接入电流互感器的二次回路。

使用多用表测量互感器的二次侧输出电流,验证是否与额定二次电流相符合。

2.检测电流互感器的负荷性能:a.额定负荷:将电流互感器接入负载电路,并使负载电路的电流逐渐增大,记录下互感器的输出电流和负载电流。

通过比较两者的差异,判断电流互感器的负荷性能是否满足要求。

b.额定负荷误差:在额定负荷下,使用多用表测量互感器的一次和二次侧输出电流,并计算出相对误差。

根据国家标准,判断电流互感器的负荷误差是否在允许范围内。

3.检查电流互感器的工作状态:a.外观检查:检查互感器外部是否有明显的损坏、变形或脱落。

如果发现异常情况,应及时进行维修或更换。

b.绝缘电阻测量:使用绝缘电阻测试仪测量电流互感器的绝缘电阻,判断绝缘是否良好。

如果绝缘电阻过低,可能会导致互感器发生漏电,应及时进行绝缘处理。

c.声响测试:通过给互感器施加额定电流,观察是否会产生异常的声响。

如果发现声响异常,可能是互感器内部存在故障,应及时进行检修。

四、试验结果及分析:1.验证电流互感器的额定参数:测量结果与额定参数相符合,电流互感器的额定电流和变比符合要求。

2.检测电流互感器的负荷性能:负荷性能良好,输出电流与负载电流误差较小,满足国家标准要求。

3.检查电流互感器的工作状态:外观无明显损坏,绝缘电阻满足要求,未发现异常声响。

五、结论:六、存在的问题及改进措施:1.目前未发现存在的问题。

电流互感器试验报告

电流互感器试验报告

电流互感器试验报告引言电流互感器是电力系统中常用的电气设备,用于测量高电压、高电流下的电流水平。

本文通过对电流互感器的试验和测试,旨在评估其性能和可靠性,并提供有关其在实际应用中的一些建议和注意事项。

一、试验目的和方法1.1 试验目的本次试验的目的是验证电流互感器在工作条件下的准确性、响应速度和稳定性,以确保其符合设计要求和使用要求。

1.2 试验方法试验过程分为静态试验和动态试验两部分。

静态试验包括校准、准确性和相位差测试;动态试验包括频率响应和过程响应的测试。

试验使用标准测试设备,并根据相关标准和规程进行操作。

二、试验结果与分析2.1 静态试验结果经过校准后,电流互感器的准确性和相位差得到了验证。

准确性测试表明,在额定电流下,互感器的输出与实际电流之间存在微小的误差,在允许范围内。

相位差测试结果显示,互感器的相位差在正负1度的范围内,表明其对输入电流的相位没有明显的影响。

2.2 动态试验结果频率响应测试中,对电流互感器施加了不同频率和幅值的电流,测量输出的响应情况。

结果显示,互感器在额定频率附近具有较高的精度和稳定性,但在较高频率下逐渐失去准确性。

过程响应测试中,测试了互感器对快速变化电流的响应能力。

结果表明,互感器在瞬态条件下具有很好的响应特性,能够准确捕捉到电流的瞬时变化。

三、结论与建议3.1 试验结论根据试验结果,可以得出以下结论:- 电流互感器具有良好的准确性和相位一致性;- 互感器的频率响应在额定频率范围内较为稳定,但在高频率下会有较大的误差;- 互感器对瞬态条件具有很好的响应能力。

3.2 建议鉴于试验结果的结论,提出以下建议:- 在使用电流互感器时,应尽量在其额定频率附近进行,以保证测量结果的准确性;- 对于高频率应用场景,应选择适用于该频率范围的互感器,避免误差;- 对于需要测量瞬态变化的电流情况,可以更加自信地使用电流互感器。

