霍尔测速

霍尔测速
霍尔测速

1前言

霍尔传感器是基于霍尔效应的一种磁敏式传感器。霍尔效应1897年首次被美国物理学家霍尔在金属材料中发现,但由于霍尔效应在金属材料中太微弱而没有得到人们的重视及较好的应用。直到20世纪50年代,随着半导体技术的发展,利用半导体材料做成的霍尔元件的霍尔效应比较显著,从而霍尔效应被人们所重视和充分利用,霍尔式传感器得到了快速的应用和发展。目前霍尔传感器已经广泛的应用于电磁、电流、水位、速度、振动等的测量领域。

由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。

霍尔传感器也称为霍尔集成电路,其外形较小,如图1所示,是其中一种型号的外形图。

2霍尔元件

2.1霍尔元件及霍尔元件的命名方法

霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。在金属或半导体薄片相对两侧面通以控制电流I ,在薄片垂直方向上施加电场B ,则在垂直于电流和磁场的方向上,即另两侧面会产生一个大小与控制控制电流I 和磁场B 乘积成正比的电压U H ,这一现象称为霍尔效应。所产生的电压U H 叫霍尔电压。即

IB K U H H

式中

K

H

------霍尔元件的灵敏度。

d

R

K

H

H

=

式中

R

H

------霍尔系数,它反映元件霍尔效应的强弱,有材料性质决定。单位

体积内导电粒子数越少,霍尔效应越强,半导体比金属导体霍尔 效应强,所以常采用半导体材料做霍尔元件;

d------霍尔元件的厚度;

图2霍尔效应原理

由上式可知对于材料和尺寸确定的元件,K H 保持常数,霍尔电压U H 仅与IB 的乘积成正比。利用这一特性,在恒定电流之下可用来测量磁感应强度B ;反之,在恒定的磁场之下,也可以用来测量电流I 。当

K

H

和B 恒定时,I 越大,

U

H

越大。同样,当

K

H

和I 恒定时 ,B 越大, U H 也越大。当所加磁场方向

改变时,霍尔电压U H 的符号也随之改变。当磁场方向不垂直于元件平面,而是与元件平面的法线成一角度θ时,实际作用于元件上的有效磁场是其法线方向的分量,即θcos B ,这时霍尔元件的输出为

θIB K U H H cos =

2.2霍尔元件的材料及结构

霍尔元件通常采用的半导体材料有N型锗(Ge),锑化铟(InSb)、砷化铟(InAs)、砷化镓(GaAs)及磷砷化铟(InAsP)、N型硅(Si)等。锑化铟元件的灵敏度最高,输出较大,但受温度影响也较大;砷化铟和锗元件输出虽然不如锑化铟大,但温度系数小,线性度也好;砷化镓元件的温度特性和输出特性好,但价格贵。目前使用锑化铟霍尔元件的场合较多。

霍尔元件的结构与其制造工艺有关。例如,体型霍尔元件是将半导体单晶材料定向切片,经研磨抛光,然后用蒸发合金法或其他方法制作欧姆接触电极,最后焊上引线并封装。而膜式霍尔元件则是在一块极薄(0.2mm)的基片上用蒸发或外延的方法制成一种半导体薄膜,然后再制作欧姆接触电极,焊接线,并最后封装。由于霍尔元件的几何尺寸及电极的位置和大小等均直接影响它输出的霍尔电压,所以在制作时都要很严格的要求。

2.3霍尔元件的技术参数

霍尔元件的主要技术参数如下。

(1)输入电阻R i

霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几欧到几百欧,视不同型号的元件而定。温度升高输入电阻变小,从而使输入电流变大,最终引起霍尔电压变化,为了减少这种影响,最好采用恒流源作为激励源。

(2)输出电阻R o

两个霍尔电压输出端之间的电阻称为输出电阻。它的数值与输入电阻同一数量级,它也随温度改变而改变。选择适当的负载电阻与之匹配,可以使由温度引起的霍尔电压的漂移减至最小。

(3)最大激励电流I M

由于霍尔电压随激励电流增大而增大,在应用中通常希望选用较大的激励电流I M,但激励电流增大,霍尔元件的功耗增大,元件温度升高,从而引起霍尔电压的温漂增大,因此,每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安到几百毫安。

(4)灵敏度K H

灵敏度IB U K M H =,它的数值约为10T )(mA V m ?左右。 (5)最大磁感应强度B M

磁感应强度超过B M 时,霍尔电压的非线性误差将明显增大,B M 的数值一般为零点几特[斯特](T )或几千高斯(G s )(1G s =T 104

-)