四、结语本次电流互感器试验评估了其准确性、稳定性和响应特性。

电流互感器检验项目和试验方法分析

电流互感器检验项目和试验方法分析

电流互感器检查项目和实验措施分析摘要: 电流互感器由闭合铁芯和绕组构成, 根据电磁感应原理工作。

电流互感器作为一种变压器, 通过串接在测量仪表之中保护电路, 广泛应用于电力系统测量研究、仪表测量和继电器保护系统中。

电流互感器在工作状态下, 始终呈闭合形式, 只有当电网电压和电流超过预设值时, 电能表和其他测量仪表通过互感器接入电网系统之中继而保护电力设备并进行其他测量。

本文重要就电流互感器检查项目和实验措施进行分析, 但愿对有关工作人员有所参照。

核心词: 电流互感器;检查;实验1.引言随着智能网在我国推广范畴旳扩大, 电流互感器受到了越来越多旳关注。

目前使用旳电子式互感器相比老式互感器故障率反而提高, 这就需要我们对电流互感器加进技术检查, 提高电流互感器旳运营稳定性和可靠性。

电流互感器目前使用A/D转换模式, 信号变换流程不固定, 导致大量光学元件和电子器件容易处在受损状态。

电流互感器是电力系统监测、计量电力系统旳重要根据, 对电流互感器进行在线监测,并制定校验原则, 找到对旳旳检查方式显得特别重要。

2.电流互感器旳定义电流互感器又被称为“仪用互感器”。

重要是通过扩大仪表量程、多电流保证测量精确性。

电流互感器原理上跟变压器差不多, 运用电磁感应系统, 变化电流大小进行工作。

电流互感器一端连接被测电流绕组N1, 另一端连接测量仪表N2。

在发电、变电、输电以及配电过程中通过线路电流旳大小差别进行测量, 控制和保护统一电流。

一般状况下电路电压会很高影响测量, 电流互感器这时候就需要起到转换和隔离电流旳作用。

3.电流互感器概述3.1电流互感器旳分类根据国家测量原理分类, 电流互感器重要分为: 空心电流互感器、光学电流互感器和低功率LPCT电流互感器。

以技术类型划分, 电流互感器又大体可分为: 传感单元全光纤、传感光学玻璃、激光供电+空心线圈+铁芯线圈、地电位直流供电+空心线圈+铁芯线圈。

3.2电流互感器旳存在问题3.2.1信号变换流程差别电流互感器和老式互感器信号流程存在原理性差别。

电流互感器的极性试验

电流互感器的极性试验

测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;
②交流法;③仪器法。

1直流法
见图1。

用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。

如指针摆动与上述相反为加极性。

图1直流法测电流互感器极性
2交流法
见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U2及U3的数值若U3=U1-U2为减极性。

图2交流法测电流互感器极性
3仪表法
一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。

电压电流互感器的试验方法

电压电流互感器的试验方法

电压电流互感器的试验方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]电压电流互感器的常规试验方法一、电压、的概述典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。

电力系统常用的,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。

1.的原理的原理与变压器相似,如图所示。

一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。

根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为:图电压互感器原理2.的原理在原理上也与变压器相似,如图所示。

与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图电流互感器的原理3.互感器绕组的端子和极性电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。

常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。

当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。

标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。

电流互感器试验方法

电流互感器试验方法

电流互感器试验方法电流互感器是一种测量电流的设备,常用于电力系统中的电流测量和保护控制。

为保证电流互感器的准确性和可靠性,在使用前需要进行试验。

电流互感器的试验主要包括静态试验、误差试验和热特性试验等。

一、静态试验:静态试验是对电流互感器的基本特性进行测试,主要包括变比误差、相位差和磁化曲线等试验内容。

试验步骤如下:1. 首先,将电流互感器接入试验装置,保证试验电路的连接正确。

2. 设置电流互感器的工作电流值,通过电源给电流互感器供电。

3. 分别测量试验电路中的电流互感器的一次侧电流和二次侧电流,计算变比误差。

4. 测量试验电路中电流互感器的一次侧电流和二次侧电流的相位差,计算相位差。

5. 根据试验要求,测量电流互感器在一定范围内的磁化曲线,绘制磁化曲线图。

二、误差试验:误差试验是对电流互感器的变比误差和相位误差进行测试,其目的是评估电流互感器在工作电流下的测量准确性。

试验步骤如下:1. 设置试验电流,通常选择电流互感器额定工作电流的80%和120%。

2. 分别测量试验电路中的电流互感器的一次侧电流和二次侧电流,并计算变比误差。

3. 测量试验电路中电流互感器的一次侧电流和二次侧电流的相位差,计算相位误差。

4. 根据试验结果评估电流互感器在不同电流下的误差情况,判断其准确性。

三、热特性试验:热特性试验是对电流互感器的温度变化对其测量特性的影响进行测试,主要包括温升试验和温漂试验。

试验步骤如下:1. 设置试验电流,通常选择电流互感器额定工作电流的80%和120%。

2. 在设定电流下使电流互感器工作一段时间,观察其温度变化。

3. 测量电流互感器在稳定工作状态下的温度升高,并计算温升值。

4. 将电流互感器置于不同环境温度下,测量电流互感器的电流变比与环境温度之间的关系,计算温度漂移。

除了上述三种常用试验方法外,还可以根据实际需求进行其他试验,比如绝缘强度试验、机械强度试验和外观检查等,以评估电流互感器的绝缘性能、机械可靠性和外观完好程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器试验方法
一.测量绝缘电阻
测量方法与变压器类似
1.工具选择
一次绕组:2500V兆欧表
二次绕组:1000V兆欧表或2500V兆欧表
2.步骤
⑴断开互感器外侧电源;
⑵用放电棒分别对一次侧和二次侧接地充分放电;
⑶擦拭变压器瓷瓶;
⑷摇测高压侧对地绝缘电阻
①所有二次侧短接,并接地;
②拆开一次侧中性点接地端;
③短接一次侧,并对地遥测绝缘值;
④记录数据。

⑤用放电棒分别对一次侧和二次侧接地充分放电;
⑸用放电棒分别对ABC接地充分放电;
⑹摇测低压侧对地绝缘电阻(一般有星形和开口三角)
①短接一次侧,并接地;
②拆开二次侧中性点接地端;
③短接二次侧,并对地遥测绝缘值;
④记录数据。