(6)不等位电压

在额定激励电流的作用下,当外加磁场为零时,霍尔输出端之间的开路电压称为不等位电压,它是由于四个电极的几何尺寸不对称引起的,使用时多采用电桥法来补偿不等位电压引起的误差。

(7)霍尔电压温度系数

在一定磁场强度和激励电流的作用下,温度每变化1度时,霍尔电压变化的百分数称为霍尔电压温度系数,它与霍尔元件的材料有关。

2.4霍尔元件的检测方法

一、电阻法:一般霍尔元件有立式和卧式两种,它们各脚之间阻值有一定关系,②、④脚间阻值等于③、④脚间阻值,①、②脚间阻值等于①、③脚间阻值。并且各脚之间阻值为300Ω~500Ω左右,正、反向测量无明显差别,否则该元件失效。

二、波形法:在通电的情况下,用示波器接到霍尔元件输出端,应有0.1Vp-p ~0.3Vp-p 的方波波形输出,其脉冲宽度应达到电路要求。

三、寻迹法:在通电的情况下,用手转动相应电机或带盘,把寻迹器接在霍尔元件输出端,应在喇叭中能听到脉冲放电声,否则该元件损坏。

四、模拟法:拆下待测霍尔元件,在其电源正、负端上加上额定电压2V ~5V ,用强磁性物体靠近元件表面并上下晃动,同时用示波器或寻迹器在输出端测其输出信号,如无,则该元件损坏。

3霍尔集成传感器

由霍尔元件及有关电路组成的传感器称为霍尔传感器。随着微电子技术的发展,目前霍尔传感器都已集成化,即把霍尔元件、放大器、温度补偿电路及稳压电源或恒流电源等集成在一个芯片上,由于其外形与集成电路相同,故又称霍尔

集成电路。

霍尔传感器的霍尔材料仍以半导体硅作为主要材料,按其输出信号的形式可分为线性型和开关型两种。当霍尔元件作线性测量时,最好选用灵敏度低一点、不等位电压小、稳定性和线性度优良的霍尔元件。当霍尔元件作开关使用时,要选择灵敏度高的霍尔器件。

3.1线性型霍尔传感器

线性型霍尔传感器是将霍尔元件、恒流源、线性放大器和射极跟随器等做在同一芯片上,输出电压较高,它输出模拟量。

线性型霍尔传感器的特性

输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。3.2开关型霍尔传感器

开关型霍尔传感器由稳压电路、霍尔元件、差分放大器,施密特触发器、OC 门等组成,当外加磁场强度超过规定的工作点时,OC门由高阻态变为导通状态,输出为低电平,当外加磁场强度低于释放点时,OC门重新变为高阻态,输出高电平。它输出数字量。

开关型霍尔传感器的特性

如图4所示,其中B op为工作点“开”的磁感应强度,B rp为释放点“关”的磁感应强度。

当外加的磁感应强度B 超过霍尔元件磁场工作点B op 时,传感器输出低电平,当磁感应强度降到工作点B op 以下时,传感器输出电平不变,一直要降到释放点B rp 时,传感器才由低电平跃变为高电平。B op 与B rp 之间的滞后使开关动作更为可靠。

霍尔元件的磁场工作点B op 和释放点B rp 之差B ?为磁感应强度的回差宽度

B

op

和B ?是霍尔元件德尔两个重要参数。B op 越小,器件灵敏度越高;B ?越大,

器件抗干扰能力越强。霍尔元件所具备的回差特性使其抗干扰能力显著提高,外来杂散磁场干扰不易使其产生误动作。

4霍尔传感器的应用---霍尔测速仪

4.1系统结构图

此设计是利用测量A1302的磁电特性与磁钢产生的电压脉冲频率进而测量转速的,为了更精确方便的测量与显示脉冲频率,采用了频率转换电压电路,因此霍尔磁力测速仪的基本系统结构如图4所示,整个系统可以分为四个模块:检测脉冲产生模块、频率/电压转换模块、AD 转换模块和计算显示模块。在电机的转动轴上装上小磁钢,每当小磁钢经过霍尔传感器时就会产生一个脉冲,测量出脉冲数和测量时间,计算得到的频率就是我们要得到的转速,然后显示出来。

检测脉冲频率AD 计算显示产生模块

/电压转换模块

转换模块

模块

图4

霍尔磁力测速仪系统结构图

4.2检测脉冲产生模块

转动轴

霍尔传感器

图5 检测装置

检测脉冲产生模块如图5所示,在被测转速的转轴上装上齿盘,每当齿盘经过霍尔传感器时,就会引起传感器输出电压发生变化[2]。本设计选用A1302EUA-T 连续型比例式线性霍尔传感器,具有低噪声输出,灵敏度高,快速上电,温度稳定性好,寿命长,高可靠性等优点,非常适合用在线性目标移动和旋转目标移动的位置检测系统中。可精确提供与所适用磁场成比例的电压输出,灵敏度为1.3mv/G 。其静态输出电压为电源电压的50%,所以在信号进入频率/电压转换模块之前需要对变化量进行调零和放大,如图6所示

图 6 调零放大电路

此电路是用来实现两个电压相减的差分放大电路[3],在理想运放条件下利用虚短和虚断的概念p n v v =,0i i =,可以得到:

V R R V R R R R R R V i i 1108211121112108

o 11-???? ?

?+

???? ?

?+=

在上式中,如果选取阻值满足8101211//R R R R =的关系,输出电压可简化为

()V V R

R V

1

i 2

i 10

8

o

-=

在图中我们可以看到两个输入电压分别为传感器输出电压和可变电阻16R 上的分压,在磁场强度为零时,传感器输出电压为电源电压的1/2,改变16R 的阻值,使

差分放大电路输出电压为零,达到调零效果。选取阻值满足8101211//R R R R =的关系,调整放大倍数,使输出电压在小磁钢经过传感器时幅度在1V 以上,这样就形成了检测脉冲信号FIN 。

4.3频率/电压转换模块

为了使系统能够更精确的测量频率(转速),本设计采用速度(频率)/电压转换芯片LM2907/LM2917只需接少量的外围元件即可构成模拟式转速表,LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号,将转速(频率)的变化与模拟信号输出相对应。

LM2907进行频率倍增时只需使用一个RC 网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA 的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV 利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为±0.3%;具有保护电路,不会受高于Vcc 值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。应用电路如图7所示

图 7 频率电压转换电路

当充电泵把从输入级输入来的频率转换成为直流电压时,需外接定时电容

4C 、输出电阻14R 以及积分电容或滤波电容7C ,当第一级输出的状态发生改变时

(这种情况可能发生在输入端上有合适的过零电压或差分输入电压时),定时电容在电压差/2cc V 的两电压值之间被线性地充电或放电,在输入频率信号的半周期中,定时电容上的电荷变化量为4*/2cc C V ,泵入电容中的平均电流或流出电容中的平均电流为:

()V C F AVG T Q cc 4in c i ??==?

输出电路把这一电流准确地送到负载电阻(输出电阻)14R 中,14R 电阻的另一端

接地,这样滤波后的电流被滤波电容积分后得到输出电压:

K R

C F V V ????=14

4

in

cc

o

其中K为增益常数,典型值为1。电容7C 的值取决于纹波电压的大小和实际应用中所需要的响应时间。输出精度0/V FIN 也可根据实际应用中所测量的频率大小来决定。图7所示电路的输出灵敏度为66Hz/V 。

4.4AD 转换模块

由于测量值为模拟量,必须用AD 转换后读入单片机,AD 转换模块采用一种逐次比较式8路模拟输入,8位数字量输出的AD 转换器ADC0809。应用电路如图8所示

图8 AD 转换电路

片内带有锁存功能的8路选1的模拟开关,由C 、B 、A 引脚的编码来决定所选通道,在这里我们只需要一路,方便起见将A 、B 、C 三个引脚全部接地,选通IN0路,转换频率/电压转换的输出电压。直接用+5V 的供电电源作为基准电压。由于ADC0809为8位数字量输出,当输入电压为5.00V 时,输出数据值为255(FFH ),因此最高数值分辨率为0.0196V (5/255)。当输入值大于5V 电压时,可在输入口使用分压电阻,而程序中只要将计算程序的除数进行调整就可以了。但是量程越大测量精度会降低[4]。由于ADC0809片内无时钟,可利用单片机提供的地址锁存允许信号ALE 经74hc393进行2分频后获得。输出数据口直接跟单片机P0口连接上,然后通过单片机处理。

4.5计算显示模块

霍尔磁力测速仪的计算显示模块使用STC89C52单片机进行控制和计算,显

示部分用1602液晶显示,电路简单,界面友好。单片机的P0口为AD 转换电压的数据接收口,P2口控制ADC0809的转换和1602液晶模块功能的实现,P1口为与1602液晶的数据传输口,实际电路如图9 所示