⑤用放电棒分别对一次侧和二次侧接地充分放电;
⑺用放电棒分别对二次侧接地充分放电;
⑻摇测高压对低压绝缘电阻
①拆开一次侧中性点接地端;
②拆开二次侧中性点接地端;
③分别短接一次和二次侧,并遥测高压对低压间的绝缘值;
④记录数据。

⑤用放电棒分别对一次侧和二次侧接地充分放电;
⑼摇测低压对低压绝缘电阻
①拆开二次侧中性点接地端;
②分别短接星形二次侧和开口△二次侧;
③一次侧短接,并接地;
④遥测低压对低压间的绝缘值
⑤记录数据。

⑥用放电棒分别对一次侧和二次侧接地充分放电;
二.测量介质损失tanδ(有关内容见《进网作业电工培训教材》P346)
只对35KV及以上互感器的一次绕组连同套管,测量tanδ
1.工具选择
QS1型或QS2型高压交流平衡电桥,又称为“西林电桥”。

QS1电桥的技术特性:额定电压10KV;tanδ测量范围0.5~60%;试品测量范围Cx30pF~0.4μF(当C N=50 pF时);测量误差tanδ=0.5~3%时≤±0.3%,tanδ=0.3~6%时≤±10%;Cx测量误差≤±5%。

2.高压测量(常见的二种方法)
⑴正接线方法,如下图所示
正接线是按照电桥设计的绝缘状态,高压部分接试验高压,低压部分接试验低压,接地部分接地。

桥体引线“C X”、“C N”、“E”处于低压,该引线可任意放置,不需使其“绝缘”。

⑵反接线方法,如下图所示
反接线与电桥设计的绝缘状态成反相接线,高压部分接地,接地部分接试验高压。

桥体引线“C X”、“C N”、“E”处于高压,同时标准电容C N外壳处于高压,因此在试验时,该引线须“绝缘”。

这种接法适用于被试品一极接地的情况。

2.低压测量,
3.“-tanδ”位置时的测量,
4.测量tanδ操作步骤
⑴用放电棒分别对一次侧和二次侧接地充分放电;
⑵接线并检查无误后,将各旋钮置于零位,选好分流位置;
⑶接通电源,加试电压,将“+tanδ”置于“接通”位置;
⑷增加检流计灵敏度,旋“调谐”旋钮,找到谐点后,调节R3使光带缩小;
⑸提高灵敏度,再顺序反复调节R3、C4(tanδ),使灵敏度在最大时光带宽度缩小;
⑹调节RX,可使光带达最小,此时电桥平衡。

可记录试验数据;
⑺用放电棒分别对ABC和abc接地充分放电。

测量tanδ的试验电源容量的选择
5.测量电流互感器tanδ
⑴测量时被测绕组两端短接,非被测绕组均要短路接地。

②测量绕组和接地部位
电流互感器20℃下介质损耗允许值%
充胶式 2 2
胶纸电容式 2.5 2
油纸电容式 1.0 0.8 0.6
三.核定极性
1.直流法
⑴工具选择
5~3V直流电池、开关K、mV表
⑵步骤
①用放电棒分别对一次和二次接地充分放电;
②按图接线,并检查无误;
③合上K,观查瞬间mV表指针的偏转方向;
④断开K,观查瞬间mV表指针的偏转方向;
⑤重复③④步,再做一遍。

⑥用放电棒分别对一次和二次接地充分放电
⑶判断
①合上K,右偏;断开K,左偏;则为同极性(减极性);
②合上K,左偏;断开K,右偏;则为异极性(加极性)。

2.交流法
⑴工具选择
220V交流电源、20V交流电源、开关K1、开关K2、电压表1、电压表2、电压表3
⑵步骤
①用放电棒分别对一次和二次接地充分放电
②连接线,如下图所示;
③合上K1和K2,记录U xX、U Ax和U ax;
④用放电棒分别对一次和二次接地充分放电
⑶判断
① U xX=U Ax-U ax时,为同极性;
② U xX=U Ax+U ax时,为异极性。

四.交流耐压
1.工具选择
Bs试验变压器;
R1保护电阻;
R2限流、阻尼电阻;
G保护间隙(球隙);
A电流表;
V电压表;
LH电流互感器;
Bx被试互感器
2.试验接线图
被试互感器各绕组短接,非被试绕组均短接接地。

3.步骤
⑴一次对二次及地,如图3、4所示
缓慢升压至试验电压,并密切注意倾听放电声音,密切观察各表计的变化,读取1min 的电流值,并记录;
⑵用放电棒分别对一次接地充分放电,如图1和图2所示;
⑶二次对外壳及地,如图5、6所示
缓慢升压至试验电压,并密切注意倾听放电声音,密切观察各表计的变化,读取1min 的电流值,并记录;
⑷用放电棒分别对二次侧接地充分放电。

电流互感器试验报告电试-----04
工程名称:装置地点:试验日期:年月日主回路名称:盘号:温度:℃湿度:%RH
试验:复核:。

相关文档
最新文档