图9 计算显示电路

4.6调试与结论

系统在调试过程中,需要注意在放大调零模块,调试之前一定要先调零,选取阻值须满足R

R R

R 11

1210

8

的关系,才能掌握电路的放大倍数。在频率/电

压转换模块,由于元件的误差导致输出精度FIN V o 跟理论值之间存在误差,实际操作时应多测量几组数据,求出平均精度,然后给单片机处理。实践证明,经过调节,系统基本稳定,达到预想要求,能够较为准确的测量电机的转速,整个系统简单易实现,此设计还可进一步扩展推广到其他工程领域,如测量磁场强度,数字里程表等。

参考文献

[1]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2002:107-108. [2]李娟.一种廉价的基于霍尔元件的电机转速测量装置的实现[J].仪表技术与传感器,2002(1).

[3]康华.光电子技术基础(模拟部分)[M].北京:高等教育出版社,2006(5):34-35. [4]楼然苗,李光飞.单片机课程设计指导[M].北京:北京航空航天大学出版社,2007:3-5.

霍尔传感器小车测速)

成绩评定: 传感器技术 课程设计 题目霍尔传感器小车测速

摘要 对车速测量,利用霍尔传感器工作频带宽、响应速度快、测量精度高的特性结合单片机控制电路,设计出了一种新型的测速系统,实现了对脉冲信号的精确、快速测量,硬件成本低,算法简单,稳定性好。霍尔传感器测量电路设计、显示电路设计。测量速度的霍尔传感器和车轴同轴连接,车轴没转一周,产生一定量的脉冲个数,有霍尔器件电路部分输出幅度为12 V 的脉冲。经光电隔离器后成为输出幅度为5 V 转数计数器的计数脉冲。控制定时器计数时间,即可实现对车速的测量。在显示电路设计中,实现LED上直观地显示车轮的转数值。与软件配合,实现了显示、报警功能 关键词:单片机AT89C51 传感器 LED 仿真

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 1 3.2设计步骤------------------------- 3 3.3设计原理分析--------------------- 10 四、课程设计小结与体会 ---------------- 11 五、参考文献------------------------- 11

一、设计目的 通过《传感器及检测技术》课程设计,使学生掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 用霍尔元件设计测量车速的电子系统,通过对霍尔元件工作原理的掌握实现对车速测量的应用,设计出具体的电子系统电路,并且能够完成精确的车速测量。 二、设计内容及要求 2.1设计任务 霍尔传感器一般由霍尔元件和磁钢组成,当霍尔元件和磁钢相对运动时,就会产生脉冲信号,根据磁钢和脉冲数量就可以计算转速,进而求出车速。 现要求设计一个测量系统,在小车的适当位置安装霍尔元件及磁钢,使之具有以下功能: 功能:1)LED数码管显示小车的行驶距离(单位:cm)。 2)具有小车前进和后退检测功能,并用指示灯显示。 3)记录小车的行驶时间,并实时计算小车的行驶速度。 4)距离测量误差<2cm。 5)其它。 2.2设计要求 设计要求首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。其次设计一个单片机小系统,掌握单片机接口电路的设计技巧,学会利用单片机的定时器和中断系统对脉冲信号进行测量或计数。再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 三、设计步骤及原理分析 3.1 设计方法 3.1.1 霍尔效应 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生

霍尔测速电路

霍尔测速电路 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。

霍尔传感器应用测速方面

传感器原理及工程应用(论文) 霍尔传感器应用测速方面 学生姓名: 指导教师: 专业: 学号: 2011 年12 月

目录 前言 (1) 1绪论 (1) 1.1脉冲信号的获得 (1) 1.2方案分析论证 (2) 1.3单片机模块论证与选择 (2) 1.4显示模块论证与选择 (2) 1.5报警模块论证与选择 (3) 1.6电源模块论证与选择 (3) 2 基于霍尔传感器的电机转速测量系统硬件设计 (4) 2.1总体硬件设计 (4) 2.2系统电路设计 (5) 2.3霍尔传感器测量电路设计 (5) 2.4霍尔传感器测量原理 (6) 2.5转速测量方法 (7) 2.6反相器74LS14 (7) 2.7光电耦合器 (8) 2.8蜂鸣器 (9) 结论 (10) 参考文献 (11)

前言 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。 使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。 随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。 经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点[2]

编码器使用教程与测速原理

编码器使用教程与测速原理 我们将通过这篇教程与大家一起学习编码器的原理,并介绍一些实用的技术。 1.编码器概述 编码器是一种将角位移或者角速度转换成一连串电数字脉冲的旋转式传感器,我们可以通过编码器测量到底位移或者速度信息。编码器从输出数据类型上分,可以分为增量式编码器和绝对式编码器。 从编码器检测原理上来分,还可以分为光学式、磁式、感应式、电容式。常见的是光电编码器(光学式)和霍尔编码器(磁式)。 2.编码器原理 光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器是由光码盘和光电检测装置组成。光码盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,检测装置检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。 霍尔编码器是一种通过磁电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。霍尔编码器是由霍尔码盘和霍尔元件组成。霍尔码盘是在一定直径的圆板上等分地布置有不同的磁极。霍尔码盘与电动机同轴,电动机旋转时,霍尔元件检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。

可以看到两种原理的编码器目的都是获取AB相输出的方波信号,其使用方法也是一样,下面是一个简单的示意图。 3.编码器接线说明 具体到我们的编码器电机,我们可以看看电机编码器的实物。 这是一款增量式输出的霍尔编码器。编码器有AB相输出,所以不仅可以测速,还可以辨别转向。根据上图的接线说明可以看到,我们只需给编码器电源5V供电,在电机转动的时候即可通过AB相输出方波信号。编码器自带了上拉电阻,所以无需外部上拉,可以直接连接到单片机IO读取。

霍尔元件测速原理说明及应用

霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

霍尔传感器测速原理

现代检测技术论文 测控11-2班 范国霞 1105070202

绪论 现代技术关于速度的测量方法多种多样,其中包括线速度和角速度两个方面,速度和转速测量在工业农业、国防中有很多应用,如汽车、火车、轮船及飞机等行驶速度测量;发动机、柴油机、风力发电机等输出轴的转速测量等等。其中有微积分转换法,线速度与角速度转换方法,时间位移方法等等,下面我所介绍的是霍尔传感器对于速度的测量方法。霍尔式传感器是基于霍尔效应原理设计的传感器. 关键字:霍尔效应,霍尔传感器

霍尔传感器 霍尔传感器是基于霍尔效应的一种传感器。1879年美国物理学家霍尔首先在金属材料中发现了霍尔效应,但由于金属材料的霍尔效应太弱而没有得到应用,随着半导体技术的发展,开始用半导体材料制成霍尔元件,由于他的霍尔效应显著而得到了应用和发展。在了解霍尔传感器之前先了解一下什么是霍尔元件以及它的基本特性。 霍尔元件的结构很简单,它是由霍尔片、四根引线和壳体组成的,如图1所示。 图1 霍尔片是一块矩形半导体单晶薄片,引出四根引线:1、1ˊ两根引线加激励电压或电流,称激励电极;2、2ˊ引线为霍尔输出引线,称霍尔电极。霍尔元件的壳体是用非到此金属、陶瓷或环氧树脂封装的。在电路中,霍尔元件一般可用两种符号表示,如图1(b)所示。

霍尔元件的基本特性 (1)额定激励电流和最大允许激励电流当霍尔元件自身温度升高10℃所流过的激励电流成为额定激励电流。以元件允许最大温升为限定的激励电流称为最大允许激励电流。因霍尔电势随激励电流增加而线性增加,所以使用中希望选用尽可能大的激励电流,因而需要知道元件的最大允许激励电流。 (2)输入电阻和输出电阻激励电极间的电阻称为输入电阻。霍尔电极输出电势对电路外部来说相当于一个电压源,其电源内阻即为输出电阻。 (3)不等位电势及不等为电阻当霍尔元件的激励电流为I时,若元件所处位置磁感应强度为零,则它的霍尔电势应该为零,但实际不为零。这是测得的空载电势称为不等位电势。 (4)寄生直流电势再外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,称为寄生直流电势。 (5)霍尔电势温度系数在一定磁感应强度和激励电流下温度每变化1℃时,霍尔电势变化的百分率称为霍尔电势温度系数。他同时也是霍尔系数的温度系数。

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

霍尔元件测速电路 (1)

霍尔原件测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的hnmk/yil,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差

霍尔测速实验

246810 1214 1618202224 霍尔传感器V-n 曲线图 电压(V )/V 转速(n )/r p m 霍尔测速实验报告 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 霍尔传感器、+5V 、+4、±6、±8、±10V 直流电源、转动源、频率/转速表。 三、实验原理; 利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 四、实验内容与步骤 1.安装根据图28-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。 图28-1 2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值。也可用示波器观测霍尔元件输出的脉冲波形。 五、数据记录与分析 2、用matlab 绘制V-RPM 曲线图

3、霍尔组件产生脉冲的原因 因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化而产生的脉冲信号变化。两者之间通常会设有遮光原件,能够在变化过程中间断的影响到两者之间的磁通量。有磁场照射霍尔元件导通,没有磁场照射霍尔元件截止,不断的交替变化引起了脉冲的信号变化,所以霍尔测速时,所长生的波形也就是脉冲电,只是随转速的改变频率发生了改变,频率变化越快证明转速越快。 六、实验报告 1.分析霍尔组件产生脉冲的原理。 2.根据记录的驱动电压和转速,作V-RPM曲线。

霍尔传感器的测速电路设计

4.2.2霍尔传感器的测速电路设计 首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。 其次设计一个单片机小系统,利用单片机的定时器和中断系统对脉冲信号进行测量或计数。 再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 霍尔测速模块论证与选择 采用霍尔传感器;选型号为CHV-25P/10的霍尔传感器,其额定电压为10v,输出信号5v/25mA,电源为12~15v。体积大,价格一般为40~120元之间不等。性价比较高 计数器模块论证与选择 采用片内的计数器。其优点在于降低单片机系统的成本。每到一个脉冲将会产生一个T1的计数,在T0产生的100ms中断完成后,T1的中断溢出次数就是所需要计的脉冲数。特点在于:使用了内部的T1作为外部脉冲的计数器,并且,为了避免计数器的溢出,将T1的初值设为0。 显示模块论证与选择 采用LCD液晶显示器作为显示模块核心。LCD显示器工作原理简单,编程方便,节能环保。 报警模块论证与选择 采用蜂鸣器与发光二极管作为声光报警主要器件。该方案不论在硬件和焊接方面还是在编写软件方面都简单方便,而且成本低廉。 电源模块论证与选择 采用交流220V/50Hz电源转换为直流5V电源作为电源模块。 该方案实施简单,电路搭建方便,可作为单片机开发常备电源使用。 单片机模块论证与选择 选用P89C51的单片机速度极快、功耗低、体积小、资源丰富,有各种不同的规格,最快的达100MPS ,引脚还可编程确定功能 选用51系列的单片机,是因为51的架构十分典型。而且: 1.价格便宜; 2.开发手段便宜; 3.自己动手焊接相对容易。 转速测量方案论证

霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。 三、需用器件与单元 霍尔转速传感器、转速测量控制仪。 四、实验步骤 1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。 3、将霍尔传感器输出端(黄线)接示波器或者频率计。 4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化), 或用频率计观察输出频率的变化。

五、实验结果分析与处理 1、记录频率计六组输出频率数值如下: 由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。 1

多种传感器测速对比的实验报告

测速传感器实验报告 系别:电子通信工程系 班级:应电113班 组号:第三组 组员工作分配情况: 连接电路:苏芳(110415248) 记录数据:魏莹莹(110415216) 分析数据:康书娟(110415237) 拍照人员:刘素芳(110415238) 实习报告:李颂(110415218) 实习报告:李源(110415210) 检查电路:王德福(110415215) 2013年4月20日

磁电式传感器、光纤式传感器、光电传感器、霍尔传感器在测速方面的对比实验 一. 实验目的 1.了解磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的结构及其特点; 2.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器测量转速的方法; 3.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的实际应用. 二. 实验仪器设备 1.实训台、磁电式传感器、光纤式传感器、光电传感器、霍尔传感器、及其对应的测量模块、导线、万用表、电压表、示波器、电流表. 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分 三. 实验基本原理 利用不同的传感器的特性,把圆盘的转速转换成为电信号,通过对电信号的频率和电压的测量就能根据相应的公式计算出圆盘的转速.丛而达到测量转速的目的. 四. 实验内容及步骤 1.磁电式传感器测速电路基于电磁式感应原理,N匝线圈在磁场中的磁通变化时,线圈中感 应电势的变化,因此当转盘上嵌入N个磁铁时,每转一周线圈感应电势产生N次变化,通过放大,整形和计数等电路即可测量转速. 2.光纤式测速传感器测速时,光源发出的光由发射光纤传输并投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期, 由此可测量转动速度. 3.光电传感器测速时,光源发出的光由发射光纤传输并投投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,由此 可测量转动速度. 4.霍尔式传感器测速电路实验利用霍尔效应的表达式,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大\整形和计数电路就可以测量被测旋转物的转速. 五.电路连接图如下图所示:

光电编码器测速

飞思卡尔智能车舵机和测速的控制设计与实现 时间:2010-04-14 11:53:10 来源:电子设计工程作者:雷贞勇谢光骥五邑大学 2.1 舵机工作原理 舵机在6 V电压下正常工作,而大赛组委会统一提供的标准电源输出电压为7.2 V,则需一个外围电压转换电路将电源电压转换为舵机的工作电压6 V。图2为舵机供电电路。 舵机由舵盘、位置反馈电位计、减速齿轮组、直流动电机和控制电路组成,内部位置反馈减速齿轮组由直流电动机驱动,其输出轴带动一个具有线性比例特性的位置反馈电位器作为位置检测。当电位器转角线性地转换为电压并反馈给控制电路时,控制电路将反馈信号与输入的控制脉冲信号相比较,产生纠正脉冲,控制并驱动直流电机正向或反向转动,使减速齿轮组输出的位置与期望值相符。从而达到舵机精确控制转向角度的目的。舵机工作原理框图如图3所示。 2.2 舵机的安装与调节 舵机的控制脉宽与转角在-45°~+45°范围内线性变化。对于对速度有一定要求的智能车,舵机的响应速度和舵机的转向传动比直接影响车模能否以最佳速度顺利通过弯道。车模在赛道上高速行驶,特别是对于前瞻性不够远的红外光电检测智能车,舵机的响应速度及其转向传动比将直接影响车模行驶的稳定性,因此必须细心调试,逐一解决。由于舵机从执行转动指令到响应输出需占用一定的时间,因而产生舵机实时控制的滞后。虽然车模在进入弯道时能够检测到黑色路线的偏转方向,但由于舵机的滞后性,使得车模在转弯过程中时常偏离跑道,且速度越快,偏离越远,极大限制车模在连续弯道上行驶的最大时速,使得车模全程赛道速度很难进一步提高。为了减小舵机响应时间,在遵守比赛规则不允许改造舵机结构的前提下,利用杠杆原理,采用加长舵机力臂的方案来弥补这一缺陷,加长舵机力臂示意图如图4所示。

霍尔测速

霍尔测速系统实验报告 ——姓名:魏源璋班号:076111 学号:20111002652 一、实验目的 1、掌握霍尔测速的方法,掌握霍尔测速的原理。 2、重视保护电路在电路中的重要性。 二、实验设备 教学实验开发板等 三、预习要求 1、了解霍尔测速的原理 2、熟悉运算放大器的各种放大电路的接法和增益计算方法。 四、实验原理 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子浓度等重要参数。 磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I 的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况 霍尔元件是磁敏元件,要想用来测转速,就必须在被测的旋转体上装一个磁体,旋转时,每当磁体经过霍尔元件,霍尔元件就发出一个信号,经放大整形得到脉冲信号,也有的霍尔元件可以直接输出脉冲信号,送运算,两个脉冲的间隔时间就是周期,由周期可以换算出转速,也可计数单位时间内的脉冲数,再换算出转速。

霍尔传感器测速原理

霍尔传感器测速原理: 电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量与显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比与相位测量都存在较大的误差,常需要采用硬 件或软件的方法补偿,从而增加了系统的复杂性。 采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路与电子控制电路的隔离,霍 尔传感器的输出可直接与单片机接口。 因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,就是替代互感器的新一代产品。在此提出了利用霍尔传感器对电参量特别就是对高电压、大电流的参数的测量。 l测量原理 1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场与电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就就是霍尔电动势(或称之为霍尔电压),这种现象 称为霍尔效应。霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。 2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH就是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B与IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B与I乘积的未知量亦可进行测量。电参量的测量就就是根据这一原理实现的。 若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率与交流电的频率。 由UH=KICB可知:若IC为直流,产生磁场B的电流IO为交流时,UH为交流;若IO亦为直流,则输出也为直流。当IC为交流,IO亦

霍尔传感器测速原理

1.霍尔传感器测速原理 利用霍尔器件将喷药设备的转速转化为脉冲信号,将测量转速的霍尔传感器和喷药设备的车轴同轴连接,与霍尔探头相对的喷药设备的轴上固定着一片磁钢块,车轮每转一周,霍尔传感器便发出一个脉冲信号,由霍尔器件电路输出。将此脉冲信号接到单片机的IO口上,单片机通过采集IO口的信号来计算单位时间内的脉冲个数,从而计算出喷药设备的行进速度。 2.电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。 2.1直动式电磁阀原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。 2.2分布直动式电磁阀原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 2.3先导式电磁阀原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;

断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。 3.光电耦合器 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件.它对输入、输出电信号有良好的隔离作用.当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。

最新传感器实验霍尔测速和光速测控

传感器实验霍尔测速和光速测控

传感器实验实验报告 实验三霍耳测速 一、实验目的: 了解霍耳传感器N3120U的特性,学习霍耳传感器的应用,NE555时基集成电路应用。 二、实验设备及器件: 显示器、稳压电源、频率计数器;霍耳传感器、万用表、小磁铁、小电机等。 三、实验原理: 霍耳元件是一种磁电转换元件,用于检测磁场并将磁信号转换成电压。把霍耳元件置于外磁场中,沿垂直于磁力线方向通过电流时,其中的载流子受洛仑兹力作用,被推向一侧,积累以后形成电场,这个电场阻止载流子的偏移,当达到动态平衡后,电场中电位差即形成霍耳电压。当电流一定时,测量霍耳电压即可得知磁场的场强大小。

本实验采用的N3120U霍耳器件是一种集成的开关元件。它的输出可直接与多种电子元件相连。它的内部结构和主要性能如上图,其中: 图(一)显示了N3120U的内部结构和外接电路的种类。 图(二)显示了对于N3120U器件来说磁场为负的情况。 图(三)、图(四)、图(五)表示了对于磁感应强度大小的不 同区域输出电压翻转的情况。 图(六)给出了实验装置的示意图和磁铁与传感器的相 对位置图,当磁铁转动时,N3120U输出波形为一系列方 波,这时就可送计数器进行计数。 实验原理框图所示: 四、实验步骤: 1、测试传感器特性: (1)按图(一)连接电路,输出接示波器。 (2)如图(七)所示,测试图(五)区域的器件特性。用示波器观察N3120U的输出情况。将小磁铁由远及近移向N3120U,当输出电压发生跳变时,记录小磁体靠近霍耳探头的一端(现在是N极)与霍耳探头N3120U的距离,然后由此点由近及远移动小磁铁,观察N3120U 的输出,当示波器上输出电压出现反向跳变时,再记录小磁体与N3120U的距离。 磁铁由远到近磁铁由近到远 跳变点与N3120U距离 8mm 11mm 注:反复操作,测量结果与表中相差无几,由于不便于测量,难以得到精确值,故不必进行多次记录。 (3)用小磁体的 S极指向N3120U,重复 (2)的步骤,测试图(三)所示的器件特性。 实验中,将S极指向N3120U,重复(2)中步骤,发现无论S极如何靠近和远离 N3120U,示波器显示电压并不会发生跳变。说明该霍尔元件是一个单向开关型霍尔传感器,只对N极敏感。 (4)将磁体的 N极对准N3120U,如图(六)转动小磁体,观察示波器上的输出电压,测试如图(四)所示的特性。当连续转变小磁体时,输出电压将连续发生跳变,记录下 4次输出电压发生跳变时每次小磁体的转变角度。 跳变次数 1 2 3 4

直流电机调速霍尔测速

#include #include #define uchar unsigned char #define uint unsigned int /********************************************************************** L7010r接口定义 **********************************************************************/ sbit MOTOR_A_2=P1^4; //正转 sbit MOTOR_A_1=P1^5; //反转 sbit EN_MOTOR_A =P3^4; sbit k1=P1^3; //定义k1为p1.5口 sbit k2=P1^2; //定义k2为p3.1口 sbit k3=P1^1; //定义k3为p3.2口 sbit k4=P1^0; //定义k4为p3.3口 sbit rs=P2^0; //LCD的数据/命令选择端 sbit rw=P2^1; //LCD的读写选择端 sbit lcdcs=P2^2; //LCD的使能信号端 sbit warning=P3^1; //蜂鸣器端 uchar e=0; uchar T=0; //定时标记 uchar W=0; //脉宽值0~100 uchar A=0; //方向标记0,1 uchar k=0; //按键标记 uchar i=0; //计数变量 uint b,z,count,zhuan,msec; //定义参数 uchar display[]={" speed= r/sec"}; //定义显示参数 //sbit rs=P2^7; //LCD的数据/命令选择端 //sbit rw=P2^6; //LCD的读写选择端 //sbit lcdcs=P2^5; //LCD的使能信号端 //sbit warning=P3^1; //蜂鸣器端 uint b,z,count,zhuan,msec; //定义参数 //uchar display[]={" speed= r/sec"}; //定义显示参数 void delay(uint ms); //固定函数声明 /*-----------------------毫秒延时------------------------*/ void delay(uint ms) { uint b,j; //为延时引入i,j两参数 for (j=0;j

相关文档
最新文档